[ | _
Bonn-Aachen '
b I International Center for o
Information Technology UNIVERSITAT

Informati entrum
Lebenswissenschaften
[ ]

ZBMED

Bonn-Aachen International Center for Information Technology (B-IT)
University of Bonn

Master Programme in Life Science Informatics

Master Thesis

Comparative analysis of protein function
text-based embeddings and its potential for
prediction tasks

Submitted by
Rohitha Ravinder

First Supervisor: Prof. Dr. Dietrich Rebholz-Schuhmann
Second Supervisor: Prof. Dr. Martin Hofmann-Apitius

Internal Supervisor: Dr. Leyla Jael Castro
April 17, 2023

In collaboration with ZB MED - Information Centre for Life Sciences



Acknowledgement

I would like to express my appreciation to Prof.Dr.Dietrich Rebholz-Schuhmann
for giving me the opportunity to work under his guidance and supervision at ZB
MED - Information Centre for Life Sciences. His support, feedback and the
freedom he provided me in my work have played a vital role in shaping my
research, and I am thankful for the opportunity to be a part of his group.

I am grateful to Dr. Leyla Jael Castro for her exceptional guidance and support
throughout my project. Her mentorship has been invaluable in shaping my re-
search, and her willingness to provide feedback and answer my queries has been
greatly appreciated. I am deeply thankful for her time, effort, and commitment
to my academic and professional growth.

I am thankful for the encouragement and support provided by Prof. Dr. Martin
Hofmann-Apitius throughout my thesis. His dedication and commitment to my
research, as evidenced by the time he took to review my work, have been in-
valuable. I appreciate the effort he put into helping me succeed and the role he
played in the successful completion of my thesis.

I would also like to thank Dr. Olga Giraldo for her assistance in the downstream
analysis of this project.

Furthermore, 1 feel privileged to have had the opportunity to study at Bonn-
Aachen International Center for Information Technology (b-it). The challenging
academic environment provided during my masters in Life Sciences Informatics
has been instrumental in shaping my academic growth.

Lastly, I am thankful for the unwavering motivation and belief in me from my
family, friends, and colleagues. Without their support, this endeavor would not
have been possible, and I am grateful for their constant encouragement through-
out my master’s degree.



i

Abstract

This thesis addresses the challenging task of predicting protein function in bioin-
formatics, which has traditionally been addressed using embeddings to learn
representations of protein sequences and infer function. However, to date, no
studies have explored the use of embeddings generated based on protein func-
tion text for predicting protein function. The main objective of this study is to
enhance our understanding of how text-based embeddings can improve protein
function annotations. To achieve this, we specifically aim to compare and eval-
uate selected text-based embedding approaches exploiting protein function re-
lated information, and explore the potential of text-based embeddings for func-
tion prediction tasks using direct propagation techniques.

We specifically propose to learn and explore text-based embedding representa-
tions of protein function comment sections kept as part of the Swiss-Prot entries.
A comparative study is conducted using these text-based embeddings derived
from two approaches which include a combination of natural language pro-
cessing frameworks such as Word2Vec and Named Entity Recognition, as well
as direct propagation techniques such as sequence similarity and by-similarity
prediction.

Our results demonstrate the potential of embeddings in propagating protein
function. However, this is not conclusive as further exploration is necessary,
including the inclusion of TTEMBL entities and the use of metrics beyond se-
quence similarity. This study serves as a preliminary assessment of the potential
and behavior of text-based embeddings for improving protein function annota-
tions.

Keywords: Protein function prediction, Natural Language Processing, Word
embeddings, Named Entity Recognition
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Chapter 1

Introduction

1.1 Motivation

Understanding the role of proteins is crucial to life. However, there is only a
small subset of proteins whose function is well characterized, thereby making
protein function prediction a fundamental task in the field of Bioinformatics.
Numerous techniques have been developed for protein function prediction using
sequence similarity, sequence-based embeddings, protein structures or protein-
protein interactions [1]. Nevertheless, to the best of our knowledge no research
has been made yet that makes use of protein function text-based embeddings to
evaluate their use for protein function prediction tasks. In this study, our goal
is to get a better understanding of how information for protein functions can be
exploited through embeddings so that the produced information can be used to
improve protein function annotations.

Our work is based on the hypothesis that states a direct correlation between se-
quence similarity (corresponding to the BLAST [2] identity score) and similar
biological function (as expressed in the protein function comment). The idea
here is to capture this correlation with the help of the corresponding protein em-
beddings. Here, we consider the text-based embeddings that are derived from
the protein function comment sections of the UniProtKB [3] reviewed entries:
Swiss-Prot entries. Specifically, we aim to learn and compare two embedding
models that map functions of protein to sequences of vector representations such
that two proteins having similar function as stated in the function comment sec-
tion appear closer in the embedding vector space. The evaluation covered by
this thesis will offer a preliminary assessment based mostly on direct inspection
and combination of the information provided by the original text and the derived
embeddings.
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1.2 Aim

The aim of this thesis is as follows:

* To compare and evaluate selected text-driven embedding approaches ex-
ploiting protein function related information.

* To explore the potential offered by text-driven embeddings for its use in
function prediction tasks

* To compare protein sequence similarity vs word embedding similarity
based on protein functional annotations (i.e., function comments).

* To evaluate text-driven approaches as an option to provide additional sup-
port to biologists working on protein functional annotations.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

* Definition of two text-based embedding methods to represent protein
function comments with its corresponding software and optimization
framework [4].

* Vector space of protein function-based embeddings that can be used for
further tasks such as vocabulary analyses [5].

* Dataset of proteins that could be clustered based on BLAST sequence
similarity and embedding similarity. This dataset can be utilized by
UniProt curators and developers to revise and refine their clustering ap-
proaches [5].

1.4 OQOutline

The rest of the thesis is organized in the following manner:

* Chapter 2 presents the essential background information regarding the
datasets used in the current study and offers a comprehensive overview of
the key concepts and theoretical framework, with a particular emphasis
on word embeddings.

* Chapter 3 covers the methods used in this study, including the design of
the two novel text-based embedding approaches used in this thesis, and
the implementation details. This includes the retrieval and preprocessing
of the datasets, text annotation, the preprocessing pipeline, and the gener-
ation of embeddings.
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* Chapter 4 outlines the goals of the evaluation, the experimental setup, and
provides a brief summary of the results.

* Chapter 5 presents the results and findings of the study, providing a de-
tailed analysis of the outcomes.

» Chapter 6 provides a thorough discussion of the research, highlighting
the significance, limitations of the present work and provides insights into
future directions for the thesis.

» Chapter 7 concludes the study and analyzes the key findings of the thesis.
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Background

2.1 UniProt

The UniProt database [6] is a large and comprehensive resource maintained
by the UniProt Consortium that contains information about protein sequences,
their functions, and their interactions. The UniProt database is divided into
several sections, including UniProt Knowledgebase (UniProtKB), UniRef, Uni-
Parc, Proteomes and Reference Proteomes. For the purpose of this study, we
mainly focused on UniProtKB and UniRef.

UniProt Knowledgebase (UniProtKB) in itself comprises of two main compon-
ents: UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot
is a high-quality protein sequence database that is manually curated, where each
protein entry is linked to a summary of the experimentally verified, or compu-
tationally predicted functional information added by expert biocurators. While
UniProtKB/TrEMBL consists of protein entries that are computationally annot-
ated by automated systems, UniProtKB/Swiss-Prot provides an accurate annota-
tion of each protein entry and offers a rich source of information on protein func-
tion, structure, and post-translational modifications. The functional comments
of these expert annotated proteins serve as the primary dataset for the generation
of embeddings in this study.

UniRef is a comprehensive database of clustered sequences that provides a non-
redundant representation of UniProtKB sequences at various levels of sequence
identity. Based on the levels of sequence identity, UniRef clusters are categor-
ized into UniRef50, UniRef90 and UniRef100 [7]. For this study, we made use
of UniRef90 which is built by clustering UniRef100 sequences at 90% sequence
identity. This dataset is employed as the baseline for the aim of this study.

2.2 Natural Language Processing and
Embeddings

Natural Language Processing (NLP) is a subfield of artificial intelligence that
focuses on enabling computers to understand, analyze, and generate human lan-
guage [8]. Analysis and generation of such human (natural) language becomes
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critical with the prevalence of large unstructured data. This unstructured data
becomes more challenging to understand using traditional methods and requires
advanced NLP techniques to extract useful insights and information. One of
the key techniques used to analyze unstructured textual data is the creation of
embeddings [9]. One of the advantages of using embeddings is that it can be
pre-trained on large amounts of text data or trained specifically for a task or
domain. Text-based embeddings, in particular, are a way of representing words
or phrases as numerical vectors that capture their semantic meaning in a given
context. This is important because natural language is highly contextual, and
the meaning of a word or phrase can vary depending on the context in which it
is used. By using text-based embeddings, machine learning models can learn to
recognize the meaning of words or phrases in a way that captures their relation-
ships with other words or phrases in a given context.

2.3 Word embeddings

Machine learning models majorly rely on numerical data, especially when work-
ing with textual data, a fixed-length representation of words using numeric val-
ues is necessary to make it usable for neural networks, such as the one used in
this thesis. The challenge is to find numerical features that can be fed into these
models to represent words.

One approach commonly used is the one-hot word representation method, where
each word is represented by a vector with only one non-zero entry, typically with
the length of the vocabulary. This simple method has been widely adopted in
natural language processing tasks [10]. To create a one-hot representation, each
word in the corpus is assigned a unique index within the vector range, and the
resulting vector has zeros at all positions except at the word’s specific index,
which has the value one. This ensures that every word in the vocabulary is
assigned a unique one-hot representation [11].

Although one-hot encoding is a simple approach to represent words as vectors,
it has significant drawbacks for use in neural networks due to its high dimen-
sionality and sparsity, making it computationally inefficient, especially for large
vocabularies [12]. Another limitation of one-hot encoding is that it cannot rep-
resent the semantic similarity between words. Even synonyms are represented
as distinct and unrelated vectors in one-hot encoding, which makes it impossible
to use similarity measures for understanding the relationships between words.
Numeric features can be effective for comparing words, but one-hot encoding
does not facilitate the computation of such metrics, which limits its effectiveness
for natural language processing tasks [13].

Dense word embeddings have become a widely adopted solution to address the
drawbacks of one-hot encodings, such as their computational inefficiency and
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lack of semantic meaning. These word embeddings are constructed underlying
the distributional hypothesis that proposes that a word’s meaning can be inferred
from its contextual usage [14]. The hypothesis suggests that words with similar
contextual usage tend to have similar meanings thereby incorporating semantics
into word representations [15]. Subsequently, the neural network-based repres-
entations of the aforementioned distributed hypothesis, known as word embed-
dings model the relationship between a target word and its context words and
are obtained by training the neural network models.

Different types of pretrained word embeddings, such as GloVe [16] and BERT
[17], have been created to address the limitations of one-hot encoding. However,
for the current study, Word2Vec was selected because it allowed for the creation
of a hybrid embedding approach that combines Word2Vec with a dictionary-
based Named Entity Recognition (NER) technique, as explained in section 3.1.
This approach would not be possible with pretrained embeddings because they
lack knowledge of the named entities, which are not actual words found in the
texts used for pretraining. In contrast, pretrained embeddings are limited by
their pretraining text corpus, which may not include all of the named entities
relevant to a specific task. This makes them less effective for tasks that require
knowledge of named entities.

2.3.1 Word2Vec

Word2Vec is a well-known algorithm for creating word embeddings which
trains a neural network to capture conceptual information about each target word
by considering its surrounding words or by using a target word to learn its sur-
rounding context making the resulting embeddings more informative than the
individual words alone [18].

Word2Vec has two main architectures - Continuous Bag of Words (CBOW) and
Skip-gram (SG) - and can be viewed having three main components: Vocabu-
lary Builder, Context Builder, and Neural Network [19]. While both architec-
tures follow the same vocabulary-building process, the input transformation for
context construction and the neural network architecture differ between them.
CBOW and SG are similar in the sense that words sit in a context of words,
which is reflected by the embeddings so words and their common context will
commonly be close to each other. In both cases, the main output is a multidi-
mensional vector space where each word in the vocabulary is assigned a vector.
This makes it easier to perform mathematical operations to, for instance, find
the most similar, i.e., closest in the vector space, words to a given one.

The Vocabulary builder is a crucial component of the Word2Vec model, which
extracts all unique words from raw text to build the vocabulary. The vocab-
ulary includes the word index and its frequency in the text. This is done by
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iterating over each word in the corpus and storing the word in the Vocabulary
Object along with its frequency. This object is later pruned using a user-defined
minimum word count and maximum vocabulary size. The resulting Vocabulary
object is stored as a hash table. The hash table has a fixed size as defined by
the maximum vocabulary size, and when a new word is encountered, its count
is incremented. This process is repeated until all words have been processed.
Context Builder and the Neural Network layers for both the architectures are
explained in the respective sections.

Input Vocabulary .
Corpus Builder Lossy Counting
Vocabulary
Sentence Windows Context Dynamic Window Scaling
| Builder Sub;amplmg
Pruning
CBOW Skip-gram
Input Layer Hadden layer
Input . - O -7 i Qutput
Words . o1 - ~ Words
: i A i - Vectors
" (Final Product)
Parameter
Learner
Backpropagation
Hierarchical Softmax
Negative Sampling

Figure 2.1: Overview of Word2Vec Architecture [19]

2.3.1.1 Skip-gram (SG)

The Skip-gram architecture is a neural network model that predicts the context
words for a given target word as shown by Figure 2.2. In this process, the input
sentences are converted into input-output pairs. The window size determines
the number of neighboring words used to create input-output pairs. Negative
sampling is used to select a limited number of combinations of the middle word
and words that did not appear in its context. Additionally since the relatedness
of words declines once moved further away from a certain word, combinations
of the middle word and words in its context, but relatively far away, are sampled
less frequently [18].

The Word2Vec model uses a neural network with three layers: an input layer,
a hidden layer, and an output layer as shown by Figure 2.3. The input layer
has as many neurons as there are words in the vocabulary, and the output layer
has the same number of neurons as the input layer. The hidden layer has a
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dimensionality of neurons that corresponds to the dimensionality of the resulting
word vectors.

The example sentence:
"Machine learning predicts protein function and sequence"

can be used to illustrate how the Skip-gram architecture and Word2Vec model
work. If the target word is ‘protein’ and the window size is 2, then the neighbor-
ing words ‘learning’, ‘predicts’, ‘function’, and ‘and’ are used to create input-
output pairs. This means that the input is "protein" and the output is each of the
neighboring words. Therefore, the input-output pairs would be (protein, learn-
ing), (protein, predicts), (protein, function) and (protein, and).

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) w(t-2)
w(t-1) w(t-1)
.\SUM
> w(t)
w(t+1) / w(t+1)
W(t+2) w(t+2)

cBOW Skip-gram
Figure 2.2: Continuous Bag of Words versus Skip-gram [20]

The neural network model is trained by going through each input sentence and
converting it into suitable input-output pairs using gradient descent and back-
propagation [21]. During the training process, backpropagation is done in one
back pass, and error vectors are calculated for each target word. The weights
of the hidden layer are updated based on the cumulative error vector. During
training, the network learns to predict the context words for a given target word,
based on the relationships between the words in the dataset. Once the training
process is finished, the word embeddings are obtained by extracting the weight
matrix of the projection layer [18].
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2.3.1.2 Continuous Bag of Words (CBOW)

Continuous Bag of Words differs in the way that it predicts the current word
based on its surrounding context words. More specifically, given a sequence of
words, the CBOW model learns to predict the probability of each word in the
sequence given the context words within a fixed window. The context words are
represented as one-hot vectors, where each dimension represents a unique word
in the vocabulary.

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

X

Probability that the word at a
randomly chosen, nearby
position is “abandon”

Input Vector

... “ability”

A1’ in the position ... “able’
corresponding to the
word “ants”

(=]

X

300 neurons

10,000
positions
... “zone”

) O

10,000
neurons

Figure 2.3: Neural Network Architecture [19]

Unlike the Skip-gram model, CBOW predicts the target word based on the con-
text, rather than predicting the context words based on a target word as shown
by Figure 2.2.

To illustrate this, let’s consider the same example sentence:

"Machine learning predicts protein function and sequence"

If the window size is 2, and the target word is ‘protein’, CBOW will predict this
word based on the surrounding context words, which are ‘learning’, ‘predicts’,
‘function’, and ‘and’. Therefore, the input and output pairs for this example
sentence would be (learning, protein), (predicts, protein), (function, protein),
and (and, protein).

Similar to Skip-gram, CBOW also uses a three layer neural network for training.
However, CBOW’s architecture is slightly different. The input layer represents
the context words, and the output layer represents the target word. The hid-
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den layer, which is the same size as the input layer, serves as a bottleneck that
reduces the dimensionality of the input.

During training, CBOW uses the context words to predict the target word. The
backpropagation algorithm is used to calculate the error between the predicted
and actual target words, and the weights of the neural network are updated ac-
cordingly. Once the training process is complete, the weight matrix of the hid-
den layer can be used as word embeddings to represent the words in a lower-
dimensional space.

2.4 Document embeddings

Word embeddings have a limitation in that they lose the order of words, which
can result in different sentences having the same representation. To address this,
the Doc2Vec (Paragraph Vector) framework was introduced as an unsupervised
approach to generate continuous vector representations for text pieces of vary-
ing lengths, ranging from phrases to documents . The name "Paragraph Vector"
emphasizes its ability to handle variable-length texts and generate vector repres-
entations not only for individual words but also for entire documents [22].

Another approach to generate document-level embeddings is to use word em-
beddings based on the context in which they appear and then combine them
to represent the entire document. Several methods exist to generate document
embeddings from word embeddings, including averaging word embeddings,
weighted averaging, and summation [23, 24]. Weighted Averaging is a method
that assigns weights to individual words based on their importance in the doc-
ument. One example of a weighting scheme is the tf-idf (Term Frequency -
Inverse Document Frequency) scheme, where words that occur frequently in
the document but rarely in the corpus are assigned higher weights while the
summation method simply involves the sum of all the word embeddings of the
words in the document.

In this study, we use the centroid approach (averaging word embeddings), which
computes the centroid of the word embeddings to generate document embed-
dings. We propose two embedding approaches building on this baseline, which
are explained in Section 3.1.

2.5 Named Entity Recognition

Due to the growing abundance of biomedical literature and materials, it has be-
come difficult to efficiently search for and extract useful information [25]. Mul-
tiple sources of information along with a transformation of unstructured text
data into refined knowledge is critical to facilitate research productivity. How-
ever, manual annotation and feature generation by biomedical experts can be
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inefficient as they involve complex processes and demand expensive and time-
intensive labor [26]. Therefore, the need for effective and precise natural lan-
guage processing (NLP) methods is growing in importance as they are crucial
for computational data analysis making advanced text mining techniques a ne-
cessity for automatically analyzing biomedical literature and extracting valuable
information from textual data [27]. For extracting valuable information, such as
relationships among objects, the identification of significant terms from texts is
important. Meaningful terms or phrases in a domain, which can be distinguished
from similar objects, are called named entities.

Named Entity Recognition (NER) is a NLP technique that aims to identify and
classify these named entities in unstructured text data into pre-defined entity
types. NER should be performed prior to tasks, such as relation extraction, since
annotated mentions play an important role in research on text mining. A fun-
damental task of biomedical NLP is the recognition of named entities, such as
genes, diseases, chemicals, and drug names, from texts. However, biomedical
NER is an especially intricate undertaking because biological entities exhibit
several complexities, such as: (i) continually increase with new discoveries, (ii)
have numerous synonymes, (iii) frequently being referenced using abbreviations,
(iv) being described using phrases, and (v) being composed of combinations
of letters, symbols, and punctuation [28]. There are several approaches to bio-
medical NER, including: Dictionary-based NER , Rule-based NER, Machine
learning-based NER, Hybrid NER and Deep Learning-based NER.

2.5.1 Ontologies

Annotating text using controlled vocabulary is a key aspect of NER as it helps to
identify and classify specific types of named entities in text using a predefined
set of terms or phrases. This section explains the ontologies that were used as
a controlled vocabulary to annotate the function comment text as part of the
Hybrid-Word2doc2Vec approach. This involves mapping the text to specific
terms or concepts in the ontology in order to normalize terms that have multiple
meanings or aliases, and thus standardize the text.

2.5.1.1 MeSH (Medical Subject Headings)

MeSH (Medical Subject Headings) is a controlled vocabulary thesaurus used
by the National Library of Medicine (NLM) [29] for indexing and searching
biomedical literature. MeSH ontology consists of a hierarchy of terms that rep-
resent various biomedical concepts such as diseases, chemical and drugs, or-
ganisms, anatomy to name a few. These terms are organized into a tree-like
structure, where each term is linked to other related terms by a series of broader
and narrower terms [30]. The hierarchy allows for a more nuanced understand-
ing of the relationships between different biomedical concepts.
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2.5.1.2 Gene Ontology

The Gene Ontology (GO) [6] is a controlled vocabulary used to annotate genes
and gene products in a variety of organisms. The GO structure comprises of
‘classes’ or ‘terms’ that represent different biological functions, pathways re-
sponsible for carrying out various biological processes, and the specific loca-
tions within cells where these processes occur as well as relations between these
classes that specify the underlying relationship between them. GO categorises
these terms into three aspects: molecular function, biological process, and cellu-
lar component, and provides a standardized vocabulary to describe the functions
of genes and gene products across different species [31].

2.5.2 Integration of Whatizit tool

Whatizit is an open-source text processing system developed by the European
Bioinformatics Institute (EBI) that provides a range of text-mining and
information-extraction functionalities, including NER. Whatizit is designed spe-
cifically for the biomedical domain, and it can be used to identify and classify
biomedical named entities. Whatizit uses a combination of rule-based and ma-
chine learning approaches to identify named entities in text data. It first applies
a set of pre-defined rules to identify common patterns and structures that are in-
dicative of named entities. It then uses machine learning algorithms to analyze
the context and linguistic features of the text and classify the identified entities
into different categories [32].

Whatizit infrastructure consists of a suite of modules that processes and annot-
ates text. Individual modules are composed of a number of internal modules.
All modules are implemented in Java partly based on special libraries for the
matching of large terminology sets [33]. Whatizit can be used either as a stan-
dalone tool or as a web service through its API.

Docker version for a minimal Whatizit

The Dockerized version of minimal Whatizit primarily focuses on the automata
component derived from MONQ)jfa [34]. This container does not include the
web-based application or the dictionaries for text-mining that were previously
available at EMBL-EBI.

The hierarchy of the Docker-based Whatizit typically involves several com-
ponents that work together to create and deploy applications. The directory
is composed of three primary components: a monq folder, a shell script named
script.sh, and a Dockerfile. The monq folder is comprised of six sub-folders,
namely automata, bin, config, doc, logging and text. The Docker-based soft-
ware hierarchy can be depicted as follows:
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/
| _mong
| automata
kmesh.mwt
go.mwt
| _bin
| config
xmlElem. svr
plainText.svr
| doc
| logging
| text
lg,swissprot_functions.xml
| Dockerfile
| _script.sh
| LICENSE
| _README.md

automata: This folder contains the dictionary files used by the Whatizit tool
to perform NER. The dictionaries are in a MWT format. MWT (Markup Word
Text) is a specific text format used by the Whatizit tool for annotating and ex-
tracting information from text. These dictionaries include information about the
entities to be annotated, the entity types as well as how to handle synonyms and
variant forms.

bin: This folder includes the configuration scripts needed to run the infrastruc-
ture.

config: This folder contains two server files: xmlElem.svr and plainText.svr.
These files follow an XML markup structure defining the configuration para-
meters for starting the corresponding servers. These parameters include a de-
scription of the server, its accessibility, hostname or IP address, port number and
specifies the command to be executed by the server component when it starts
up. The primary command responsible for the annotation process is Java based
which makes use of the ‘DictFilter’ class to process data along with settings
such as heap size and input/output encoding specified as parameters.

doc: This file contains the documentation on the MONQ infrastructure.
logging: This folder contains log files for the infrastructure services.

text: This folder contains text files that need to be annotated using Whatizit.
There are two formats that can be used for the input text: plain text files or
XML files.

The shell script is mainly responsible for starting the ‘xmlElem’ and the ‘plain-
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Text’ server using the configuration files in the bin folder.

The Dockerfile is utilized for constructing a Docker image comprising a base
image of Tomcat server and the necessary packages. Moreover, the Dockerfile
declares the command that is executed upon launching a container from this
image, which is to execute the ‘script.sh’ script.

2.6 Cosine similarity

Cosine similarity is a measure of similarity between two vectors, typically used
in machine learning and natural language processing (NLP) applications. It
measures the cosine of the angle between two vectors in a multi-dimensional
space, enabling orientation judgment rather than magnitude evaluation. [35].
As a result, it measures the angle of the vectors and employs it as a similarity
metric. Cosine similarity can be used to perform a variety of NLP tasks, such
as text classification, document similarity, and recommendation systems. In text
classification, cosine similarity can be used to determine the similarity between
a test document and a set of training documents, and assign the test document to
the most similar class. In document similarity, cosine similarity can be used to
compare the similarity between two documents, based on the similarity of their
embedded words.

To compute the cosine similarity between two document embeddings, we first
represent each document as a vector in a high-dimensional space. Then, we
compute the cosine of the angle between the two vectors, which ranges from
-1 (completely dissimilar) to 1 (completely similar). A cosine similarity of O
means that the two vectors are orthogonal, or completely unrelated [36].

Definition

Given two non-zero vectors (A and B), the cosine between them can be derived
from the Euclidean dot product:

A-B=|A|||B| - cos® 2.1)

o A-B _ Z?:lAiBi
IAIBI /i AFVEL B

where, A; and B; are components of vectors A and B.

cos (©) (2.1) (2.2)

Thus, the similarity between two non-zero given vectors A and B is the cosine
of the angle between them.

similarity(A, B) = cos©a p (2.3)
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In the present study, cosine similarity is employed as a metric to measure the
similarities between the text comments of Swiss-Prot entries. These entries are
transformed into documents and numerical embeddings are generated for each
of them to capture their semantic meaning. The embeddings are normalized and
their dot product is computed to identify the degree of similarity between any
two function texts.

2.7 Sequence similarity

Sequence similarity refers to the degree of similarity or homology between two
or more biological sequences, such as nucleotide or amino acid sequences. The
sequence of amino acids in proteins determines their structure and function, and
as proteins evolve and adapt, sequence similarity reflects functional similarity.
This relationship is reflected in the functional annotation of proteins and can
provide insight into both their evolutionary relationships and functional proper-
ties.

One of the most widely used methods for quantifying sequence similarity is the
percentage identity score [37], which measures the percentage of amino acid
residues that are identical between two protein sequences and is calculated as
stated by equation 2.4.

number of identical residues X100% (2.4)

ercentage identity score =
b g 4 total number of residues

Since the introduction of the percent identity score, numerous other measures of
sequence similarity have been developed, including methods that take into ac-
count gaps and insertions in the alignment of two sequences, and methods that
incorporate evolutionary models to account for changes in sequence over time.
These measures have been applied to a wide range of biological problems, from
the identification of new protein families and the prediction of protein structure
and function to the reconstruction of evolutionary relationships and the design
of new drugs. The methods and tools developed for measuring sequence sim-
ilarity have been crucial for advancing our understanding of protein structure,
function, and evolution. However, for the purpose of this study we only focus
on the sequence similarity searching in terms of percentage identiity score using
BLAST [2].
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Chapter 3

Methods

This chapter discusses the design and implementation of two embedding ap-
proaches utilized in this study, along with an outline of the entire thesis

UniRef 90% Identity XML

— _ . ” =
1. Data preprocessing
1. Dictionary preprocessing
Extract function comment Preprocess function comment

INPUT MeSH MWT

(MESH.1tI) MeSH dictionary
Remove references to PubMed B " o
articles, PMIDs and Evidence text D(:rcs;:ﬁ:y
INPUT GO MWT
Get UniProt accession number, GO dictionary

(owlapi.xrdf)
function comment, evidence tags .

and taxonomy metadata

Word embeddings

Generate Document
embeddings

Document embeddings

Model Vocabulary

3. Hybrid-Word2doc2Vec embeddings

Plain translated text of
SwissProt protein
functions.

Annotated SwissProt protein Replacement of annotations Document embeddings

functions in text

Whatizit

4. Evaluation

Similarity analysis

Calculate Gosine _ Hyperparameter Select Optimal model
similarity optimization using Recall

—

Protein pairs not belonging to UniRef clusters

5. Analysis

Protein pairs belonging to UniRef clusters

l Categorize pairs based on sequence and
embedding similarity

Analysis of protein pairs

Visualize and compare both the embedding
approaches

Figure 3.1: An Overview of Thesis Workflow
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workflow as illustrated by Figure 3.1. Additionally, each stage of the pipeline is
explained in detail.

3.1 Embedding approaches
3.1.1 Word2doc2Vec

Word2doc2Vec is a text-based embedding approach that utilizes the popular
word embedding technique, Word2Vec (as explained in section 2.3.1), to gen-
erate document-level embeddings. This method first generates embeddings for
individual words in a given text corpus using Word2Vec. These word embed-
dings capture the semantic and syntactic relationships between words based on
their co-occurrence in the corpus.

Once the word embeddings are generated, the next step is to calculate document-
level embeddings. This is done by calculating the centroid of the word em-
beddings for all the words in a given document. The centroid represents the
center of mass of all the word embeddings and is used as a representation of
the document. It is a relatively simple and efficient method that can be easily
implemented and scaled to large datasets.

3.1.2 Hybrid-Word2doc2Vec

Hybrid-Word2doc2Vec is a text-based approach that is similar to
Word2doc2Vec in that it uses Word2Vec to generate embeddings for indi-
vidual words and then calculates document-level embeddings by taking the
centroid of the word embeddings. However, the key difference is that the
text is first annotated using two controlled vocabularies, namely the Medical
Subject Headings (MeSH) and the Gene Ontology (GO) before generating the
embeddings.

The process used in Hybrid-Word2doc2Vec includes a lightweight NER ap-
proach where chunks of text are recognized and associated to a concept coined
in a controlled vocabulary. By incorporating MeSH and GO annotations, the
Hybrid-Word2doc2 Vec approach can improve the semantic meaning of the gen-
erated embeddings. Annotating words with biomedical concepts can help to
normalize words that have multiple meanings in the context of biomedical re-
search. It also provides additional context to words that are otherwise ambigu-
ous.

Overall, the Hybrid-Word2doc2Vec approach with MeSH and GO annotations is
a promising approach for text-based embeddings in biomedical research, provid-
ing a semantically-rich representation of text that can capture the nuances of
biomedical concepts and facilitate downstream analysis.
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3.2 Implementation
3.2.1 Materials

This section explains the datasets utilized in this study and the methods em-
ployed for retrieving them.

3.2.1.1 UniProtKB/Swiss-Prot

The XML file of Release 2022_02 of UniProtKB/Swiss-Prot was down-
loaded using FTP (File Transfer Protocol) download from UniProt’s FTP site:
https://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/
complete/ to obtain the most up-to-date information available at the time of
analysis. The file includes detailed information for every protein entry including
but not limited to the fields of protein function, protein names and taxonomy,
association to diseases & variants, protein interaction, protein structure, protein
sequence & isoforms and similar proteins. For the purpose of this study, we
focused specifically on the following fields, as they were deemed essential for
our analysis:

accesssion : A unique identifier for each protein entry in Swiss-Prot. It is a com-
bination of letters and numbers that allows users to quickly and easily identify
individual proteins.

function : Information on the biological function of each protein. It includes a
description of the protein’s role in the cell, as well as any relevant biochemical or
physiological processes. The text from this function comment of every protein
entry is used to generate embeddings.

evidence tags : Information on the types of evidence used to support the annota-
tion of each protein sequence. This may include experimental data, sequence
similarity, or other types of evidence.

taxon : Information on the organism from which the protein sequence was de-
rived. It includes the scientific name of the organism, as well as any relevant
taxonomic information.

taxonomy lineage : A hierarchical classification of the organism from which the
protein sequence was derived. It includes information on the kingdom, phylum,
class, order, family, genus, and species of the organism.

taxonomic identifier : A unique identifier for the organism from which the
protein sequence was derived. It is typically a numerical code that can be used
to quickly and easily search for all protein sequences derived from a particular
organism.


https://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/complete/
https://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/complete/
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3.2.1.2 UniProt Reference Clusters - UniRef90

The XML file of UniRef90 release 2022_02 was downloaded using FTP
from the UniProt’s FTP site: https://ftp.uniprot.org/pub/databases/
uniprot/uniref/uniref90/. The file provides a wide range of information
on protein clusters out of which we focused on the following fields:

cluster ID : A unique identifier assigned to each protein cluster in the UniRef
database. This ID is used to differentiate between different clusters and to track
and analyze specific clusters of interest.

cluster name : In addition to the Cluster ID, each protein cluster in the UniRef
database also has a name that reflects the protein family or group represented by
the cluster. The name of the cluster is often based on the functional or structural
characteristics of the proteins in the cluster.

member count : This indicate the number of protein sequences that are included
in a specific cluster.

members : The individual protein sequences that are grouped together in a spe-
cific UniRef cluster. These members share a high degree of sequence identity
and are grouped together to create a non-redundant representation of the Uni-
ProtKB sequences.

sequence length : The length of the protein sequence in amino acids. This do-
main provides important information on the size and complexity of the protein,
which can impact its biological function and significance.

3.2.1.3 MeSH (Medical Subject Headings)

The Turtle (TTL) format of the 2022 MeSH RDF release was obtained from
the website of the National Library of Medicine (NLM): https://www.nlm.
nih.gov/databases/download/mesh.html. The RDF TTL file contains the
complete MeSH vocabulary with information about each MeSH term, including
its unique identifier, preferred label, synonyms, and relationships to other terms
in the hierarchy. The hierarchy represented using broader and narrower rela-
tionships is indicative of the parent-child relationships between different MeSH
terms.

3.2.1.4 Gene Ontology

The 2022 release of the Gene Ontology was downloaded from the GO Consor-
tium’s website: http://geneontology.org/docs/download-ontology as
an XRDF file. The GO XRDF file consists of a set of OWL classes, properties,
and individuals that describe the concepts and relationships within the ontology.
The file contains the entire Gene Ontology with each of its GO term associ-
ated with a unique identifier, preferred label, synonyms, as well as the aspect


https://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/
https://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/
https://www.nlm.nih.gov/databases/download/mesh.html
https://www.nlm.nih.gov/databases/download/mesh.html
http://geneontology.org/docs/download-ontology
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(Molecular Function, Cellular Component and Biological Process).

3.2.2 Dataset preprocessing

This section details the necessary preprocessing steps to extract the fields men-
tioned in sections 3.2.1.1 and 3.2.1.2 from their corresponding files. The em-
phasis is on the text coming from the function comment section of Swiss-Prot
and the relevant clusters from UniRef90.

3.2.2.1 Swiss-Prot

The Swiss-Prot XML file was parsed using the xml.etree.ElementTree Python
library [38] to extract the specific fields for each protein entry. Figure 3.2 illus-
trates the entire data preprocessing pipeline. The extracted data was then saved
in a TSV file, with six columns: accession, function, evidence_tags, taxon, tax-
onomy_lineage, and taxon_id. Protein entries with no function comment were
excluded from the TSV. The function text column was further preprocessed to
eliminate any references to PubMed articles, PMIDs, and evidence tags. The re-
moved evidence tags were added as an additional column for each protein entry.
The resulting TSV file consists of seven columns and was used as the starting
point for the Word2doc2Vec approach.

Additionally, the TSV file was converted into an XML file utilizing the same
Python library, with each protein accession serving as an element along with its
associated data. This XML file was used as the starting point for the Hybrid-
Word2doc2Vec approach.

L Prailyiaegoer g
) taxon, taxonomy lineage and taxon ID

o

Preprocess function
comment

Remave references to
PubMed articles, PMIDs
and Evidence text

TSV XML
Swiss-Prot functions Swiss-Prot functions
Filter by Eukarycta entries
[ TSV XML
Swiss-Prot Eukaryota Swiss-Prot Eukaryota
functions functions
Word2doc2Vec Hybrid-Word2doc2Vec

Figure 3.2: Schematic representation of the data preprocessing pipeline used
for Swiss-Prot protein entries.
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To optimize computational resources, we limited the dataset used for generat-
ing embeddings to a single super kingdom. We conducted an analysis to count
the number of occurrences of each superkingdom, and ultimately selected Euk-
aryota based on the results of this analysis as presented in Table 5.2.

3.2.2.2 UniRef90

A set of parameters was established to serve as the criteria for identifying
clusters of interest from the UniRef 90% identity XML file. The clusters hav-
ing Eukaryota as the common taxon were the main focus, based on the primary
dataset used for embeddings as described in section 3.2.2.1. Three main criteria
were defined: (i) clusters should have Eukaryota as the common taxon, (ii) the
number of members in each cluster should be at least two, and (iii) each cluster
should have at least one member that is a Swiss-Prot entry. These criteria were
used to generate a TSV file that acted as a filter to extract our clusters of interest.
This was done in order to reduce computation time and memory usage, as the
UniRef90 XML file has a large file size of 298 GB.

The filtering process consisted of two main steps. In the first step, a RESTful
API request was made to UniProt’s API to extract UniRef Eukaryota clusters
belonging to 90% identity with a cluster size greater than or equal to 2 using the
streaming endpoint. The resulting response was stored in an intermediate TSV
file, which was then used to further filter the clusters using criterion (iii), which
required each cluster to have at least one Swiss-Prot member. The resulting
clusters were stored in the final TSV file, which consisted of four columns:
cluster_id, cluster_name, types, and cluster_size.

To parse the UniRef 90 XML, xml.etree.ElementTree library [38] mentioned
earlier was used. While iterating through each element (UniRef cluster) of the
XML, it was checked if the element was present in the generated TSV file. If it
was present, the corresponding members for that element were extracted. These
clusters were then written to a TSV file that contained four columns: cluster_id,
cluster_name, members, and cluster_size. Figure 3.3 depicts the entire prepro-
cessing pipeline to parse and extract the clusters of interest from Uniref90 XML
file.
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Figure 3.3: Schematic representation of the cluster preprocessing pipeline for
UniRef90 clusters

3.2.3 Dictionary preprocessing

This section outlines the process of creating dictionaries essential for annotating
function text using the Whatizit tool and presents an overview of the process in
Figure 3.4. These dictionaries serve the purpose of identifying expressions in
the text and linking them to a concept in a controlled vocabulary. Two ontolo-
gies, Medical Subject Headings (MeSH) and Gene Ontology (GO), were util-
ized to generate these dictionaries. To create the MeSH dictionary, the MeSH
TTL file was parsed using the RDFLib Python library [39]. The required in-
formation such as class ID, preferred label, synonyms, concept unique identifier
(CUI), and semantic types were extracted for each term, while also checking
for obsoletion. The preprocessing pipeline for MeSH involved removing all ob-
solete terms and filtering out terms with class IDs that included semantic types.
Similarly, the GO XRDF file was parsed using the same library, and the prepro-
cessing pipeline involved eliminating all deprecated terms, extracting class ID,
preferred label, synonyms, and aspect (Molecular function, Biological process,
or Cellular component) for the remaining terms. The terms obtained from both
ontologies were used to create the corresponding MWT dictionaries.
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Figure 3.4: Schematic representation of dictionary preprocessing for MeSH
and GO for the annotation of function text using Whatizit

The structure of the MWT dictionary is based on XML, with the first part con-
sisting of three lines that define the XML prolog. The first line declares the
version of XML used (1.0) and the character encoding used in the document
(UTF-8). The second line specifies the XML namespace, which is based on the
code repository. The third line contains the annotation template and includes
a ‘z:Ontology’ element for each ontology term, along with its corresponding
attributes. For MeSH, the template includes a ‘zzMESH’ element with three
attributes (id, cui, semantics) and the term to be annotated. These attributes spe-
cify the MeSH ID, CUI, and semantics of the term. For the GO MWT dictionary,
the template includes a ‘z:GO’ element with two attributes (id and aspect) and
the term to be annotated. These attributes specify the GO ID and aspect of the
term.

<?xml version=°1.0’ encoding=‘UTF-8°7>
<mwt xmlns:z="https://github.com/zbmed-semtec/protein-function-embeddings-thesis#">

<template><z:MESH id=°%1’ cui=‘%2’ semantics=°3’>%0</z:MESH></template>
P P

<t pil="http://purl.bioontology.org/ontology/MESH/C000659400" p2="C4202352"
p3="http://purl.bioontology.org/ontology/STY/T004">Acaulospora ignota</t>

<t pl="http://purl.bioontology.org/ontology/MESH/C000684122" p2="C3424521"
p3="http://purl.bioontology.org/ontology/STY/T004">Polypaecilum pisci</t>

<t pi="http://purl.bioontology.org/ontology/MESH/C000684122" p2="C3424521"
p3="http://purl.bioontology.org/ontology/STY/T004">Aspergillus pisci</t>

</mwt>

Listing 3.1: MeSH Ontology MWT dictionary excerpt

The second part of the MWT dictionary shows how the annotation template is
used to annotate a specific term. The ‘t’ element contains the text to be annot-
ated, which is the Preferred Label (e.g., "Acaulospora ignota" or "Polpaecilum
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pisci"), along with its three attributes specified in the template (p1 for Mesh ID,
p2 for CUI, and p3 for the semantics of the MeSH term). If a term has synonyms
(e.g., "Polpaecilum pisci" and "Aspergillus pisci"), each synonym is added as a
separate ‘t’ element but is given the same class ID, CUI, and semantics. An
excerpt from the MeSH MWT dictionary is shown in Listing 3.1, and it demon-
strates how this works.

The GO MWT dictionary follows a similar pattern, with the annotation template
containing a "z:GO" element with two attributes (id and aspect) for each onto-
logy term and the element content as the term to be annotated. All synonyms
are also added as separate ‘t’ elements. A portion of the GO MWT dictionary is
illustrated in Listing 3.2.

<?xml version=¢1.0’ encoding=‘UTF-8’7>
<mwt xmlns:z="https://github.com/zbmed-semtec/protein-function-embeddings-thesis#">

<template><z:GO id=‘%1’ aspect=¢%2’>%0</z:G0></template>

<t pl="http://purl.obolibrary.org/obo/G0O_0000001"
p2="biological_process">mitochondrion inheritance</t>

<t pl="http://purl.obolibrary.org/obo/G0O_0000001"
p2="biological_process">mitochondrial inheritance</t>

<t pl="http://purl.obolibrary.org/obo/G0_0000002"
p2="biological_process">mitochondrial genome maintenance</t>

<t pl="http://purl.obolibrary.org/obo/G0_0000003"

p2="biological_process">reproduction</t>

</mwt >

Listing 3.2: Gene Ontology MWT dictionary excerpt

There are some special characters that can cause the MWT format to become
invalid if they are present in the text to be annotated (i.e., Preferred Label and
Synonyms). To prevent this from happening, these characters are replaced with
their corresponding HTML encoding. The following conversions are used:

& is converted to &amp;
" is converted to &quot;
> is converted to &apos;
< is converted to &lt;
> is converted to &gt;

This ensures that the MWT format remains valid even when these special char-
acters are present in the text to be annotated.
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3.2.4 Annotation

This section describes the process of annotating function text using MeSH and
GO vocabulary. The annotation is done using the minimal dockerized version
of Whatizit, as explained in section 2.5.2. The annotation process involves five
phases: setting up the Docker container, formatting the input file, annotating the
function text, formatting the output file, and translating the function text.

Build * Run
() — —_

Dockerfile Docker Image Docker Container

XML
Removal of HTML encoding of Formatted Swiss-Prot
special characters using sed functions
command

XML
Swiss-Prot functions

(ii)

MWT
MeSH dictionary
(( XML
(iii) N Annotation using = N Annot?:;clﬂso\n;l:s-lﬂrm
Whatizit )
mong.jfa
MwT DistFilter Class
GO dictionary
) XML
. Replacement of special .| Formatted annotated
(iv) characters to its encoded form Swiss-Prot functions
A
™
Replacement of annotated T8V
) MeSH and GO terms with its Hybrid-Word2doc2Vec
corresponding MeSH and GO *| Swiss-Prot functions
ID.
v

Figure 3.5: Overview of Annotation process

(i) Setting up the Docker container: This involves creating a Docker image
for the minimal version of Whatizit, running the image, and executing the con-
tainer to create an annotation server. The process is shown in Listing 3.3.

sudo docker build -t simple_whatizit
sudo docker run -d simple_whatizit
sudo docker exec -it <container_ID> /bin/bash

cd $MONQ

Listing 3.3: Building and Running Docker Image of Minimal Whatizit
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(ii) Formatting the input file: The second phase is formatting the input XML
file that contains the function text. This is done by replacing the encoded version
of special characters with their non-encoded version. The reason for this is that
Whatizit cannot detect special characters in their encoded form. To accomplish
this, the sed linux command is used to replace the encoded version with the
plain version. The sed command used is as follows:

sed ‘s/&lt;/</g;s/&gt;/>/g;s/&amp;/\&/g’ {input_path} > {formatted_input_path}

(iii) Annotating the function text: In this phase, the formatted input XML file
is annotated with the dictionary of choice in the server file using DistFilter of
MONQ. The following command is used for this purpose:

cat {formatted_input_path} DistFilter svr=xmlElem > {output_path}

(iv) Formatting the output file: The resulting annotated XML file is then
formatted by replacing the non-encoded special characters with their encoded
versions to create a valid XML file. The BeautifulSoup [40] Python library was
used for this purpose.

The function text was annotated first using the MeSH MWT dictionary, and then
with the GO MWT dictionary, following Phases 2, 3, and 4 each time.

(v) Translating the function text: This phase involves the translation of the
annotated terms in the function text to plain text. In order to do so, all the
annotated terms were replaced by their corresponding MeSH ID and GO ID. The
resulting function text was saved as TSV file having two columns: accession
and function text. This was used for the downstream Hybrid-Word2doc2Vec
approach.

3.2.5 Text preprocessing

The preprocessing of the function texts for both approaches using their corres-
ponding TSV files included converting the text into lower case, removing punc-
tuations except for hyphens and numbers, and tokenization. The lower method
of string was used to convert the text into lower case, while NLTK library [41]
was employed for word tokenization. To remove all the special characters from
the text, regular expressions [42] were used with the exception of hyphens and
numbers. Figure 3.6 depicts the text preprocessing pipeline.
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Figure 3.6: Overview of text preprocessing pipeline for function texts of Swiss-
Prot entries

3.2.6 Generation of Embeddings

This section discusses the creation of Word2Vec models using the Gensim lib-
rary [43], which were trained on the complete Swiss-Prot function text corpus
and the generation of embeddings for the Swiss-Prot Eukaryota function texts.
Additionally, the hyperparameters used in this process are outlined. An over-
view of the embedding generation process is depicted in Figure 3.7.

Word2Doc2Vec

Define set of
hyperparameters

TSV
Word2doc2vec Swiss-Prot
Eukaryota processed fucntion text

Hybrid-Word2Doc2Vec

TSV
Hybrid-Word2doc2vec Swiss-Prot >
Eukaryota processed function text

+ min_count

« vector_size

« training algorithm
« epochs

« window

* workers

Train Gensim's Word2Vec on
the processed function text for
each set of hyperparameter

Build model
vocabulary

Extract word embeddings for
each word in the function text

embeddings from each function text

Document embeddings
(-npy format)

Calculate centroid of word

Figure 3.7: Overview of the process of generating embeddings from function

texts

Hyperparameters

Table 3.1 provides a summary of the hyperparameter combinations used to

generate the embeddings using both approaches.

These parameters include

min_count, vector_size, epochs, window, and workers, as well as the training
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algorithm, which is either Continuous Bag of Words (cbow) or Skip-gram (sg).
The training algorithm specifies the architecture of Word2Vec, as explained in
sections 2.3.1.1 and 2.3.1.2. Min_count acts as a threshold value for excluding
all words with a total frequency below this value. Vector_size determines the di-
mensionality of the word vectors to be generated. Epochs denote the number of
iterations over the corpus. Window refers to the maximum distance between the
current and predicted word within a sentence, and workers indicates the num-
ber of worker threads used to train the model for faster training on multicore
machines.

The parameters of epochs, window, and workers were held constant at values of
5, 5, and 4, respectively, while varying the training algorithm parameter based
on the approach (cbow: 0 or sg: 1). In addition, two different values for the
vector_size (200 and 400) and three different values for the min_count (1, 2,
and 3) were used.

Table 3.1: Hyperparameter combinations for Word2Vec models

Model Vector  Minimum Algorithm Epochs Window Workers

size count
1 200 1 cbow 5 5 4
2 200 2 cbow 5 5 4
3 200 3 cbow 5 5 4
4 200 1 sg 5 5 4
5 200 2 sg 5 5 4
6 200 3 sg 5 5 4
7 400 1 cbow 5 5 4
8 400 2 cbow 5 5 4
9 400 3 cbow 5 5 4
10 400 1 sg 5 5 4
11 400 2 sg 5 5 4
12 400 3 sg 5 5 4

Section 4.4 explains the Hyperparameter optimization pipeline. The optimiza-
tion was performed using a Reduced Eukaryota dataset and the evaluation metric
used was Recall.

Generation of word embeddings

To generate and train the Word2Vec model, the preprocessed text of both ap-
proaches are fed as input in the form of a TSV file. Along with hyperpara-
meters, preprocessed function texts as an array are passed as parameters to the
Word2Vec module. We used the model.build_vocab method of Gensim in order
to build the Vocabulary object and save the model files. The output of this pro-
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cess are three resulting files: word2vec.model, word2vec.model.synlneg.npy
and word2vec.wv.vectors.npy.

word2vec.model: This file contains the trained Word2Vec model itself. It is
typically saved as a binary file using Python’s pickle module, which allows the
model to be loaded and used in future applications. The model contains inform-
ation such as the vocabulary, the word vectors, and the parameters used during
training.

word2vec.model.synlneg.npy: This file contains the negative-sampling weights
of the Word2Vec model. Negative sampling is a technique used during training
to improve the efficiency and accuracy of the model. These weights are used to
calculate the probability of each negative sample being selected during training.

word2vec.wv.vectors.npy: This file contains the word vectors of the Word2Vec
model. Word vectors are distributed representations of words that capture their
semantic and syntactic properties. Each row of this matrix corresponds to a
word in the vocabulary, and each column corresponds to a dimension of the
vector space. The values in each cell represent the weight of that word in that
dimension.

Generation of document embeddings

To generate document embeddings from word embeddings, we employ the
centroid approach as explained in section 2.4. To achieve this, we load the
Word2Vec model using the load() method of the Word2Vec class. This method
reads the pre-trained Word2Vec model from the word2vec.model file. Then, we
extract the word embeddings for each Eukaryota accession from its function text
by using model.wv[word] and store these values. Next, we compute the centroid
of the word embeddings to obtain the average position of all word embeddings
in the vector space. The centroid method assumes that the word embeddings
follow a normal distribution around the centroid and that the distribution is iso-
tropic, meaning that the variance is the same in all dimensions. Finally, the
resulting document embeddings for each accession are stored in individual .npy
format files.

Formatting embeddings

To leverage the performance benefits of Numba [44], we convert the embeddings
from their default 64-bit floating point format to 32-bit. This not only improves
the computational efficiency but also reduces the memory usage during similar-
ity calculations in the later stages of the pipeline. Moreover, to facilitate faster
loading and manipulation of the embeddings in the evaluation pipeline, we save
them as a Pandas DataFrame in a pickle file using the ‘to_pickle’ function.
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Chapter 4

Evaluation

4.1 Evaluation Aim and Setup

This section provides an in-depth explanation of the experiments conducted and
the metrics utilized to assess the effectiveness of the proposed embedding tech-
niques. Specifically, the evaluation aims to compare the behavior of the

UniRef 90% identity clusters of interest
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Figure 4.1: Overview of Evaluation Setup
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embeddings with respect to sequence similarity. To accomplish this, a two-
phase evaluation process is established. The first phase (as explained in sections
4.2, 4.3 and 4.4) involves generating a set of ground truth data, which is used
to evaluate the different hyperparameters for the embeddings in relation to pairs
of proteins found within the sequence clusters derived from the UniRef 90%
clusters of interest. The second phase (as explained in sections 4.5 and 4.6) ex-
amines pairs of proteins that are not part of the UniRef 90% clusters of interest.
This involves utilizing BLAST to create these pairs and analyzing the trends
observed using embeddings. Figure 4.1 gives an overview of the Evaluation
setup.

4.2 Retrieving clusters for Eukaryota ac-
cessions

To establish the ground truth data according to our proposed hypothesis, we
first retrieve the UniRef clusters for all Eukaryota accessions. This is achieved
by using the UniRef 90% identity clusters TSV file that contains the clusters of
interest, as well as all the Eukaryota accessions. By retrieving the corresponding
cluster index value for each accession, we obtain a numeric value between 0 and
137,047, based on the total number of Uniref90% clusters of interest specified
in Table 5.3. A cluster index value of O indicates that the accession does not
belong to any cluster. The resulting cluster index values for each accession
are then stored as a TSV file. Figure 4.2 depicts the process of generating the
aforementioned TSV file and demonstrates how the values are stored in its two
columns.

UniRef 90% identity
clusters of interest

cluster_id | cluster_name | Cluster index
members | cluster_size
/'___"\ accession | cluster_index

Retrieve cluster name and accl
index for each Eukaryota acc2
accession acc3

acch

{ Eukaryota accessions Ji T

Figure 4.2: Schematic representation of the process of retrieving Cluster index
for Swiss-Prot Eukaryota protein entries

lommmnl

The statistics obtained from the resulting cluster index file are presented in Table
4.1. Out of a total of 161,354 Swiss-Prot Eukaryota accessions as per Table
5.2, approximately 137,789 belong to a UniRef 90% identity cluster of interest,
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while the remaining 23,565 do not belong to any Uniref 90% identity cluster of
interest.

Table 4.1: Distribution of Eukaryota Entries Belonging to UniRef90% Clusters
of Interest

Dataset Statistics
Total Eukaryota accessions 161,354
Eukaryota accessions belonging to a cluster 137,789

Eukaryota accessions not belonging to a cluster 23,565

4.3 Generating Clustered pairs

To generate clustered pairs, pairs of accessions are created from those accessions
that belong to the same cluster of interest. The process involves filtering out all
the accessions that exclusively belong to a cluster, while retaining a threshold of
2 accessions for each cluster. In order to compute all the possible combinations
of accessions that belong to the same cluster, the combinations iterator from
the itertools Python library [45] was utilized. Figure 4.3 provides a schematic
representation of this process, while Table 4.2 displays the number of accession
pairs that were generated.

Cluster index Clustered pairs

' ™

accession | cluster_index
acel 2 (Create pairs of accessions belonging to “’:;_ “’: c:“:’:
acc? 2 [ the same cluster L Lo AR
accl accd cluster2
8oy i ) accs acc? clusterd
4

acch
ace?

Figure 4.3: Schematic representation of the process of generating Clustered
pairs

Table 4.2: Count of Eukaryota protein pairs belonging to a cluster

Dataset Statistics

Eukaryota protein pairs belonging to a cluster 156,772

4.4 Hyperparameter optimization

The following section describes the pipeline for Hyperparameter optimization,
which aims to assess the performance of all embedding models. This pipeline
can be broken down into three primary stages:
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Reduction of Dataset

To minimize the amount of computation time and memory usage, a subset of
Eukaryota entries was extracted by utilizing the fraction method of Pandas Data-
frame, which splits the data. A subset containing 32,271 entries was created by
selecting a 20% fraction of the original dataset.

Calculation of Cosine similarity

To evaluate the similarity between embeddings, cosine similarity is utilized. A
cosine similarity matrix with dimensions 32,271 x 161,354 is initialized using
NumPy [46] array. The matrix is populated by iterating through each cell, ex-
tracting the corresponding embeddings based on the index of the cell (i, j), and
calculating their cosine similarity. Only cosine similarity values greater than or
equal to 0.90 are stored. The process of computing cosine similarity and pop-
ulating the matrix is optimized using the @njit(fastmath=True) decorator from
the Numba library [44]. The entire cosine matrix is saved in .npz format, a
compressed binary format used by Python’s Numpy library to store matrices.

Recall

To optimize the hyperparameters, we first utilize the cosine similarity matrix
by extracting the corresponding cosine similarity score for each pair of acces-
sions from the clustered pairs TSV file. These scores are then added as an
additional column to the TSV file (accessionl | accession?2 | cluster_index | co-
sine_similarity), and this process is repeated for all 24 sets of hyperparameters.

Recall is a performance metric used to evaluate the effectiveness of a machine
learning model in identifying all relevant instances of a specific class from a
given dataset. It is calculated as the proportion of true positive predictions made
by the model over the total number of actual positive instances in the dataset.
To compute Recall, we count the number of true positives (TP) and false negat-
ives (FN) for all hyperparameter combinations. The Recall formula is given by
Equation 4.1.

True Positives
Recall = 4.1
ced True Positives + False Negatives @D

where,

True Positives represent the number of accession pairs having high sequence
(greater than or equal to 90% sequence identity) and high embedding similarity
(greater than or equal to 0.9 cosine similarity).

False Negatives represent the number of accession pairs having high sequence
similarity (greater than or equal to 90% sequence identity) but low embedding
similarity (less than 0.9 cosine similarity).
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4.5 BLAST

BLAST (Basic Local Alignment Search Tool) [2] a widely used bioinformat-
ics tool for sequence alignment and comparison. In this evaluation, BLAST
was used for two main purposes. Firstly, to retrieve the exact percentage iden-
tity scores of proteins belonging to clustered pairs as explained in section 4.2,
which are known to exhibit a sequence similarity of 90% or higher. Secondly, to
generate pairs of proteins that do not belong to any cluster by using the BLAST
results and corresponding percentage identity scores.

To handle the large amount of data involved in this process, ElasticBLAST
version 1.0.0 [47, 48] was utilized. ElasticBLAST is a cloud-based service
provided by the National Center for Biotechnology Information (NCBI) [49]
that allows for high-throughput BLAST searches on cloud platforms such as
Amazon Web Services (AWS) or Google Cloud Platform (GCP).

In this study, the Google Cloud Platform was used to perform ElasticBLAST.
The Swiss-Prot FASTA file from the release of 2022_02 was used as the input
for the BLAST search. All sequences corresponding to the Eukaryota entries
were extracted using the Biopython [50] SeqlO library and divided into batches
of 10,000 sequences each, totaling 17 batches. These batches were then used as
input for the ElasticBLAST search.

The configuration file in Listing 4.1 was utilized to set up ElasticBLAST. The
BLASTP program was chosen and a value of 0.01 was specified as the e-
value. Furthermore, the search was constrained solely to the Eukaryota taxon
by providing its taxon ID. The results were obtained in batches, which were
subsequently merged, parsed, and transformed into a TSV file containing the
accession pairs and its corresponding sequence percentage identity score.

[cloud-provider]
gcp-region -us-east4

gcp-zone-us-east4-b

[cluster]
num-nodes = 1

labels = owner=USER

[blast]

program blastp

db = swissprot
queries=gs://elasticblastp/queries/swissprot. fasta
results = gs://elasticblastp/results/

options = -task blastp -evalue 0.01 -outfmt -taxids 2759 "7 std sskingdoms ssciname"

Listing 4.1: ElasticBLAST Configuration file
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4.6 Generating Non-Clustered pairs

To investigate proteins that are not part of the UniRef 90% clusters of interest,
we created Non-Clustered pairs. To do this, we used BLAST alignments for
each protein and retrieved their sequence percentage identity score from the
BLAST results TSV file. The corresponding cosine similarity values was also
stored in the TSV file. This process was carried out using the top two models
selected for each approach based on section 4.3, resulting in two TSV files. Each
file contains pairs of accessions, their sequence percentage identity, and cosine
similarity score.

MNon clustered pairs
accessionl | accession2 | percentage_identity
Google Clowd S1orage
- BLAST Alignments for 1 2 90.34
Eukaryota > acc acc K
v 4 ace3 accd 89.72
ElasticBLAST

\-/\ accs acc? 56.47

\

Cosine similarity matrix // »| Add cosine similarity scores

v

Score matrix
accession1 | accession2 | percentage_identity | cosine_score

accl acc2 90.34 0.90
acc3 accd 89.72 0.86
accs acc? 56.47 0.67

Figure 4.4: Schematic representation of the process of generating Non-
Clustered pairs

A schematic representation of the process is illustrated in Figure 4.4 and the
count is shown in Table 4.3 wherein these files provide a useful resource for
further analysis of the Non-Clustered proteins.

Table 4.3: Count of Eukaryota protein pairs not belonging to a cluster

Dataset Statistics

Eukaryota accession pairs not belonging to a cluster 115,019
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Incorporating cosine similarity scores for both clustered and non-clustered pairs
enabled us to evaluate the similarity scores and obtain a better understanding of
the differences between these two sets of proteins.
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Chapter 5

Results

5.1 Data Analysis and Statistical Findings

The Swiss-Prot XML file of release 2022_02 has a total of 567,483 protein
entries, with only 460,009 having a written function comment. Table 5.1
provides the statistics for this. The dataset was further reduced by counting the
super kingdom for those with a function comment, with the counts presented in
Table 5.2.

Table 5.1: Statistics of Swiss-Prot protein Entries

Dataset Statistics

Swiss-Prot proteins 567,483
Swiss-Prot proteins with function comments 460,009

Throughout this study, the main focus of interest was on the Eukaryota subset
of proteins. While the Word2Vec model was trained on the entire Swiss-Prot
corpus containing function comments, embeddings were only generated for the
Eukaryota proteins.

Table 5.2: Statistics of Swiss-Prot protein entries based on Super Kingdom

Dataset Statistics

Eukaryota 161,354
Bacteria 272,438
Archaea 14,066
Viruses 12,151

The UniRef90 % identity XML file of release 2022_02, contained a total number
of 147,407,377 clusters. From these clusters, we retrieved 137,047 clusters of
interest using the preprocessing steps outlined in section 3.2.2.2. These clusters
served as the ground truth to compare Word2Vec model hyperparameters and
establish the best hyperparameter. Table 5.3 presents these statistics.
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Table 5.3: Statistics of clusters retrieved from UniRef90 % Identity XML File

Dataset Statistics

UniRef 90% clusters 47,407,377
UniRef 90% clusters of interest 137,047

5.2 Model Vocabulary

Table 5.4 presents the vocabulary sizes obtained from Word2Vec models that
were trained on Swiss-Prot protein function comments using varying minimum
count (min_count) parameters. The vocabulary size indicates the number of
unique words for which the Word2Vec model learned word embeddings.

It can be observed that the Hybrid-Word2doc2 Vec approach has a larger vocab-
ulary size compared to the Word2doc2Vec approach with the same min_count
parameter.

Table 5.4: Vocabulary Sizes of the trained Word2Vec Models

Approach Minimum count Vocabulary size
Word2doc2Vec 1 96,414
Word2doc2Vec 2 71,015
Word2doc2Vec 3 57,851
Hybrid-Word2doc2Vec 1 101,120
Hybrid-Word2doc2Vec 2 74,971
Hybrid-Word2doc2Vec 3 61,186

5.3 Hyperparameter Optimization

In order to determine the best model for capturing the essence of function com-
ments using embeddings, Recall was utilized as explained in section 4.4. Tables
5.5 and 5.6 present the Recall scores, which are relatively close to each other.
It should be noted that the scores are overall low because only a subset of Eu-
karyota entries, specifically 20%, was used for the process. Overall, it was ob-
served that the skip-gram algorithm outperformed the cbow algorithm slightly.

Based on the Recall scores for both the approaches, we selected Model 4 as
the best hyperparameter combination for the embeddings. This model has hy-
perparameters of vector size, minimum count, and algorithm set to 200, 1, and
skip-gram, respectively, with Recall scores of 0.386229 for Word2doc2Vec and
0.385406 for Hybrid-Word2doc2 Vec.
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Table 5.5: Recall scores for Word2doc2Vec
Model  Vector Minimum Algorithm Epochs Window Workers Recall

size count
1 200 1 cbow 5 5 4 0.378332
2 200 2 cbow 5 5 4 0.378492
3 200 3 cbow 5 5 4 0.380903
4 200 1 sg 5 5 4 0.386229
5 200 2 sg 5 5 4 0.385655
6 200 3 sg 5 5 4 0.383920
7 400 1 cbow 5 5 4 0.378403
8 400 2 cbow 5 5 4 0.378549
9 400 3 cbow 5 5 4 0.378575
10 400 1 sg 5 5 4 0.385036
11 400 2 sg 5 5 4 0.378626
12 400 3 sg 5 5 4 0.384609

Table 5.6: Recall scores for Hybrid-Word2doc2 Vec
Model  Vector Minimum Algorithm Epochs Window Workers Recall

size count
1 200 1 cbow 5 5 4 0.378326
2 200 2 cbow 5 5 4 0.378426
3 200 3 cbow 5 5 4 0.378179
4 200 1 sg 5 5 4 0.385406
5 200 2 sg 5 5 4 0.237714
6 200 3 sg 5 5 4 0.384577
7 400 1 cbow 5 5 4 0.378441
8 400 2 cbow 5 5 4 0.378485
9 400 3 cbow 5 5 4 0.378288
10 400 1 sg 5 5 4 0.384303
11 400 2 sg 5 5 4 0.177289
12 400 3 sg 5 5 4 0.383671

5.4 Similarity analysis

5.4.1 Clustered pairs

The optimal models selected for both approaches were used to generate the co-
sine similarity matrix for the entire SwissProt Eukaryota corpus. The resulting
matrix had dimensions of 161,354 x 161,354. Subsequently, Recall was cal-
culated for these optimal models using the clustered pairs in a similar way as
explained in section 4.3. Table 5.7 presents the corresponding statistics.
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Table 5.7: Recall scores for Clustered pairs based on optimal models

Approach True positives False nagatives Recall
Word2doc2Vec 152,754 4,018 0.9743
Hybrid-Word2doc2 Vec 152,353 4,419 0.9718

Figures 5.1 and 5.2 present scatter plots that demonstrate the relationship
between sequence and embedding similarity based out of the clustered set of
proteins. Each point on the plot represents a pair of proteins. The x-axis dis-
plays the cosine similarity value calculated between the embeddings of a pair
of proteins, while the y-axis represents the sequence similarity, calculated using
the percentage identity score obtained through BLAST analysis, as outlined in
section 4.5.
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Figure 5.1: Scatter plot representing Sequence vs. Embedding similarity of
Swiss-Prot Eukaryota protein pairs using Word2doc2Vec approach
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Figure 5.2: Scatter plot representing Sequence vs. Embedding similarity of
Swiss-Prot Eukaryota protein pairs using Hybrid-Word2doc2Vec approach

5.4.2 Non-Clustered pairs

Based on the generated Non-Clustered pairs in section 4.5 we subsequently di-
vided them into two categories: Case 1 and Case 2. Case 1 pertains to protein
pairs with a high degree of sequence similarity (at least 90% sequence iden-
tity) and a high degree of embedding similarity (at least 0.90 cosine similarity).
Conversely, Case 2 corresponds to protein pairs with a high degree of sequence
similarity (at least 90% sequence identity) but a low degree of embedding sim-
ilarity (less than 0.90 cosine similarity).

Table 5.8 displays the counts for the two cases outlined above. Our analysis re-
veals that a substantial number of protein pairs belong to Case 1, which demon-
strates a high level of both sequence and embedding similarity.

Table 5.8: Count of Non-Clustered pairs based on optimal models.

Approach Case 1 Case?2

Word2doc2vec 110,429 4,590
Hybrid-word2doc2vec 110,302 4,717
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Chapter 6

Discussion

Our outcomes demonstrate that text-based embeddings are effective and have
potential in predicting protein functions. We defined and trained two embed-
ding approaches, Word2doc2Vec and Hybrid-Word2doc2Vec, built on top of
the unsupervised Word2Vec model using protein function text from Swiss-Prot
entries. Both approaches successfully encoded functional information into the
vector space, allowing for transfer learning.

We found that both approaches were equally efficient in capturing the sequence-
function correlation hypothesis when compared to the baseline dataset of se-
quence clusters from UniRef. The Word2doc2Vec model reflected sequence
similarity well in the embedding vector space, despite only being exposed
to plain function text without any of the MeSH and GO annotations. How-
ever, while Named Entity Recognition-based embeddings have advantages, the
Hybrid-Word2doc2Vec model did not show significant improvements. Based
on the analysis of the vocabulary size of the models, we found that the Hybrid-
Word2doc2Vec model did not significantly reduce the vocabulary build by the
models. A possible reason for that, that should be explored futher, is the lack of
a large set of named entities in the Swiss-Prot function comment texts, making
this approach less suitable for these texts.

6.1 Analysis of protein pairs

The analysis aimed to identify protein candidates for curation by examining
protein pairs, which were categorized into three groups in the Results section.
These groups consisted of Non-clustered pairs, sub-categorized as Case 1 and
Case 2, and False negatives (Case 3) arising from Clustered protein pairs. The
study focused on protein pairs belonging to three plant model organisms: Ara-
bidopsis Thaliana, Oryza Sativa (Rice), and Zea mays (Maize). To aid in em-
bedding similarity, specifically cosine similarity, the Word2doc2Vec approach
was employed.
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* Case 1: Non-Clustered proteins with high sequence similarity and
high embedding similarity

An additional analysis was conducted on these protein pairs by comparing
them to the latest release of UniProt at the time the results were generated,
which was the 2023_01 release. The UniProt ID mapping tool was used to
map all Swiss-Prot Eukaryota accessions to the UniRef90 database. Upon
comparing these non-clustered proteins with the latest UniProt release, it
was discovered that approximately 13,142 protein pairs were eventually
clustered. This suggests that the evidence from two sources, embeddings
and sequence, could identify protein pairs that should have been clustered
in UniProt, but were somehow missed by their clustering algorithm.

e Case 2: Non-Clustered proteins with high sequence similarity and
low embedding similarity

In some cases, two proteins may have the same function but lack the same
description in the function text. However, upon closer inspection, it is
discovered that they have the same function but the function text lacks an
adequate description. In such cases, caution should be exercised, and any
direct references to accession numbers should be included in the function
text. Additionally, including text from the caution comment can provide
further information and context. If there is a slight difference in the func-
tion text, the threshold on the cosine similarity could be relaxed since
the embeddings for the proteins still appear to be very close in the vector
space, having a cosine similarity value slightly below 0.90.

In other cases, two proteins may have a high sequence similarity, but their
functions are actually different. In such cases, additional information such
as domains and motifs and structural information can be added as part of
the function text. These details can provide more context and clarify the
differences in function between the proteins.

* Case 3: Clustered proteins with high sequence similarity and low em-
bedding similarity

There are several reasons as to why the sequence similarity might not cor-
relate with functional similarity such as differences in post-translational
modifications, such as phosphorylation or glycosylation. These can lead
to different functional outcomes even when the amino acid sequence is
identical. Moreover, Splice variants, which may have similar sequences
but differ in the presence or absence of certain domains, can also result in
functional differences.

To aid in the identification of functional differences, the function text
should include evidence tags and GO annotations whenever possible.
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Miscellaneous comments could also be useful in providing additional in-
formation about the function. Moreover, even small differences in amino
acid positions could result in different protein structures and therefore dif-
ferent functions. This underscores the importance of considering not only
sequence similarity but also structural information when analyzing pro-
tein function.

6.2 Limitations

* This thesis only provides a preliminary evaluation, primarily based on
direct inspection and the combination of information from the original
text and derived embeddings.

* To generate the embeddings, it would be beneficial to incorporate addi-
tional information related to protein function, such as evidence tags, cau-
tion comments, and miscellaneous sections from Swiss-Prot. However,
these additional sources are beyond the scope of this thesis.

* Based on the analysis of several proteins in Case 2 and Case 3, it appears
that a cosine similarity threshold of 0.90 may be overly stringent and could
be relaxed further.

* Prediction analyses typically rely on well-annotated function texts to pre-
dict the functions of unknown protein entries. In this study, we only
utilized Swiss-Prot protein entries which proves as a good starting point.
However, it is necessary to translate these findings to propagate the pre-
dicted functions to TTEMBL protein entries that lack functional annota-
tions.

6.3 Outlook to future perspectives

The field of Machine/Deep learning is rapidly evolving, and so is any protein
function prediction approach relying on these technologies. Current trends sug-
gest that neuro-symbolic learning offers promising avenues for future research.
Neuro-symbolic learning combines semantic and deep learning technologies,
including the use of large knowledge bases in the form of knowledge graphs.
More formally, neuro-symbolic learning aims to combine the strengths of sym-
bolic and sub-symbolic systems to improve predictive models’ performance and
explainability [51]. Symbolic systems use knowledge bases and logical deduc-
tion to solve tasks, while sub-symbolic methods employ machine learning, par-
ticularly artificial neural networks, to handle unstructured data. Although sub-
symbolic methods have shown superiority over humans in tasks such as text
processing, they are generally black boxes that cannot be inspected. In contrast,
symbolic systems can be inspected to interpret how a decision follows from
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input. Symbolic and sub-symbolic systems complement each other, and they
differ in the types of problems and data they excel at.

In the case of protein function prediction, the semantic layer coming from on-
tologies can be combined with deep learning approaches such as embeddings to
capture more nuanced relationships between proteins and their functions, lead-
ing to more accurate predictions.

To cover a broader spectrum for function prediction it is essential to combine
semantics with other data sources, such as gene expression data, protein-protein
interaction networks, and drug-target associations, to complement the limited
information from protein annotations. The replacement of words by concepts is
a step in the right direction, as it combines terms from ontologies with embed-
dings. Still, more work is needed, and more options exist. For instance, Graph
embeddings, which can integrate heterogeneous data sources into a unified rep-
resentation, can be used to get embeddings from ontologies as already targeted
by the mOWL library [52], in combination with knowledge graphs, and word
embeddings, can improve the accuracy and robustness of function prediction
models.

However, combining embeddings from multiple sources can be challenging as
different sources may have different scales, levels of noise, and quality of in-
formation. Therefore, more research is needed to develop effective methods for
integrating and combining embeddings from multiple sources to improve the
accuracy and robustness of function prediction models.

Overall, the integration of neuro-symbolic learning and knowledge graphs offers
a promising approach to protein function prediction and link prediction tasks,
by combining the strengths of neural networks and symbolic reasoning with the
ability to integrate diverse data sources in a unified representation. This can
help to better understand the complex relationships between proteins and their
functions.



46

Chapter 7

Conclusion

This thesis serves as an exploratory assessment that demonstrates the potential
of using embeddings generated from protein function texts to propagate them
into the vector space. This provides a promising starting point for further re-
search to explore the use of embeddings in prediction analysis with the help of
TrEMBL entries. The findings also suggest the possibility of improving the way
function vectors are compared in the vector space model and exploring beyond
similarity metrics. Furthermore, the use of embeddings offers a pathway to im-
prove functional annotations and create a controlled vocabulary for functional
comments.

Although function prediction is a well-established area of study due to its im-
portance in biology, pharmaceuticals, and life sciences in general, further re-
search is required to advance, for instance, predictions concerning drug and
protein associations. To achieve this, we need to explore neuro-symbolic learn-
ing to encompass a broader spectrum that includes ontologies as background
knowledge.
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