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Abstract

Nature relies on highly distributed computation for the processing of information in nervous

systems across the entire animal kingdom. Such distributed computation can be more easily

understood if decomposed into the three elementary components of information processing,

i.e. storage, transfer and modification, and rigorous information theoretic measures for

these components exist. However, the distributed computation is often also linked to neural

dynamics exhibiting distinct rhythms. Thus, it would be beneficial to associate the above

components of information processing with distinct rhythmic processes where possible.

Here we focus on the storage of information in neural dynamics and introduce a novel spec-

trally-resolved measure of active information storage (AIS). Drawing on intracortical record-

ings of neural activity in ferrets under anesthesia before and after loss of consciousness

(LOC) we show that anesthesia- related modulation of AIS is highly specific to different fre-

quency bands and that these frequency-specific effects differ across cortical layers and

brain regions.

We found that in the high/low gamma band the effects of anesthesia result in AIS modula-

tion only in the supergranular layers, while in the alpha/beta band the strongest decrease in

AIS can be seen at infragranular layers. Finally, we show that the increase of spectral power

at multiple frequencies, in particular at alpha and delta bands in frontal areas, that is often

observed during LOC (’anteriorization’) also impacts local information processing—but in a

frequency specific way: Increases in isoflurane concentration induced a decrease in AIS in

the alpha frequencies, while they increased AIS in the delta frequency range < 2Hz. Thus,

the analysis of spectrally-resolved AIS provides valuable additional insights into changes in

cortical information processing under anaesthesia.

Author summary

While describing information processing in digital computers is somewhat straightfor-

ward and accessible (e.g. how much information is stored in a hard disk or which
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modification of information a CPU is executing), quantifying the widely distributed infor-

mation processing in a biological neural system is much more challenging. In neural sys-

tems separating the components of distributed information processing—information

transfer, storage and modification—helps with this task, but requires accurate mathemati-

cal definitions of these components of information processing. These definitions of dis-

tributed information processing quantities have become available only very recently. Of

the three component processes mentioned above information storage, in particular, has

been used with great success to analyze information processing in swarms, and to evolve,

and optimize artificial information processing systems. The analysis of information stor-

age has also already proven to be useful for the analysis of biological neural systems. Since

in such systems, information processing seems to be often carried out by rhythmic neural

activity with different frequencies, a measure of the frequency-specific components of the

active information storage is needed. Here we introduce such a measure and study how

isoflurane anesthesia affects the local information processing in the ferret prefrontal and

primary visual areas around loss of consciousness. We found that the modulation of active

information storage by isoflurane is specific to frequency, layers and area, and that the

analysis of frequency-specific active information storage provides insights not captured by

more traditional descriptions of neural activity.

Introduction

Biological systems must process information about their environment and their internal states

in order to survive. Many biological systems have evolved specialized areas where such infor-

mation processing is particularly evident. Prime examples are the central nervous systems

of many animals and the human brain in particular. Taking inspiration from such systems,

humans have developed biologically-inspired, artificial information processing systems, such

as artificial neural networks, to solve a variety of tasks. Artificial neural networks and their bio-

logical sources of inspiration share an important property—they perform highly distributed

information processing in which fundamental information-processing operations such as stor-

ing, transferring and modifying information are both, highly distributed and co-located at

almost all computational elements. The computational elements making up biological and

artificial neural networks, for example, are neurons, where each neuron’s activity can simulta-

neously serve the storage, transfer and modification of information. This lack of specialization

and high degree of distribution separates such information processing systems from classical

digital architectures (like a household PC) where the fundamental information processing

operations are much more spatially separated and carried out by dedicated subsystems. While

the highly distributed information processing certainly adds to the performance of artificial

and biological neural networks on certain tasks, it also poses a formidable challenge to under-

stand how such a system functions.

A powerful approach to describe and understand computation in systems such as biological

or artificial neural networks is information theory, which introduces measures of information

transfer, storage and modification [1–5]. The proposed measures are well-suited to investigate

the function of artificial information processing systems, and have successfully been applied to

biological neural systems [6–9]. However, in its original form, the framework neglects a central

aspect of information processing in biological neural networks, namely the frequently dis-

played highly rhythmic activity when performing a computation. To understand those systems

better and to build a bridge between information processing and their biophysical dynamics, it
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would therefore be beneficial to link the components of information processing to specific

neural rhythms.

We have recently presented such a link for the case of information transfer in [10], and

have provided results that challenged some long-held ad hoc beliefs about the relationship of

brain rhythms and information transfer. In the present work, we extend this approach to

information storage. In particular we focus on the active storage, where the information stor-

age is actively in use for a computation in the dynamic of the neural activity (for differences

with passive storage, e.g synaptic gain changes, see [11]). A measure of this kind of storage is

the active information storage (AIS) [3, 7], which quantifies the amount of information in the

present samples of a process (“currently active”) that is predictable from its past value. The AIS

measure is closely linked to the transfer entropy (TE) [1]: the TE quantifies information trans-

ferred from a source process to the current value of a target process, in the context of the target

process’ own past. Hence, AIS and TE together reveal the sources of information which con-

tribute to prediction of the target process’ next outcome (either, information actively stored in

the processes’ own past, or additional information being transferred from another process)

[7].

The importance of understanding how neurons and neural systems store information when

studying neural information processing has been outlined already in [11] and later by the

work of [3, 7, 12]. AIS as a measure of information storage has been successfully applied in

magnetoencephalographic (MEG) recordings to test, for example, predictive coding theory

[13] or to provide better understanding of the information processing in people affected

with the Autism spectrum disorder (ASD) [6, 14]. In local field potential (LFP), [8] found an

increased AIS measure as a function of anesthesia (isoflurane) concentrations in two ferrets

recordings, at prefrontal (PFC) and visual cortical (V1) sites. Anesthetic agents such as isoflur-

ane are known to affect the frequency spectrum throughout the cortex [15] and at laminar

level [15, 16].

In [15] it was shown that the effect of isoflurane on neural oscillatory activity is not only

frequency-specific but also related to the computational property of the area, being different

between different areas of the cortex (PFC or V1) or between different layers (deep laminar or

infragranular layers, granular layers, and superficial or supragranular ones). Similarly, [16, 17]

reported highly specific effects of isoflurane on laminar frequency data.

Even though the effect of anesthesia on brain rhythms is known, due to a lack of a suitable

method, all attempts to link the AIS with the rhythmic activity in different frequency bands

were only indirect and through correlation analysis [6, 8, 14]. Hence, it seems beneficial to

have also a spectrally-resolved AIS to directly investigate effects, for example, of isoflurane

agents on brain rhythms and thus on neural information processing. We here present such a

method, which is able to quantify AIS in a spectrally-resolved fashion.

We apply this method to laminar recordings from two areas of the ferret cortex (PFC and

V1) under different levels of anesthesia, to investigate how different frequency bands contrib-

ute to information storage under anesthesia. We hypothesised that due to the different compu-

tational properties of the layers [18] (either deep or superficial), the frequency-resolved AIS

would show a heterogeneity of anesthesia-related AIS changes across frequencies and record-

ing sites. In more detail, the computational and oscillatory differences of AIS we expect are

associated mainly to two distinct pathways that are responsible for communication between

cortical areas and intracolumnar communication within area [17], i.e. feedfoward and feed-

back pathways. Feedfoward pathways are thought to carry sensory information from superfi-

cial layers to superficial and middle layers of higher cortical areas while feedback connections

are thought to carry contextual information and predictions from deep layers to other deep or

superficial layers of lower order areas [17–19]. Our choice of investigating the behaviour of
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AIS in V1 and PFC is motivated by these areas being hierarchically well separated, with V1 at

the bottom of the visual cortical hierarchy, and PFC being a hierarchically high association

area. Investigating spectral AIS in ferrets is motivated by the fact that ferrets, as an intermedi-

ate model species, have similarities with primates, i.e. a highly developed visual system (V1)

and cortical association areas such as PFC [15].

Materials and method

Ethics statement

Experimental procedures for ferrets cortical layers recordings were approved by the University

of North Carolina-Chapel Hill Institutional Animal Care and Use Committee (UNC-CH

IACUC) and exceed guidelines set forth by the National Institutes of Health and U.S. Depart-

ment of Agriculture.

In this section, we first clarify the purpose and application of the proposed method. Second,

we introduce the information theoretic preliminaries together with the AIS measure, and the

corresponding notation. Central to our method is the creation of frequency-specific surrogate

data, for which we summarize the technical background. Here, we outline only the crucial

properties of the Maximal Overlap Discrete Wavelet Transform (MODWT), while a more

detailed description can be found in [20, 21]. Finally, we present the core algorithm to identify

frequency-specific AIS. Ferrets data employed in the AIS analysis can be obtained from the

Dryad database [22].

Background

Problem statement and analysis setting. The aim of the proposed method is to deter-

mine whether there is statistically significant active information storage generated by one or

more frequencies. Our method can be implemented after a significant AIS has been deter-

mined in the time domain, e.g. as computed by the AIS algorithm in [23], in order to provide a

perspective on this novel spectrally-resolved AIS.

Technical background: Active information storage (AIS). We assume that a stochastic

process Y recorded from a system (e.g cortical or layers sites), can be treated as a realizations yt
of random variables Yt that form a random process Y ¼ fY1:::;Yt; :::;YNg, describing the sys-

tem dynamics. Then, AIS is defined as the (differential) mutual information between the future

of a signal and its immediate past state [3, 7, 24]:

AISðYtÞ ¼ IðYt;Y<tÞ; ð1Þ

where Y is a random process with present value Yt, and past state Y<t ¼ ðYt� d1
;Yt� d2

. . . ;Yt� dk
Þ,

with δi = iΔt, where Δt is the sampling interval of the process observation, and δ1� δi� δk. Y<t

is a vector of random variables chosen from the process Y from the past of the current time

point t. The collection, or vector, Y<t captures the underlying dynamic of the process Y and can

be seen as a state space reconstruction, for details see [3, 25]. We here employed a recently pro-

posed non-uniform embedding algorithm from the IDTxl toolboox [23] to properly construct

the nonuniform embedding of Y time-series [26, 27]. This algorithm also yields approximations

for parameters like δ and k. Thus, the AIS estimates how much information can be predicted by

the next measurements of the process by examining its paste state [3]. In processes that either

produce little information (low entropy) or that are highly unpredictable, the AIS is low,

whereas processes that are predictable but visit many different states with equal probabilities

[7], exhibit high AIS [7, 9].
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Technical background: Maximum overlap discrete wavelet transform. Our method

is based on the creation of suitable surrogate data for use in a statistical test. Many methods

exist for surrogate data creation, each with its own limitations and advantages (see [28] for a

review). Among these, wavelet-based methods allow to create the needed frequency-specific

surrogate data through randomization of the wavelet coefficients [29]. In particular, wavelet-

based surrogates that preserve the local mean and the variance of the data were introduced

by [30]. Similarly to [31], we employ the Maximal Overlap Discrete Wavelet Transform

(MODWT), to transform the data in the wavelet domain. The MODWT is well defined for

time-series of any sample size and produces wavelet coefficients and spectra unaffected by the

transformation. [31].

The MODWT of a time-series X = (X0, . . ., XN−1) of J0 levels, where J0 is a positive integer,

consists of J0 + 1 vectors: J0 vectors of wavelet coefficientsfW1; :::;
fWJ0

and an additional vector

eVJ0
of scaling coefficients, all with dimension N (our exposition of the MODWT closely fol-

lows that of [20], pages 159–205). The coefficients offW j and eVJ0
are obtained by filtering X,

namely:

fWj;t ¼
XLj � 1

l¼0

ehj;lXt� l mod N ; ð2Þ

eVj;t ¼
XLj � 1

l¼0

eg j;lXt� l mod N ; ð3Þ

where fehj;lg and feg j;lg are the jth level MODWT wavelet and scaling filters, with l = 1, . . ., L
being the length on the filter and Lj = (2j − 1)(L − 1) + 1. We can write the above in matrix

notation as:

fW j ¼
fW j X ð4Þ

eVJ0
¼ eV J0

X ð5Þ

where each row of the N × N matrix of fW j has values denoted by feh�j;lg, while eV j has values

denoted by feg �j;lg, where feh�j;lg and feg �j;lg are the periodization of fehj;lg and feg j;lg to circular fil-

ter of length N [20]. Thus, the MODWT treats X as if it were periodic, such periodic extension

is known as “circular boundary condition” [20]. Finally, the time series X can be retrieved

from its MODWT by [20]:

X ¼
XJ0

j¼1

fWT
j
fW j þ

eVT
J0
eVJ0 ð6Þ

While, the coefficients eVJ0
represent the unresolved scale [20, 31], and capture the long-

term dynamics of X, the coefficientsfWj are associated with changes of the underlying dynam-

ics, at a certain scale, over time. If N = 2J and we set J0 = J, then a full transform is performed

and the scale eVJ0
retains only the average constant of the data with all other information repre-

sented in the wavelet coefficients [31, 32]. Since in many applications a full transform is not

necessary (e.g. the dynamic of a physical system is meaningful over a certain frequency range
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only), J0 can be set to any integer J� b(log2(N))c so that the transform at any scale is shorter

than the total length of the time series [33]. The selection of J0 determines the number of scales

of resolution with the MODWT coefficients at a certain scale j related to the nominal fre-

quency band |f| 2 (1/2j+1, 1/2j) [20]. Moreover, givenfW j and eV j, it is possible to reconstruct

the time-series X through the inverse MODWT (IMODWT). If the coefficients are not modi-

fied, the IMODWT returns the original time-series X [20]. As shown in [10] the MODWT is a

suitable and efficient method to create surrogate data as required by the current algorithm.

Algorithm

To obtain a frequency-resolved AIS measure, our algorithm’s main idea is to create surrogate

data, in which we destroy the AIS-relevant signal properties, i.e., the temporal order, in specific

frequency bands. We then compare AIS estimates from the original data with estimates from

the surrogate data, and establish via non-parametric statistical testing whether destroying spe-

cific frequency components led to a drop in AIS. This approach has has been successfully dem-

onstrated in [10] to estimate frequency-specific TE and replaces approaches that use filtering

or other preprocessing steps to estimate frequency-resolved measures, as these come with well

known problems [10, 34]. As in [10], we here employed an invertible wavelet transform (maxi-

mum overlap discrete wavelet transform, MODWT) and a frequency- or scale-specific scram-

bling of the wavelet coefficients in time for surrogate data creation, keeping the original time-

series always intact. With this method, we are also able to protect against false positive caused

by a bias introduced by the wavelet filtering; this is because such a bias will only arise on the

surrogate data, yielding a more conservative analysis. In other words, if the frequency-specific

AIS measure should increase due to the scrambling of the wavelet coefficients, this will not

result in a significant drop when statistically compared to the original AIS, and will thus not be

mistaken for an effect.

Implementation. Below, we will detail the algorithm for the measurement of frequency-

specific AIS. As introduced above, we obtain this measure by creating surrogate data in which

the temporal ordering of the signal has been destroyed for specific spectral components, by

first transforming into the frequency domain, then scrambling wavelet coefficients and last

transforming back to the time domain to obtain surrogate data. Overall this algorithm relies

on five steps:

1. Perform a wavelet transform of the source time series through the MODWT to obtain a

time-frequency representation of Y in J0 scales.

2. At the jth scale of the MODWT transform shuffle the wavelet coefficients to destroy infor-

mation carried by the scale (frequency band)

3. Apply the inverse wavelet transform, IMODWT, to get back the time representation of the

time series

4. Compute the AIS0freq of the process Y.

a. Repeat step 2 to 4 for a sufficiently high number of permutations to build a surrogate

data distribution.

b. Repeat step 1 to 4 for all J0 scales.

5. Test whether the original AIS is above the 1 � a

J0
quantile of the surrogate-based distribution

of AIS0freq values at each scale, i.e. perform a significance test with respect to the surrogate-

derived distribution.
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The operations implemented in the five steps are illustrated in Fig 1 and described in detail

hereafter.

Step 1: The time-series is transformed once into J0 scales through the MODWT (Fig 1A). As

introduced in section Maximum Overlap Discrete Wavelet Transform this transform gives a

set of coefficientsfW1;:::;J0
and an additional set of approximation coefficients eVJ0

. The latter

is saved in this first step and utilized only in step 3, without any modification. Only thefW
coefficients at the jth scale under analysis are subjected to step 2. The current implementa-

tion uses a Least Asymmetric Wavelet (LA) as mother wavelet of length 8 or 16, since

both lengths showed to be robust against spectral leakage and do not relevantly suffer from

boundary-coefficient limitations. [20, 30, 35].

The creation of surrogate data for subsequent statistical testing comprises of the following

steps 2 and 3.

Step 2: The frequency-specific active information storage of the process is destroyed by shuf-

fling thefW wavelet coefficients one scale at a time. The jth scale under analysis is shuffled

by randomly permuting the coefficientsfWj, whereas all the other scales transformed by the

MODWT stay intact (Fig 1B jth scale in red). We implement two alternative methods for

the creation of surrogate data: a Block permutation of the wavelet coefficients [29] and the

Iterative Amplitude Adjustment Fourier Transform (IAAFT) [29, 31]. Since there is no

canonical method of surrogate data creation and in many cases the employment of one

method over another depends on the specific analysis carried out by the user.

Fig 1. Spectral AIS algorithm pipeline. (A) The neural signal (blue) is converted to a time-frequency representation

(grey) using the invertible maximum overlap discrete wavelet transform (MODWT). (B) At a frequency (wavelet scale)

of interest in the source the wavelet coefficients are shuffled in time, destroying its internal dynamic. (C) The signal is

recreated by the inverse MODWT. (D) The AIS for the original and many shuffled signals is computed. (E) A

statistical tests determines whether the shuffling reduced the active information storage, indicating that the

information storage was indeed encoded at the specific frequency. Each panel here shows the distribution of AIS0freq
values (vertical bars) obtained from surrogate data where the wavelet coefficients of the scale of interest were shuffled,

the median of this distribution (red line), and the original AIS (black line). The analysis and the testing is repeated for

all scales of interest (here 4,5,6).

https://doi.org/10.1371/journal.pcbi.1010380.g001
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Step 3: The unchanged set of coefficients,fW1;:::;J0nj
, the unchanged eVJ0

’s, and the permuted

coefficients at scale j (fW j) are submitted to the IMODWT, to reconstruct the surrogate

process signal, Y0, in the time-domain (Fig 1C). This step is identical for both of the imple-

mented surrogate-data creation methods: Block permutation of the wavelet coefficients and

IAAFT. The reconstructed process Y0 (process surrogate) differs from the process Y only on

the shuffled jth scale. In this way, we destroy the process information storage only if is car-

ried by the jth scale, otherwise the information storage stays the same.

Step 4: With Y0 we compute again the AIS. We illustrated this step in Fig 1D. Let Y<t be the set

of past variables of the process previously found in the analysis, with Y0s being the s-th process
surrogate under analysis at scale j; then, the AIS0j for the surrogate data is:

AIS0j ¼ IðYt;s;Y
0

<t;sÞ; ð7Þ

The algorithm is repeated from step 2 to step 4 for s permutations, with s = 1, . . ., S, to create

a distribution of surrogate AIS0j;s values; S is set according to the desired critical level for sta-

tistical significance (including Bonferroni correction for the number of scales, see below).

Subsequently, all the J0 scales transformed by the MODWT in step 1 are subjected to step 2,

step 3 and step 4, such that J0 separate distributions of AIS0j;s-values, one for each scale, are

obtained.

Step 5: As a final step, the AIS is tested for statistical significance against the J0 different distri-

butions of AIS0 surrogate values. If the Yj (where j is one of the scales transformed by the

MODWT) contributes to the generation of the active information storage in the process Y,

a significant drop of the AIS0j surrogates will be observed. This step is applied for all J0 scales

under analysis and a Bonferroni correction is applied such that each individual scale is

tested at the significance level α/J0.

Additionally, each scale analyzed is plotted, see Fig 1E, and we restrict ourselves to interpret

only the scale that shows maximal distance (or well separated local maxima) from the origi-

nal AIS, maxjðAIS � gAIS0jÞ, where gAIS0j denotes the median of the surrogates distribution

at scale j. We consider the maximal distance in addition to the statistical significance test

because frequency transform is never perfect (e.g. due to leakage, noise and overlapping

wavelet bands). Indeed, validation of the algorithm on synthetic data shows that the maxi-

mum distance reliably reflects the ground truth, whereas the statistical significance test can

suffer from leakage effects on adjacent scales. Obviously, this limits the detectability of fre-

quency-specific AIS and may be overly conservative. Thus, in scenarios, where AIS from

multiple frequency bands is strongly expected a priori, or where the length of the data

allows for vanishing leakage effects, the above restriction may be lifted.

Results

In the following section we test the capability of the proposed algorithm to recover frequency

specific AIS. To this end, we employed three simulations, where the ground truth is known.

These simulations are limited to three example cases only, because the core idea and imple-

mentation strictly followed the spectral TE algorithm [10] (see above). For this more complex

case of source-target interactions we have already demonstrated in depth that the MODWT

construction of frequency specific surrogates in combination with a suitable statistical test reli-

ably delivers a frequency resolved information theoretic measure [10].
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In addition to the proof-of-principle on simulated systems, we applied the spectrally

resolved AIS on Local Field Potential (LFP) data from ferrets under different levels of isoflur-

ane and at recording sites in different cortical, and at sites in the prefrontal cortex (PFC) and

in primary visual cortex (V1). For each combination of cortical area and layer we assessed if

the AIS and the frequency resolved AIS were modulated as a function of different isoflurane

concentrations using Bayesian linear regression.

All the analysis of AIS and spectrally resolved AIS below were performed with a block per-

mutation of the wavelet coefficients (for construction of surrogates) and LA(8) as mother

wavelet, similarly to [10].

Example I: Null case, no information storage

At first, we simulated the case of no AIS in a process, to evaluate the behavior of our algorithm

when none of the frequency scales generates information storage. We employed a white noise

process, which by definition should not contain any information storage. However, we point

out that, the spectral AIS is a post-analysis step, which can be applied only after significant AIS

is found in the time-domain. We repeated the null-case simulation scenario 500 times to esti-

mate the number of false positive results. In the time-domain the number of false positive

results was below the alpha level (alpha = 0.05), while the spectral AIS analysis revealed no

false positive result (see Fig 2, panel A), indicating that the strategy to exploit wavelet filtering

for surrogates data creation is robust. Sometimes, surrogate data show AIS values that are con-

sistently larger than in the original data in certain bands (see Fig 2, panel A, scale 1 and 2).

This is an illustration of the unwanted distortions created by spectral processing of the data. If

we processed the original data, e.g. via filtering, this would be of great concern, as it would lead

to false positives. In our algorithm, however, it only makes our method slightly more conserva-

tive. This is also supported by our test of the empirical false positive rate (see Fig 2, panel A).

Example II: Specificity test

Secondly, we assessed the specificity of the spectral AIS analysis to demonstrate that the

method reveal no significant AIS to all bands except the ones of interest. Thus, we simulated a

signal as the sum of two sinusoids: one with oscillations at 50Hz and one with oscillations at

12Hz, for 10 s with a sampling rate of 120Hz and 50 trials. This simulation should show a sig-

nificant AIS in the first scale (i.e. frequency band 30–60Hz) and at the third scale (i.e. fre-

quency band 7.5–15Hz) but no spectral AIS drops at the intermediate scale(i.e. frequency band

15–30Hz). As before, we repeated the analysis 500 times to estimate the number of false posi-

tive for the specificity test. As can be seen in Fig 2, panel B, only scale 1 and 3 (the scales of

interest, shaded gray box) showed a significant drop, while all other bands did not revealed a

significant result, indicating that the test is specific. The number of false positive results in the

time domain was below the alpha level (alpha = 0.05).

Example III: Fractionally integrated AR process

Third, we simulated the combination of a fractionally integrated process with an autoregres-

sive process (AR). The resulting process belongs to the class of fractionally integrated

autoregressive moving average process (ARFIMA) [36, 37]. The simulated process exhibits

autonomous oscillation at f1 = 50 Hz, long-term memory and positive information storage

[37]. The AR amplitude was set to p = 0.98 and the differencing parameter was set to d = 0.3,

generating 10 s at sampling rate of 120 Hz and 100 trials. The coefficients of the AR process
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were generated with the following equation:

A1 ¼ 2p cosð2pf1Þ ð8Þ

A2 ¼ � p2 ð9Þ

while the fractionally integrated AR process is generated with the following equation:

AðLÞð1 � LÞdXn ¼ Un ð10Þ

where the coefficients A are generated with Eqs 8 and 9, U is a Gausssian white noise with zero

mean and unit variance and (1 − L)d is the fractional differencing operator computed by the

fast fractional difference algorithms [38]. First, we analysed the process in the time domain to

establish the presence of significant AIS. Then, we applied the spectrally-resolved AIS algo-

rithm to obtain the frequency information of the system. Correctly, the scale 1 (frequency

band 30–−60�Hz), containing the spectral peak at 50�Hz, shows a significant drop of AIS

in the surrogate data set indicating spectral AIS at that scale (see Fig 2, panel C).

Fig 2. Spectrally-resolved AIS for three exemplary simulations. Each panel, shows the AIS0 distribution obtained

from the surrogate data with shuffled coefficients at the scale indicated to the left, or, equivalently, the frequency band

indicated at the top of each panel. White bars represent histograms of surrogate data, i.e. relative frequencies in (a.u.),

the red dashed line is the median of the surrogate AIS0 distribution, the black dashed line is the original AIS value. The

horizontal black line indicates the distance between the original AIS and the median of the surrogate distribution (��,

p< 0.005; �, p< 0.05) Panel A, spectral AIS for the null-case example (500 simulations). Left, the power spectra of

white noise process. Right, spectrally resolved AIS at different scales (frequency bands). No significant drop of the

shuffled wavelet coefficients can be found since the process had no internal dynamic. For this simulation red dashed

line is the median of the the mean of the surrogates across the 500 simulations. Panel B, specificity test of the spectral

AIS. Left, the power spectra of the signal. Right, spectrally resolved AIS at different scales. No significant drops can be

seen in all bands except the one of interest (shaded gray box). Panel C spectral AIS for example 3, linear. Left, power

spectra of the ARFIMA process with spectral peak at 50 Hz. Right, spectrally resolved AIS at different scales (frequency

bands). The AIS showed, correctly, a significant drop at scale 1 (30–60Hz). Panel D, spectral AIS for example 4,

nonlinear. Left, power spectra of the realizations of a selected variable of the Rossler system, with a spectral peak at

around 8 Hz. Right, spectrally resolved AIS at different scales (frequency bands). The AIS showed, correctly, the largest

drop at scale 5 (8–16 Hz) and scale 4 (4–8 Hz).

https://doi.org/10.1371/journal.pcbi.1010380.g002
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Example IV: Chaotic dynamical system oscillator

In this fourth simulation, we evaluated the spectral AIS with a process generated by a non-lin-

ear dynamical system that exhibits self-sustained periodic oscillations, similar to [10, 39]. The

system was simulated with the following equation:

dx1

dt
¼ � w1y1 � z1 þ �x2ðt � tÞ

dx2

dt
¼ � w2y2 � z2

dy1

dt
¼ w1x1 þ 0:15y1

dy2

dt
¼ w2x2 þ 0:15y2

dz1

dt
¼ 0:2þ z1ðx1 � 10Þ

dz2

dt
¼ 0:2þ z2ðx2 � 10Þ

ð11Þ

where w1 and w2 are the parameters governing the natural frequencies of the oscillators, which

were set to 0.8 and 0.9, and � = 0.07 is the coupling strength and τ is the time delay, which was

set to 2 time steps. Additionally, Gaussian white noise was added to the generated time-series.

The analysis was performed on the assumption that only variables x1(t) could be observed. As

can be seen in Fig 2, panel D, the process x1(t) oscillated around 8 Hz. The sampling rate was

500 Hz, and 25 trials of length 4 seconds were generated (100000 samples).

As before, first we established the presence of significant AIS in the time domain. Then, we

obtained the spectral AIS as in the examples before. The results indicate that the largest drop

was at scale 5, with also a significant drop at scale 6, which was expected as the frequency of

the process spanned both scales (see Fig 2, panel D).

Spectral AIS under anesthesia at different cortical layers via Bayesian

regression

We applied our spectral AIS method to electrophysiological recordings of LFP data. Data were

recorded in V1 and PFC in two different female ferrets, at supragranular layers, the granular

layer and infragranular layers, under different concentrations (0.5%, 0.75%, 1%) of isoflurane

and under awake conditions (0%).

These laminar LFP data have been analysed previously in terms of frequency spectrum

modulations at different isoflurane concentration in [15]. Here, we provide a spectrally-

resolved assessment of the AIS in these signals, we hypothesise that AIS is modulated by iso-

flurane concentration in a layer- and brain-region-specific way. All methodological and

recording details can be found below and in [15].

Electrophysiological recordings and pre-processing

Recordings were made in adolescent female ferrets (15–20 weeks old) that had not reached

sexual maturity to exclude possible estrous-dependent changes in physiology [15]. Each

recording session was conducted in a dark room during resting state, lasting no more than two

hours during which animals’s head were fixed. Anesthetize recordings utilized varying concen-

tration of isoflurane anesthesia with xylazine (iso: 0.5%, 0.75%, 1%). All three concentrations

of isoflurane anesthesia corresponded to a lack of behavioral responses. Twenty minutes

elapsed after anesthetic concentration were changed. Two linear 16-channel silicon probes

(100-μm contact site spacing along the z-axis; Neuronexus, Ann Arbor, MI) were used in cases

of dual craniotomies. A silver chloride wire tucked between the skull and soft tissue and held

in place with 4% agar in saline was used as the reference for both linear probes. Each probe

was slowly advanced into cortex with a micromanipulator (Narishige, Tokyo, Japan); correct

depth was determined by small deflections of the LFP at superficial electrode recording sites
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and larger deflections of the LFP at deeper electrode recording sites. Unfiltered signals were

first amplified with MPA8I head stages with gain 10 (Multichannel Systems, Reutlingen, Ger-

many) and then further amplified with gain 500 (model 3500; A-M Systems, Carlsborg, WA),

digitized at 20 kHz (Power 1401; CambridgeElectronic Design, Cambridge, UK), and digitally

stored using Spike2 software (Cambridge Electronic Design). For analysis, data were low pass

filtered (300 Hz cutoff) and down-sampled to 1000 Hz. Data were visually inspected and seg-

ments of data were removed, if they were contaminated by artifacts. At the conclusion of the

study, all animals were humanely killed with an overdose of pentobarbital sodium and imme-

diately perfused with 4% formaldehyde in 0.1 M phosphatebuffered saline for subsequent his-

tological verification of recording locations. Additional information of animals surgery can be

found in [15]

AIS and spectral AIS estimation. First, we estimated the AIS from LFP recordings. We

implemented a similar approach as in [8], using the IDTxl toolboox [23] to determine the pres-

ence of significant AIS value at the layer level. To make any claim about isoflurane concentra-

tion effects we had to use identical embeddings (see Section: Technical background: Active
information storage (AIS)) for the estimation of the AIS or spectral AIS measures at different

isoflurane levels in order to equilibrate the estimation bias across these levels. To this end, we

applied the following four analysis steps:

1. Run the AIS algorithm for each trial (length 8 seconds) and isoflurane level.

2. Take the union of all embeddings across trials and isoflurane levels (i.e. the union of all past

state variables identified).

3. Compute the AIS measure using the union embedding.

4. Apply the union embedding for the spectral AIS algorithm and quantify the frequency

(scale/frequency band) contribution as:

AISDfreq ¼ AIS � eAIS0 ð12Þ

where, AIS is the original measure computed in the time domain and eAIS0 is the median of

the AIS distribution estimated on surrogate data with coefficients shuffled at a specific fre-

quency scale. Thus, the AISDfreq reflects the contribution of the particular frequency band

under analysis to the AIS. Only positive values correspond to a significant contribution to

the formation of AIS in the process under investigation.

Bayesian linear regression layers: Model specification. For the analysis of LFP laminar

data, we employed a Bayesian linear regression model. The dependent variables were the AIS
and AISfreq. For the ith trial, we can define the likelihood of the AIS measure as:

yi � N ðaþ bxi;iso; s2Þ ð13Þ

where α is the intercept and encodes the mean AIS, the parameter β is the slope which captures

the isoflurane experimental effect, whereas the term xisoi encodes the isoflurane levels (0%,

0.5%, 0.75%, 1%), and σ2 is the residual variance.

We choose a Normal distribution as a prior for the parameters α and β and Halfnormal dis-

tribution for the σ parameter, all values for the parameters of the prior distributions can be

found in S1 Table. We built one model (we refer to this model as “simple model”) for each

layer at PFC site and V1 site, separately (6 models in total). Since the plotted data showed a

possible quadratic effect as a function of different isoflurane concentrations, we additionally
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built the same six models with an added quadratic term (we refer to this model as “quadratic

model”), so that the likelihood terms become:

yi � N ðaþ bxi;iso þ bsqx2
i;iso; s

2Þ ð14Þ

with a Normal distribution as a prior for βsq (see S1 Table). Finally, for each layer we evaluated

the model that predicted the data better (simple model vs quadratic model) using a leave-one-

out cross-validation (LOO-CV) score as outlined next.

Bayesian regression setup and model comparison. We estimated the model regression

coefficients using Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling,

using the python package pymc3 [40] with NUTS (NO-U-Turn Sampling), using multiple

independent Markov Chains. We implemented four chains with 3000 burn-in (tuning) steps

using NUTS. Then, each chain performed 10000 steps, those steps were used to approximate

the posterior distribution. To check the validity of the sampling, we verified that the R-hat sta-

tistic was below 1.05.

To evaluate different models with different numbers of parameters, we implemented cross-

validation, which has been advocated for Bayesian model comparison, e.g. in [41]. In particular

we adopted the LOO-CV implemented in PyMC3. Lower LOO-CV scores imply better mod-

els. We report the full modeling and model comparison results in supplementary tables: S2–S9

Tables, and only include the results of the winning models in the main text.

Hierarchical bayesian regression. We point out that an alternative modeling approach

to asses the anesthesia effects on the AIS measure would have been adopting a Hierarchical

Bayesian Regression [42]. In a hierarchical model, parameters can be viewed as a sample

from a population of parameters; for our case this implies to set a hyperprior from which we

sample the β parameters for the two cortical areas (PFC and V1) and three layers (infragranu-

lar, granular and supragranular). This modeling approach would be optimal in case of the

prior assumption of a certain amount of similarity of the AIS behaviour between these cortical

structures, or in other words, an overall effect common to the different cortical areas and lay-

ers. The Bayesian framework allows to include such prior knowledge on the model formula-

tion. However, previous work on spectral power [15, 16], as mentioned above, showed that

anesthesia modulates cortical areas and layers differently. Based on this prior knowledge we

decided to model each single layer in each cortical area (PFC and V1) separately, resulting in

six separate models.

Cortical layer and brain-region specific modulation of total AIS by isoflurane. We

start by reporting the result of the Bayesian regression analysis for the AIS dependent variable,

in the time domain, and subsequently the result of the frequency resolved AIS (AISfreq).
First, we evaluated the AIS measure for different isoflurane levels in the time domain, and

performed the Bayesian regression analysis.

In V1, the models with a squared beta coefficient described the data better than the models

without it, as indicated by the LOO-CV-based Bayesian model comparison [41] (lowest LOO

score in supplementary S2 Table). In contrast, in PFC, the two types of models were almost

indistinguishable; yet the quadratic model performed slightly better as well (see supplementary

S2 Table).

In PFC, in the infragranular layer, we found a consistent increase of the AIS as a function of

isoflurane concentration (yellow line) with a posterior mean of beta iso = 1.7, [1.28, 2.13] and

beta iso squared = 0.9, [0.52, 1.27] (Fig 3, panel A) and also in the granular layer of PFC beta
iso: = 0.48, [−0.075, 1.05] and beta iso squared = 1.43, [0.92, 1.91] (Fig 3, panel B), while for the

supragranular layer of the PFC the effect of isoflurane on AIS was minimal, with a posterior
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mean of beta iso = 0.814, [0.08, 1.54] and beta iso squared = −0.54, [−1.19, 0.099] (see Fig 3,

panel C).

In V1, all layers showed a similar behavior (see Fig 3, panels A–C), with a decrease of AIS

values for intermediate isoflurane concentrations (0.5% and 0.75%) and a subsequent increase

for the highest isoflurane level (1%). Posterior means for beta iso were = −4.78, [−5.24, −4.3],

−5.17, [−5.69, −4.64] and −5.25, [−5.77, −4.73], for infragranular, granular and supragranular

layers, respectively (see Fig 3, panel A–C). Similarly, posterior means for the beta coefficient

of the squared isoflurane concentration were close to each other with beta iso squared = 5.7,

[5.24, 6.13], 5.42, [4.91, 5.93], 5.57, [5.09, 6.08], for infragranular, granular and supragranular

layers, respectively (see Fig 3, panel A–C).

In summary, deeper layers in PFC (infragranular and granular) showed stronger modula-

tion under increasing isoflurane levels compared to supragranular layers, such a clear differ-

ence did not appear between layers in V1. This result is in line with [8], where a more

pronounced increase of AIS (at increasing isoflurane concentrations) was found at PFC com-

pared to V1.

Cortical layer and brain-region specific modulation of frequency-specific AIS by iso-

flurane. Next, we evaluated the AISfreq for different isoflurane levels in the frequency domain

in multiple frequency bands. We start presenting the results for 62.5Hz–125Hz, i.e. the high

gamma frequency band.

In this band, in PFC, the quadratic model was substantially better than the simple model in

the infragranular and granular layers; in the supragranular layer the quadratic model, despite

still fitting the data better than the simple model, only had a marginally better LOO score (see

supplementary S3 Table).

In V1 at the infragranular layer, LOO scores for the models with or without the beta iso
squared coefficient were almost identical, whereas for granular and supragranular layers the

quadratic model represented a better description of the data by the model (see S3 Table).

In the high gamma band (62.5Hz–125Hz) we observed a modulation of the AISDfreq mostly in

the supragranular layer of V1 (see Fig 4 last panel, top and Fig 5, panel G), with an increase for

Fig 3. Bayesian regression results of spectral AIS in the time-domain. Each column show the Bayesian regression fit

for V1 (purple) and PFC (yellow) at supragranular (rigth), granular (middle) and infragranular (left). Shaded area in

the regression fit around the estimated mean (solid line) represents 94% HDI.

https://doi.org/10.1371/journal.pcbi.1010380.g003
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intermediate levels of isoflurane (0.5%) beta iso = −0.92, [−0.96, −0.89] and beta iso squared =

−0.86, [−0.89, −0.83] and a subsequent decrease for higher isoflurane concentrations, whereas

in PFC such a modulation was absent in supragranular layer. Modulation was also absent at

both, V1 and PFC, in granular and infragranular layers (see Fig 4, last column, middle and bot-

tom panels).

In the frequency range 31Hz–62Hz (i.e. gamma band), the quadratic model was better for

all layers at both brain regions (V1 and PFC). Nevertheless, at the granular layer of V1 and at

the supragranular layer of PFC the LOO-CV difference with the simple model was minimal

(see supplementary S4 Table).

Similarly to the high gamma band, the supragranular layer was the layer most pro-

nouncedly modulated by the different isoflurane concentrations. In the PFC the AISDfreq
decreased as a function of isoflurane beta iso = −0.48, [−0.54, −0.41] and beta iso squared =

−0.09, [−0.04, −0.14], while in V1 it increased for isoflurane at 0.5% followed by a decrease

beta iso = −0.43, [−0.51, −0.35] and beta iso squared = −0.42, [−0.5, −0.36] (see Fig 4, sixth

column, top panel and Fig 5, panel F). At granular layer of V1, the positive AISDfreq values for

isoflurane at 0% decrease to negative (see Fig 4, sixth column, middle panel, shaded gray

background) for intermediate and high level of isoflurane concentrations (from 0.5% to 1%).

Finally, no relevant modulation could be seen in the infragranular layers of both PFC and V1

brain areas (see Fig 4, sixth column, bottom panel). Taken together, the results for gamma and

high gamma band, showed an isoflurane effect on AISDfreq mainly in the superficial layer (supra-

granular) and minimally in the granular layer, in agreement with association of gamma band

to superficial layers [43], see Section: Modulation of spectral information storage according to
distinct functional roles across cortical layers by anesthesia, for further details.

In the frequency range 15Hz–31Hz (i.e. beta band), the simple model had a lower LOO-CV

score for the supragranular layer of PFC. In all other cases, the quadratic model had lower

LOO-CV score (see S5 Table).

In this frequency band, in PFC, the supragranular and infragranular layers decreased as iso-

flurane levels increased. While in the supragranular layer AISDfreq value were still positive at

Fig 4. Bayesian regression results of spectral AIS in the frequency range 0.95–125Hz. Each column show the

Bayesian regression fit at specific frequency range for V1 (purple) and PFC (yellow) at supragranular (top row),

granular (middle row) and infragranular (bottom row). Shaded area in the regression fit around the estimated mean

(solid line) represents 94% HDI. Shaded gray background for AISDfreq values that are below zero (i.e. no frequency

specific drop).

https://doi.org/10.1371/journal.pcbi.1010380.g004
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isoflurane 1%, beta iso = −0.67, [−0.72, −0.62], in the infragranular layer the AISDfreq values

became negative at higher isoflurane levels (0.75% and 1%), beta iso = −0.74, [−0.79, −0.70]

and beta iso squared = 0.11, [0.08, 0.16], revealing that the spectral surrogate drop was abol-

ished (see Fig 4, fifth column, bottom panel, shaded gray background and Fig 5, panel E).

In V1 the supragranular layer had a different modulation, compared to PFC, with a signifi-

cant decrease at isoflurane 0.5% and a subsequent increase for isoflurane 0.75% and 1%, beta
iso = 0.05, [−0.007, 0.11] and beta iso squared = 0.66, [0.60, 0.71] (see Fig 4, fifth column, top

panel and Fig 5, panel E). In granular layer after a decrease for concentration 0.5%, AISDfreq
remained in a similar range of values for high isoflurane concentrations (see Fig 4, fifth col-

umn, middle panel).

In the frequency range 8Hz–15Hz (alpha/beta band), the quadratic model had a lower

LOO-CV for all layers at both PFC and V1 regions (see S6 Table). Nevertheless, for the supra-

granular layer at PFC and granular layer of V1 the models had overlapping standard errors of

the estimates (SE).

In this frequency range, in V1, we observed a similar behavior of supragranular and granu-

lar layers to the previous frequency range, posteriors for beta iso = −0.06, [−0.008, −0.125] and

Fig 5. Selection of Bayesian posterior distributions. From panel A to panel G, Bayesian posterior distributions with

highlighted mean of the posterior distribution for beta iso and beta iso squared coefficients and 94% HDI. Each panel

contained a selection of relevant Bayesian analysis results at different cortical layers for PFC (purple) and V1 (yellow).

https://doi.org/10.1371/journal.pcbi.1010380.g005
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beta iso squared = 0.687, [0.63, 0.73] of supragranular layers were very close to the ones in the

frequency range 15Hz–31Hz (compare values of Fig 5, between panel D and E). In contrast,

the infragranular layer of V1 had a opposite modulation to that found in the next higher fre-

quency range with an increase for intermediate isoflurane level (0.5%) and a later decrease at

higher isoflurane concentrations, beta iso = −0.574, [−0.64, −0.50] and beta iso squared = 0.52,

[0.588, 0.46] (see Fig 5, panel D).

In PFC the AISDfreq was mainly modulated from 0.5% to 1% isoflurane levels and this modu-

lation was strongest in the infragranular layer (compare Fig 4, fourth column; top, middle and

bottom panels). Despite a common shift of alpha power from posterior to anterior cortex dur-

ing loss of consciousness (LOC) [44], none of the layers at PFC showed an AISDfreq component

increase. We discuss the absence of the alpha anteriorization effect (for the AIS) in Section:

Modulation of spectral information storage according to distinct functional roles across cortical
layers by anesthesia.

In the frequency range 4Hz–8Hz (theta band), the quadratic model was substantially better

only in the supragranular layer of V1 (see S7 Table); in all other cases the difference with the

simple model was minimal, yet the quadratic model had a nominally lower LOO-CV score.

In PFC, we observed a modulation of the AISDfreq by isoflurane, in all three layers (see Fig 4,

third column, top, middle and bottom panels. The strongest decrease was for infragranular

and supragranular layers with values: beta iso = −0.515, [0.57, −0.45] and beta iso squared =

0.18, [0.14, 0.22] for infragranular layer (see Fig 5, panel C).

In V1 the supragranular layer had a strong decrease for isoflurane 0.5% but this was fol-

lowed by an increase for higher isoflurane levels beta iso = 0.618, [0.56, 0.67] and beta iso
squared = 0.776, [0.725, 0.827] (see Fig 5, panel C).

In the frequency range 1.95Hz–4Hz (delta band), the models with a squared beta coefficient

described the data better than the models without it in all layers at PFC and V1, as indicated by

LOO cross-validation- based Bayesian model comparison (lowest LOO-CV score, see S8 Table).

At this low frequency band the modulation by isoflurane became more homogeneous

across layers and brain regions. Indeed, we found that the infragranular and granular layer of

PFC and V1 were all similarly modulated (see Fig 4, second column, top, middle and bottom

panels). Only in supragranular layers the increase for high isoflurane values was stronger in V1

compared to PFC, with beta iso = 0.609, [0.55, −0.66] and beta iso squared = 0.77, [0.72, 0.82]

for V1 and beta iso = 0.297, [0.22, 0.37] and beta iso squared = 0.391, [0.33, 0.44] (see Fig 5,

panel B).

Finally, we estimated the frequency range 0.9Hz–1.9Hz (low delta band). The Bayesian

model comparison revealed that the quadratic model had a lower LOO score in all the layers,

however in the granular layer of V1 standard error of estimates overlapped, indicating that

both models fitted the data similarly (see S9 Table).

As in the previous frequency range, deep and superficial layers at both brain regions were

characterized by a similar isoflurane modulation, due to a possible global effect of slow oscilla-

tion throughout the cortex under LOC (see Section: Modulation of spectral information storage
according to distinct functional roles across cortical layers by anesthesia). However, in this fre-

quency range, infragranular and granular layers at PFC had a stronger increase at high isoflur-

ane concentrations (0.75% and 1%) than in V1, with the highest difference in the infragranular

layer beta iso = 0.84, [0.78, 0.903] and beta iso squared = 0.284, [0.24, 0.32] for PFC and beta
iso = 0.291, [0.20, 0.37] and beta iso squared = 0.25, [0.18, 0.33], while supragranular layer

showed a similar modulation at both brain regions (see Fig 4, first column, and Fig 5, panel A

for values of the bayesian mean of the posterior). All posterior distributions can be found in

supplementary figures: S1–S7 Figs.
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Relation between the spectral AIS and the spectral power. To further highlight the dif-

ferential behaviour of spectral AIS compared to spectral power we performed a Bayesian corre-

lation of spectral power in two frequency ranges with spectral AIS: 0.9Hz–1.9Hz (delta) and

7.9Hz–15Hz (alpha) at infragranular PFC and in the frequency ranges 31Hz–62.5Hz (gamma)

and 62.5Hz–125Hz (high gamma) of supragranular V1. The Bayesian correlation revealed that

the correlation between the two measures varied depending on the frequency band and isoflur-

ane level. In the frequency range 0.9Hz–1.9Hz at isoflurane of 0% there was a strong evidence

for a positive correlation BF10 = 48530.5 (see Fig 6, panel A, right); at isoflurane of 1% the cor-

relation dropped to moderate evidence BF10 = 3.079 (see Fig 6, panel A,left). In the alpha band

7.9Hz–15Hz at isoflurane of 0% the evidence for a correlation was absent BF10 = 0.4 (see Fig 6,

panel B, right), while at isoflurane of 1% there was moderate evidence for the null hypothesis

BF01 = 10.19 (see Fig 6, panel B, left). Additionally, we showed that as the power increases as a

function of isoflurane the AISDfreq had opposite behavior; the frequency specific surrogates drop

increased at higher isoflurane percentage in the range 0.9Hz–1.9Hz, while it decreased in the

range 7.9Hz–15Hz (see Fig 6, panel E and F). In V1, gamma and high gamma frequencies

showed a similar behaviour. At isoflurane of 0% there was strong evidence for a negative corre-

lation (see Fig 6, panel C and D, right) which became a positive correlation at isoflurane of 1%

(strong evidence, see Fig 6, panel C and D, left). Interestingly, the relation with the spectral

AIS indicated an inverted u-shape, with increased predictability (higher AIS values) at inter-

mediate isoflurane concentration and lower AIS values at isoflurane of 1% (see Fig 6, panel G

and H). We discuss the increased gamma predictability in Section: Modulation of spectral
information storage according to distinct functional roles across cortical layers by anesthesia.

To further characterize the difference between spectral power analysis and AIS measure, we

performed an additional simulation. We generated three different signals with the following

Fig 6. Bayesian correlation of spectral AIS and spectral power. (A to D) Bayesian correlation of spectral AIS with

spectral power in different frequency ranges at isoflurane 0% and 1% in PFC and V1. Each panel shows the posterior

distribution (black line), prior distribution (dashed line), median and 95% of the posterior estimates of the regression

coefficients and the Bayes factor BF10 in favor of the alternative hypothesis (H1) relative to the null hypothesis (H0),

where BF10 = p(D|H1)/p(D|H0); BF01 is just the inverse of this, and is given for convenience only. (E to H)

Modulation of AIS (red curve) and spectral power (black box-plot) with isoflurane levels, in different frequency ranges

at PFC and V1. (Scatter plots with the correlation fit can be found in S8 Fig).

https://doi.org/10.1371/journal.pcbi.1010380.g006
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features: randomly spaced oscillatory bursts around 10Hz, with random phases, interspersed

by Gaussian noise (see Fig 7, panel A, top row), a single oscillatory burst randomly placed at

the end of a Gaussian noise time-series (see Fig 7, panel B, top row) and a sinusoid with addi-

tional Gaussian noise (see Fig 7, panel C, top row). We generated 100 examples of these signals

(for the sinusoid the frequency component varied within 8–15Hz), and scaled the signals to

obtain a similar mean power in the frequency range 8–15Hz (see Fig 7, panel D, bottom row),

which is the resolution of AIS spectral power analysis (7.5Hz–15Hz for scale 3, at the sampling

frequency of 120Hz). Because of the different dynamic of the three constructed signals, we

show that for the random and single burst signals the AIS and the spectral AIS (for the fre-

quency band 7.5Hz–15Hz) is lower compared to the sinusoid, despite having similar power

(see Fig 7, panel E, bottom row). Indeed, the past of the signal for randomly spaced bursts con-

tains minimal information to predict its future, similarly with the single burst (which show sig-

nificant AIS only when burst at the end of the signal is covered by the past state of the AIS Y<t,

compared to the high predictability of a sinusoid.

This simulation helps to interpret the result of the different behavior of the power and spec-

tral AIS in Fig 7 panel D, in favour of a more random bursting activity in the range 7.9Hz–

15Hz at high isoflurane concentrations, and higher power at the maxima of these bursts.

Rhythmic activity can be transient in non-averaged data [45] and has been observed in differ-

ent frequency bands: gamma, beta and alpha; and isoflurane has been associated with burst

suppression in the alpha band [46]. This scenario would explain a higher total mean mean

power and a reduction of the spectral AIS (see Fig 7 panel D). We further corroborate this

hypothesis with an additional alpha-beta burst analysis [45]. We identified bursts in the fre-

quency range 8–15Hz and showed that the power maxima of these bursts increase at higher

Fig 7. Simulation of different oscillatory patterns and related AIS estimation. Panel A, example of a signal with

randomly spaced bursts around 10Hz placed on Gaussian noise, panel B, example of a signal with a single burst placed

randomly at the end of a Gaussian noise, panel C a sinusoid with Gaussian noise at 10Hz. Panel D, shows the mean

power, for 100 simulations of the three scenarios, in the frequency range 8–15Hz. Panel E, an example of the three

simulated time-series (last five seconds). Panel F, results of the AIS and spectral AIS analysis for the three tested

simulated signals.

https://doi.org/10.1371/journal.pcbi.1010380.g007
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isoflurane concentrations (see S10 Fig, panel C). Additionally, the comparison of the coeffi-

cient of variation (CV2) of the inter-event intervals with the Fano Factor (that quantifies the

trial-to-trial-variability of events number per trial), where the event is the alpha-beta burst,

indicated that at isoflurane 0.75% and 1% the underlying process for the bursts generation

might be a Poisson process (see S10 Fig, panel D), which would explain the observed low AIS.

Detailed information of the burst analysis is reported in supplementary information: S1 Text

Discussion

In this study we addressed two tightly related questions: 1. Can we in principle design an algo-

rithm to detect frequency-specific active information storage? 2. Do we detect such frequency-

specific active information storage in neural systems, and if so, does it provide valuable infor-

mation towards a better understanding of neural information processing?.

Estimating spectrally-specific AIS

To address the first question, we presented an algorithm to estimate which specific spectral

components contribute to the overall active information storage (AIS) of a process. We dem-

onstrated with different simulations that these spectral components can be reliably identified,

in both linear and nonlinear systems and processes. The algorithm builds on the idea of creat-

ing spectrally specific realizations of the null model (surogate data) that was presented in

[10], for the case of spectrally-resolved TE. In the present study, we again used the MODWT

decomposition and scrambling of the wavelet coefficients for the creation of spectrally-specific

surrogates data to assess frequency contribution to the AIS measure.

The spectrally-resolved AIS can be seen as an attempt to determine frequency components

related to information-theoretic properties of a process under investigation. Its estimation is

less complex than the estimation of spectral TE which implies to decompose specific spectral

components of sources and targets and to distinguish one-to-one from one-to-many or many-

to-one interactions, whereas spectral AIS provides spectral resolution only of a single process.

Thus, it is expected that the proposed algorithm performs similarly well as the previously pub-

lished one for spectral TE. We, therefore, keep the discussion of the validity and performance

short here.

Which insights into neurophysiology can be obtained using spectral AIS?—

The example of anesthesia effects

The second question becomes crucial in biological systems such as the brain where the role of

rhythmic processing in neural system is still not fully understood but prominently discussed

for neural communication mechanisms [47–49]. We note that for AIS as a foundational com-

ponent of neural information processing, only a handful of studies exist to date [6–8, 13], and

none has asked the question of its relation to neural rhythmic processing.

The analysis of LFP cortical layers at two brain sites (PFC and V1) in ferrets, showed that

we can successfully detect frequency-specific AIS at different frequency bands. While in the

time domain the total AIS showed an increase as a function of isoflurane level, the spectral per-

spective revealed a much more complex and richer picture, where AIS rose in certain bands

but decreased in others with increasing isofluorane levels. Furthermore, in comparing modula-

tions of spectral AIS and spectral power we showed that AIS provides information on the

computational dynamics of the neural process and its modulation by anesthesia, which spec-

tral power analysis does not reveal.

In the remainder of this section, we will further discuss the results of the application of our

novel, spectrally-resolved AIS measure to the LFP under anesthesia, highlight the additional
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details that the spectrally-resolved AIS revealed compared to time-domain-only analysis of

AIS and the additional information that the spectral AIS provides compared to spectral power

analysis also in terms of anesthesia effects. We place the LFP spectral AIS results in the context

of our current understanding of cellular and circuit mechanisms of anesthesia in order to shed

some light on how cortical computation changes under anesthesia.

Last, we will then indicate limitations and caveats of the method, discuss its relation to pre-

vious approaches and possible future applications.

Modulation of spectral information storage according to distinct functional roles across

cortical layers by anesthesia. Due to the multiple dimensions along which our AIS values

change, i.e. cortical areas, cortical layers, anesthesia levels, and frequencies, we have to focus

our discussion here on the most prominent findings. For these most prominent findings, we

will try to highlight possible functional consequences based on current theories of cortical

function, and to suggest neurophysiological mechanisms underlying the observed changes in

spectral AIS where this seems possible. An important reference point to keep in mind for the

the discussion below is the fact that the animals have already lost behavioral responsiveness at

an isoflurane level of 0.5% [15]. Thus, changes in spectral power and spectral AIS beyond this

point are unlikely to be central to anesthesia-induced loss of consciousness.

Effects in frequencies below the theta band. One previous observation linking anesthesia

and active information storage [8] was the overall increase of time-domain AIS with increasing

depth of anesthesia, which was also observed here across cortical layers and areas (but most

prominently in PFC, see Fig 3). The analysis of spectral-AIS showed that these increases in AIS

are driven by frequencies below the theta band. Combined with the increase in spectral power

under anesthesia that is frequently described for these very low frequency bands [15], our find-

ings indicate the presence of highly regular, high amplitude low frequency activity. Here, the

well known high amplitude of low frequency activity suggests large scale spatial synchroniza-

tion whereas the high regularity found via spectral-AIS analyses indicates stereotypically

repeating activity; together, these findings point to a greatly reduced richness of cortical pro-

cessing—possibly not enough to sustain consciousness. This is compatible with an earlier

work of Bharioke and colleagues who found greatly reduced entropy in layer 5 pyramidal cells

after the onset of high-amplitude, low frequency oscillations [50]. At the biophysical level the

emergence of high-amplitude low-frequency oscillations has been linked to a decoupling in

the cortico-thalamico-cortical loop (as discussed in [50–52]).

Spectral AIS in the beta and alpha band. In contrast to the above low-frequency activ-

ity, spectral power changes in the beta and alpha bands have been frequently linked to the

awake state and the performance of cognitive tasks [53]. Neurophysiologically, alpha and

beta-band activity have been linked to spatio-temporally structured inhibition (e.g. [54, 55]),

the maintenance of a cortical status quo [56], and feedback signalling of internal predictions

[13, 57] the loss of beta-band activity under administration of certain drugs, such as keta-

mine, has been linked to phenomena of distorted perception [58] that precede the loss of

consciousness. The observed loss of spectral AIS in these bands under isoflurane in our

study—sometimes despite increases in spectral power (Fig 6 and Fig 2 in [15])– points to a

loss of temporal structure (also see supplementary S10 Fig). This temporal structure, how-

ever, may be necessary for some or all of the above cortical functions. Given that the alpha

and beta bands have been linked to the maintenance of internal predictions, their loss of

temporal structure may lead to a degraded internal model of the world, i.e. a loss of an orga-

nized representation of the world around us, and also our internal bodily state. It is conceiv-

able that such a loss of an internal representation of the world is one component of the

phenomenon of loss of consciousness. Biophysically, changes in alpha and beta-band activity

under anesthesia may be linked to a disruption of the cortico-cortical and cortico-thalamic
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loop [59] via anesthesia effects on layer 5 pyramidal neurons. In essence, anesthesia decou-

ples the distal apical dendrites, that receive feedback inputs, from the somatic compartment

in infragranular-layer pyramidal neurons resulting in a widespread decoupling of both, cor-

tico-cortical and cortico-thalamo-cortical feedback throughout cortex [59]. This may make

the sustained representations of internal models impossible, in line with what was said above

based on spectral AIS results.

Gamma band activity. Traditionally, gamma band activity has been linked to numerous

cognitive functions ([18, 53, 60], but is also sometimes just seen as an indicator of overall

cortical activity [61]. In predictive coding theories, gamma band activity is sometimes linked

to the anatomical feedforward signalling of prediction errors [13, 18]. When taking into

account the predominant origin of high-frequency gamma band oscillation in supragranular

cortical layers [16] and the anatomical feedforward signalling from projection neurons in the

supragranular layers [62] it seems plausible to assume that gamma oscillations are related

more to signalling towards the core of the cortical processing hierarchy. If so, the content

represented in activity in the gamma band should be more variable and less predictable. As a

consequence gamma-band activity should be linked to a lower spectral AIS than alpha and

beta band activity. This is indeed what we observed: gamma-band AIS was significant only

in superficial layers, and generally lower than spectral AIS in the alpha and beta band—as

expected. Therefore, we tentatively interpret the observed changes in gamma band AIS in

relation to feedforward signalling and prediction errors. The observed increases in gamma-

band AIS in V1, i.e. lower in the hierarchy, at an isofluorane level of 0.5% coincide with a

loss of spectral power in both gamma bands (see Fig 6). This seems compatible with the

notion that signals in these bands to contain a priori unpredictable error-related activity.

A loss of this activity would thus increase predictability in these bands (spiking activity

decreased at this concentration in [15]). As error-related signalling towards the core of the

cortical hierarchy, however, may be also a prerequisite for a meaningful adaptation of inter-

nal models, the loss of unpredictable gamma band activity might also mean the loss of the

ability to adapt internal models to the outside world.

Link to neurophysiology. We are aware that the above links of anesthesia-related changes

in spectral AIS to anesthesia-related loss of consciousness heavily depend on assumptions bor-

rowed from predictive coding theories. Our interpretation is inspired for example by [52],

who describe putative links between predictive coding theories and theories of conscious pro-

cessing, and link these to the pivotal role of layer 5 pyramidal cells. In these cells, the apical

dendrites in particular are prime mediators of anesthetic effects brought about by a loss of

their inputs from thalamus [59]; isoflurane anesthetic upregulate GABAA receptors [63] and

downregulates high-order thalamic nuclei [52, 59]. The loss of thalamic inputs to the apical

dendrites renders these cells incapable of fusing bottom-up and top-down processing streams

in cortex—in the context of predictive coding theories this is compatible with a loss of the abil-

ity to adapt an internal model to changing sensory inputs, and ultimately to maintain an inter-

nal model altogether. Our above interpretation of computational changes related to changes in

spectral AIS points to a similar mechanism based on computational considerations.

We thus describe an interpretation of spectral AIS changes and their relation to anesthesia

and loss of consciousness that is coherent with both, predictive coding theories and proposed

biophysical mechanisms of anesthesia. Nevertheless, additional research needs to substantiate

or refute predictive coding theories in general, and their description of anesthesia and loss of

consciousness in particular.

Spectrally-resolved AIS provides insights into neural processing and the effects of anes-

thesia that are not provided by an analysis of spectral power. Anaesthetic agents such

as isoflurane, sevoflurane or propofol produce similar oscillatory changes, in particular,
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predominating low frequencies (delta band) and increased power in the alpha frequency band

at frontal sites (anteriorization effect) [44, 64, 65]. We show here that the spectral AIS provides

additional information on the underlying neural information processing and the effects of iso-

flurane. For example, we describe effects in the alpha frequency band that are not found by an

analysis of only spectral power: while at low frequencies (delta band) and no isoflurane (0%),

the spectral AIS and the spectral power are strongly correlated, such a relation can not be seen

in the alpha band (see Fig 6A and 6B, right panel). Additionally, while in the delta band the

spectral AIS follows the increase of spectral power as a function of isoflurane concentration, an

opposite behaviour can be seen in the alpha band (see Fig 6E and 6F). Interestingly, the alpha

frequency shifts (increase of anterior alpha power and decrease of posterior alpha power)

showed the same spectral AIS profile (compare Fig 6, panel F of PFC with S9 Fig, panel B of

V1), thus the observed power shifts seem to be independent of the spectral AIS. In the fre-

quency range 8–15Hz we performed an alpha-beta burst analysis which resolved in a possible

explanation for the decrease of the spectral AIS in this frequency range (see S10 Fig). Even

though, we take this result with caution (this type of analysis could be affected by the burst

identification method), deep general anesthesia has being associated with burst suppression in

this oscillatory range [46, 66]. The burst suppression of the alpha rhythm is characterized by

periods of high voltage activity (burst) and flatline segments, almost periodic, but with inter-

and intra burst variations [67]. This phenomenon occurs only at deep level of anesthesia (see

Fig 1 in [66]), and may arise as the interaction between neural dynamics and brain metabolism

[66]. Interestingly, this effect at only high isoflurane doses (0.75% and 1%) seems to be present

also in our data (see S10 Fig, panel B), while the underlying bursts generation at these isoflur-

ane doses seems to be related to a Poisson process (Fano factor an CV2 almost 1, see S10 Fig,

panel D).

For other anesthetics such as propofol, recent work showed that alpha band effects depended

on two types of thalamocortical circuits affected by the anaesthetic agents and were completely

distinct from the propofol-induced slow oscillations [65], as well as computational model point

to such distinction [68]. Thus, we speculate that also propofol-related changes in spectral AIS

will be distinct for the delta- and the alpha-bands. Hence, decomposing the AIS measure in its

spectral components can reveal aspects of the computational dynamics of neural processes that

are not directly accessible by a spectral power analysis (see Fig 7, of how different oscillatory pat-

terns give rise to AIS).

Spectrally-resolved AIS adds additional insights into the effects of anesthesia on neural

processing compared to AIS in the time domain. In a previous study analyzing LFPs from

ferrets under anesthesia, the AIS (in the time domain) increased as a function of isoflurane

concentrations in PFC [8]. Given the similar effect that we found in this work in the time

domain (see Fig 3, panel C), the overall increase at high isoflurane levels in AIS seems to be

linked to an increase in AIS in delta frequencies, whereas alpha and beta frequency bands are

modulated by isoflurane differently, i.e. they decrease as a function of isoflurane levels. Alpha

and beta bands have been linked to generation of internal models in the predictive coding

framework [13], and have also been associated mostly with deep cortical layers, and thereby,

cortical feedback pathways [16]. Thus, the absence of alpha and beta-band AIS may suggest—

following the line of argument in [13]—that under anesthesia the maintenance of internal

models and the generation of internal predictions is strongly impaired. This in turn may be

an important component of the phenomenon of loosing consciousness, indeed shutting the

coupling in the pyramidal neurons and integration of inputs from superficial to deep layers of

the cortex would lead to a drastic breakdown in the cause-effect repertoire and consciousness

would fade [52, 69, 70]
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Relation to previous approaches

A method that allows to compute AIS at different temporal scales has been introduced by [71].

It exploits the state space formalism to obtain a multiscale representation of a linear fraction-

ally integrated autoregressive process (ARFI) [71]. The time-series undergo to lowpass filtering

and downsampling to obtain a multiscale representation, so that the AIS can be computed as a

function of the cutoff frequency. This parametric formulation, employing the state space for-

malism is restricted to the description of linear Gaussian processes. However, it is a significant

improvement over previous attempts to quantify system complexity in terms of a linear multi-

scale entropy [72], with the simultaneous description of short and long memory properties

which are fundamental aspects of systems dynamic [37]. Another potential method comes

from the equality of Granger causality and information transfer or information theoretic

measure for Gaussian variables in the time and frequency domain [73, 74]. Also, recent work

showed that for linear Gaussian processes the information modification (one of the compo-

nent of information processing) may be formulated, analytically, in the frequency domain [75,

76] as the synergy component of a partial information decomposition following the idea of

[77], and using the PID measure IMMI of [78]. This frequency decomposition approach for lin-

ear Gaussian processes can be also adopted for the AIS. When the assumptions of linear Gauss-

ian processes are valid, then the methods in [71] or [75, 76], will be more data-efficient and

come with lower computational burden. Furthermore, the frequency estimation of the AIS for

Gaussian variables will then allow for a more precise identification of the relevant frequency

components (the work in [75, 76], evaluates the all frequency spectrum while the current

method can only identify frequency bands). If the assumptions of linear Gaussian processes

are not met however, our approach seems to be the only viable alternative at the moment.

On the possibility of cross-spectral information storage

Due to the sensitivity of information-theoretic measures to non-linear phenomena it is con-

ceivable to find information storage in cases where the frequency of the process underlying the

storage changes over time, i.e. where the stored information wanders between frequencies as

the process unfolds. If, for example, the information is moving forth and back between dynam-

ics at certain low frequencies and certain high frequencies, this should be detectable, using the

approach from [10]. Thus, as an extension to the algorithm presented here, it is possible to

destroy the information in a specific frequency also in the future of a process instead of the

past, similar to the individual frequency-specific destruction of information in source and tar-

get processes in the estimation of TE [10], and to thus find which frequency is the past source

of information, and which frequency is the current target of the information transported from

the past into the future. This way, effects of nonlinear dynamics in a process maybe made visi-

ble. Although this is not used in the current manuscript, it is implemented in IDTxl [23], for

future investigations.

Caveats and limitations

The estimation of information-theoretic quantities, such as the AIS, from finite data is highly

non-trivial (e.g. [79] and references therein). In many cases the necessary number of physical

realizations of a process is not available. Two possible strategies can be implemented then:

pooling data over time to obtain a sufficient amount of realizations (this requires stationarity)

or pooling data over an ensemble of temporal copies. This latter approach approach exploits

the cyclostationarity across these temporal replications of the process. Last, for discrete-valued

data, Bayesian approaches exist for optimization embedding parameters and AIS estimation

[80]; these approaches are available in our Toolbox [23].
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Future directions

Future studies should focus on combining spectrally resolved transfer entropy [10] and active

information storage to provide a more exhaustive characterization on the computational

behaviour of the analysed system in the spectral domain. Employed together, these tools offer

a promising framework to test specific hypothesis on brain functioning such as predictive cod-

ing theory [9] or encoding and maintenance of information in working memory [81]. For

example, frequency-resolved measures of information transfer and active information storage

can test specific hypothesis on LFP-frequency signatures of error signals [18, 43] or coding of

prior information [13]. Similarly, maintenance of relevant information for later reactivation,

in working-memory and prefrontal cortex has been associated with specific frequency signa-

ture [81]. Also here our spectrally resolved algorithms can, thus, provide additional insights on

the relation between brain rhythms and information-processing.

Information modification is the third important component next to information transfer

and storage. Thus it is an obvious question to ask, if we can also equip an analysis of informa-

tion modification with spectral resolution. To see why this exceedingly difficult it is good to

recall that information modification has been linked to an information theoretic quantity

called synergy, resulting from a partial information decomposition ([77]). Thus, ideally one

would like to isolate this synergistic component of the joint mutual information between two

(or, potentially, more) source processes and a target process, then apply surrogate data creation

by spectral processing as demonstrated for mTE [10] and AIS (here), and show how the syn-

ergy is distributed across the various combinations of spectral components. At present we

deem the construction of such a spectrally resolved measure of information modification diffi-

cult, and especially difficult to interpret, as the presence of multiple bands in the sources and

in the target already leads to a problem related to partial information decomposition [10].

Thus, interpreting the results of such an analysis would mean to keep track of multiple infor-

mation components of to nested partial information decompositions. Combining this insight

with the current state of the field of partial information decomposition, where multiple, differ-

ent concepts of redundancy, synergy, and unique information are still in the processes of

being defined based on their applicability to various task settings and questions (operational

interpretations) makes the endeavour of defining a spectral measure of information decompo-

sition seem premature at the moment.

Conclusion

In this study we have presented an algorithm that provides a spectral representation of the

computational dynamics of neural processes in terms of the active information storage. Using

this algorithm for the analysis of changes in neural information processing under anesthesia,

we showed that this analysis can add valuable additional insights that are not provided by the

analysis of changes in spectral power.

Our method is fully available and integrated in the open source package IDTxl: https://

github.com/pwollstadt/IDTxl/tree/feature_spectral_ais, along with a demo script.
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