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Abstract
The aging process is affected by various stressors. An increase in oxidative stress is 
related to the impairment of physiological functions and enhancement of glycative 
stress. Food-derived bioactive peptides have various physiological functions, includ-
ing antioxidant activities. Dipeptides comprising Leu and Lys (LK and KL, respectively) 
have been isolated from foods; however, their physiological properties remain un-
clear. In this study, we investigated the antioxidant/antiglycation activity of dipeptides 
and their antiaging effects using Caenorhabditis elegans (C. elegans). Both dipeptides 
showed antioxidant activities against several reactive oxygen species (ROS) in vitro. 
In particular, the scavenging activity of LK against superoxide radicals was higher than 
KL did. Moreover, dipeptides suppressed advanced glycation end products (AGEs) 
formation in the BSA–glucose model. In the lifespan assays using wild-type C. elegans, 
both LK and KL significantly prolonged the mean lifespan by 20.9% and 11.7%, re-
spectively. In addition, LK decreased intracellular ROS and superoxide radical levels 
in C. elegans. Blue autofluorescence, an indicator of glycation in C. elegans with age, 
was also suppressed by LK. These results suggest that dipeptides, notably LK, show 
an antiaging effect by suppressing oxidative and glycative stress. Our findings suggest 
that such dipeptides can be used as a novel functional food ingredient. Food-derived 
dipeptide Leu–Lys (LK) and Lys–Leu (KL) exert antioxidant and antiglycation activity 
in vitro. Treatment with LK prolonged the mean lifespan and maximum lifespan of 
C. elegans more than that of KL. Intracellular ROS and blue autofluorescence levels 
(indicator of aging) were suppressed by LK.
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1  |  INTRODUC TION

Aging is a continuous process involving natural changes that occur in 
most organisms. Changes in tissue and organ functions occur during 
aging and increase the risk of diseases (e.g., cancer, hypertension, 
and heart disease). As the incidence of such diseases increases with 
age (Jaul & Barron, 2017; Niccoli & Partridge, 2012), they are also 
known as age-related diseases. Although it is impossible to stop 
aging, there have been many previous studies on its regulation. The 
free radical theory, proposed by Herman in 1956, is the most popular 
mechanism for aging (Harman,  1956; Ziada et al.,  2020). Reactive 
oxygen species (ROS), such as superoxide (O2

−), hydrogen peroxide 
(H2O2), and hydroxyl radicals (·OH), are constantly produced from 
oxygen and scavenged by the antioxidant system in vivo. However, 
excessive ROS production overwhelms the antioxidant system, 
causing damage to biomolecules including proteins, lipids, and nu-
cleic acids. This imbalance between ROS production and antioxidant 
defense is known as oxidative stress (Pizzino et al., 2017). Moreover, 
an increase in oxidative stress can affect other biological reactions.

Glycation, also known as the Maillard reaction in vivo, is a 
nonenzymatic browning reaction between reducing sugars (e.g., 
glucose) and amino compounds (e.g., proteins). This reaction gen-
erates numerous chemicals called advanced glycation end products 
(AGEs), which can interact with ROS production (Tan et al.,  2007; 
Volpe et al.,  2018). Although AGEs are essential for the develop-
ment of color and flavor in processed foods (Arihara et al., 2017; Fu 
et al.,  2020; Losso,  2016), they are frequently used as markers of 
aging and disease in vivo (Inagi, 2014). Glycative stress refers to a 
state of high AGEs accumulation in vivo. There is a close relationship 
between oxidative and glycative stress; therefore, their regulation 
plays a crucial role in aging.

Caenorhabditis elegans is a nonparasitic nematode used as 
a leading model organism for aging research. The genetic ho-
mology between C.  elegans and humans is 60%–80% (Shaye & 
Greenwald, 2011), which has important significance in applications 
for human health. Moreover, research using C. elegans provides in-
sights into several indicators of aging, including lifespan, movement 
behavior, and nervous system, which can aid in health-related re-
search (Tissenbaum, 2015; Zhang, Li, et al., 2020). In particular, the 
short lifespan of C. elegans (approximately 20 days) is a great advan-
tage in aging research. In the assessment of food safety or func-
tionality, it is urgent to reduce existing animal experiments such as 
mice and rats (de Boer et al., 2020). Furthermore, the supplementa-
tion of antioxidants to C. elegans prolongs its lifespan and decreases 
intracellular ROS levels (Kim et al.,  2017; Zhang, Li, et al.,  2020; 
Zhang, Zheng, et al., 2020). We also used this model system to elu-
cidate the antiaging effect of Maillard reaction products (Yokoyama 
et al., 2021). A recent study reported that blue autofluorescence in 
C. elegans is derived from AGEs and increases with aging (Komura 
et al., 2021). Previous reports indicate that the aging process of C. el-
egans, as in humans, is also influenced by age-related stress, and their 
findings can be applied to evaluate the effects of functional compo-
nents in foods.

Bioactive peptides derived from food proteins exhibit various 
physiological properties, such as antioxidant, antihypertensive, and 
antimicrobial activities. In particular, a large number of studies have 
focused on the antioxidant activity of peptides (Arihara et al., 2021; 
Gallego et al., 2019; Stadnik & Keska, 2015). The antiaging effects 
of bioactive peptides (10–20 amino acids) derived from food pro-
teins have also been investigated in C. elegans (Yu et al., 2020; Zhou 
et al., 2018). Recently, Ma et al. (2022) showed that antioxidant pep-
tides (<2 kDa) from dogfish skin significantly extended the lifespan 
of C.  elegans. However, few studies have examined the effects of 
small bioactive peptides on the lifespan of C. elegans. Di/tri-peptides 
are absorbed faster than amino acids and proteins (Collin-Vidal 
et al., 1994; Hara et al., 1984), suggesting that their effects are ex-
erted rapidly. Furthermore, small peptides can be utilized as food 
ingredients because their low-cost production methods have been 
developed (Shomura et al., 2012; Yokozeki & Hara, 2005). These ad-
vantages of small peptides would contribute to develop functional 
foods and food ingredients.

The specific physiological activities of peptides are based on 
their unique amino acid composition and sequence. Leu is a hy-
drophobic amino acid and is frequently contained in the peptide 
sequence showing antioxidant activity. We previously found that 
Leu–Lys (LK) and Lys–Leu (KL) exhibited marked antioxidant activ-
ity in various synthesized dipeptides comprising Leu (unpublished 
data). These dipeptides are common sequences in various food pro-
teins. For example, myosin, which is the major protein in skeletal 
muscle (meat), has three LK and two KL sequences in a part of its 
heavy chain (300 amino acids). LK has been detected in the tradi-
tional Chinese Jinhua ham (approx. 118 μg/g; Zhu et al., 2018). KL 
has also been isolated from Japanese fermented soybean (approx. 
50 μg/g; Sato et al., 2018). Although these dipeptides are ingested 
from foods, their biological properties and effects on the lifespan of 
organisms have not been clarified well. This study aimed to evaluate 
the antioxidant and antiglycation activities of LK and KL in vitro. In 
addition, we performed a lifespan assay using C. elegans treated with 
dipeptides.

2  |  MATERIAL S AND METHODS

2.1  |  Chemicals

2′-Deoxy-5-fluorouridine (FUdR), 30% hydrogen peroxide (H2O2), 
4% paraformaldehyde (PFA) phosphate buffer solution, L-ascorbic 
acid, bovine serum albumin (BSA), ethylenediaminetetraacetic acid 
disodium (EDTA-2Na), FeCl3･2H2O, glycerin, hypoxanthine, sodium 
azide, sodium dodecyl sulfate (SDS), and sodium hypochlorite were 
purchased from FUJIFILM Wako Pure Chemical Co. Carnosine 
(Car) and xanthine oxidase were purchased from Sigma-Aldrich. 
Aminoguanidine hydrochloride, D-glucose, monopotassium phos-
phate (KH2PO4), NaCl, and NaOH were purchased from Kanto 
Chemical Co. 2-methyl-6-p-methoxyphenylethynyl-imidazopyrazi
none (MPEC) and β-mercaptoethanol were purchased from ATTO 

 20487177, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fsn3.3256 by D

eutsche Z
entral B

ibliothek Fuer M
edizin, M

edizinische A
bt, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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Co. and Nacalai Tesque Inc., respectively. 2′,7′-dichlorofluorescein 
diacetate (H2DCF-DA; Invitrogen) and dihydroethidium (DHE; 
FUJIFILM Wako Pure Chemical Co.) were used for ROS visualization. 
Synthesized Leu–Lys (LK) and Lys–Leu (KL) were purchased from 
Scrum Inc.

2.2  |  Evaluation of the antioxidant activity of 
dipeptides in vitro

2.2.1  |  DPPH radical-scavenging activity

The DPPH radical-scavenging activity of the dipeptides was deter-
mined using a previously described method (Ohata et al., 2016) with 
a slight modification. Briefly, the dipeptides and Car (10 mg/mL) were 
reacted with DPPH (100 mM) at room temperature (20°C–25°C) for 
20 min. Ethanol and Car were used as the control and positive con-
trol, respectively. After 20 min, the absorbance of the mixture was 
measured at 520 nm using a Ultraviolet mini-1240 spectrophotom-
eter (Shimadzu). The antioxidant activity of the dipeptides against 
DPPH radicals was calculated using the following formula:

DPPH radical scavenging activity (%)  =  (absorbance of con-
trol − absorbance of peptides/absorbance of control) × 100.

2.2.2  |  Superoxide radical-scavenging activity

Superoxide radicals are generated via the hypoxanthine–xanthine 
oxidase system (Nishikimi,  1975). The scavenging activity against 
superoxide radicals was measured in accordance with the method 
proposed in our previous report (Yokoyama et al., 2021). MPEC was 
reacted with superoxide radicals, and chemiluminescence was meas-
ured using Luminescencer-PSN Ab-2200 (ATTO Co.). Briefly, 10 μL 
of dipeptides or Car (10 mg/mL) and 50 μL of 0.72 mM hypoxanthine 
(0.54 g KH2PO4, 0.8 g EDTA-2Na, 0.08 g NaOH, and 0.002 g hypox-
anthine) were mixed with 60 μL of xanthine oxidase (0.005 U/mL) 
and 180 μL of MPEC (300 μM); distilled water (DW) was used as a 
control. Chemiluminescence of the mixture was measured for 20 s, 
and the half-maximal effective concentration (EC50) value for each 
dipeptide solution was determined. The inhibition rate was calcu-
lated using the following formula:

Antioxidant activity against superoxide radicals (%) = {(lumines-
cence generated by control − luminescence generated by sample)/
luminescence generated by control} × 100.

2.2.3  |  OH radical-scavenging activity

Antioxidant activity against OH radicals was evaluated based on the 
decrease in the protein degradation rate. OH radicals were prepared 
immediately before performing the protein degradation assay, as 
previously reported (Ohata et al., 2016). Briefly, 1 mL of 0.13 M H2O2 
was added to 100 μL each of 0.1 M EDTA-2Na, 100 μL FeCl3･2H2O, 

and 0.1 M ascorbic acid. BSA dissolved in saline (0.57 mg/mL) was 
used as the target protein. Twenty-five microliters of dipeptides or 
Car solution (10 mg/mL) was mixed with 175 μL of BSA and incubated 
for 30 min. OH radicals were reacted with BSA at 37°C for 60 min. 
The reacted mixture (50 μL) was then added to an equal volume of 
a sample buffer (1 mL of β-mercaptoethanol, 5 mL of 0.25 M Tris–
HCl, and 0.4 g of SDS). The total volume was then made up to 10 mL 
with DW, followed by the addition of 10 μL of 70% glycerin. These 
samples were loaded on a 12.5% gradient SDS-PAGE gel and elec-
trophoresed at 40 mA for 90 min. The degradation inhibition rates of 
each peptide solution were calculated using the following formula:

Antioxidant activity against OH radicals (%) = {concentration of 
BSA in samples (mg/mL)/0.57 (mg/mL)} × 100.

2.3  |  Antiglycation activity in the BSA–
glucose model

The antiglycation activity of the dipeptides was evaluated in accord-
ance with a previously described method with slight modifications 
(Abdelkader et al., 2016). In this study, the specific fluorescence of 
the AGEs in the BSA–glucose model was leveraged. Briefly, D-glucose 
(0.6  M) and BSA (30 mg/mL) were dissolved in 0.15 M phosphate 
buffer (pH  7.2) containing 0.02% sodium azide as an antibacterial 
agent. Equal volumes of glucose and BSA were mixed with DW, 
peptide solutions, or Car (final concentration, 1 mg/mL). Samples in 
which DW was added instead of BSA were also prepared to exclude 
AGEs formation between peptides and glucose. Aminoguanidine hy-
drochloride (final concentration, 1 mg/mL) was used as the positive 
control. All mixtures were incubated for 7 days at 40°C. The mix-
ture (150 μL) was transferred to a black 96-well plate (AS ONE Co.). 
Fluorescence was measured using an Infinite 200 PRO plate reader 
(Tecan, Männedorf, Switzerland). The excitation (Ex) and emission 
(Em) wavelengths were 370 nm and 440 nm, respectively. The results 
were expressed as percentage changes in fluorescence intensity on 
days 1, 3, 5, and 7 (where incubation equals day 0). The percentage 
inhibition of AGEs was calculated using the following formula:

AGEs inhibition (%)  =  {Fcontrol − (Fsample, +BSA − Fsample, −BSA)/​
Fcontrol} × 100.

2.4  |  C. elegans culture conditions and 
synchronization

C. elegans N2 Bristol (wild-type) was maintained at 20°C in nema-
tode growth medium (NGM) plates seeded with Escherichia coli 
OP50 (Brenner, 1974). Age-synchronized nematodes were obtained 
by bleaching gravid adults as described previously (Yokoyama 
et al.,  2021). To obtain synchronized eggs, gravid adults on NGM 
plates were rinsed with S-buffer (0.1 M NaCl) and collected in 15 mL 
tubes. The volume of the solution was adjusted to 4.5 mL using an 
S-buffer, after which 500 μL of NaClO (Haiter; KAO) and 100 μL 
of 10  N NaOH solution were added. The solution containing the 
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nematodes was mixed until the nematode bodies dissolved, and 
then centrifuged at 4°C and 3000 rpm for 1 min. The precipitate was 
washed three times with S-buffer, and the eggs were suspended in 
3.5 mL of an S-buffer. After 24 h, hatched larvae were collected and 
used for all C. elegans experiments.

2.5  |  Lifespan assay

To investigate the effect of peptides on lifespan, assays were per-
formed in C.  elegans, following our previous report (Yokoyama 
et al.,  2021). Age-synchronized L1 stage larvae (approximately 20 
worms) were seeded in a liquid medium containing heat-killed E. coli 
OP50. Culture conditions were maintained at 20°C with continuous 
shaking at 100 rpm for 3 days, and either DW, LK, KL, or Car solution 
was added (final concentration, 10  mg/mL). Offspring generation 
was prevented by adding 35 μL of FUdR (final concentration 0.5 mg/
mL). The day the test solution was added to the medium was desig-
nated as day 0, and worms were cultured further with continuous 
shaking at 100 rpm. The survival rate was recorded every 3 days until 
all nematodes had died.

2.6  |  Quantitation of ROS in C. elegans

The effect of LK on ROS levels was investigated according to pre-
viously described methods with minor modifications (Yokoyama 
et al.,  2021). Intracellular ROS levels were measured using the 
H2DCF-DA reagent. Age-synchronized L1 stage larvae were seeded 
in a medium containing E. coli OP50 and cultured at 20°C for 4 days 
with continuous shaking at 100 rpm. Adult nematodes were cultured 
with LK (final concentration, 10 mg/mL) and FUdR for 4 days with 
continuous shaking at 100 rpm and were washed three times with 
300 μL S-buffer. Subsequently, 500 μL of 50 μM H2DCF-DA was 
added, and the mixture was incubated for 60 min at room tempera-
ture (20°C–25°C) with continuous shaking at 100 rpm. After incuba-
tion, the nematodes were fixed in 4% PFA for 10 min and mounted 
onto 2% agarose pads to obtain a clear image. A fluorescence mi-
croscope (BZ-X800; Keyence) was used to observe C. elegans. The 
fluorescence intensity (Ex: 450–490 nm; Em: 500–550 nm) of over 
20 worms in each group was analyzed using the ImageJ software 
(National Institutes of Health).

Dihydroethidium was used to visualize superoxide radicals in 
C. elegans. Age-synchronized L1 stage larvae were seeded in a me-
dium containing E. coli OP50 and cultured at 20°C for 4 days with 
continuous shaking at 100 rpm. After 3 days, 35 μL of LK (final con-
centration, 10 mg/mL) and FUdR were added, and the nematodes 
were cultured for 4 days with continuous shaking at 100 rpm. DHE 
was dissolved in S-buffer to prepare a stock solution (10 mM), which 
was further diluted in S-buffer to obtain a 5-μM working solution. 
The nematodes were washed thrice with 300 μL of S-buffer and in-
cubated with 500 μL of DHE solution at 20°C for 30 min with con-
tinuous shaking at 100 rpm. Subsequently, nematodes were fixed in 

4% PFA for 10 min and mounted onto 2% agarose pads. The fluo-
rescence intensity (Ex: 540–580 nm; Em: 595–670 nm) of over 20 
worms in each group was analyzed using the ImageJ software.

2.7  |  Changes in blue autofluorescence with aging

Recently, Komura et al.  (2021) reported that an increase in spe-
cific autofluorescence is related to AGE formation in C.  elegans. 
Age-synchronized L1 stage larvae (approximately 20 worms) were 
seeded in a liquid medium containing heat-killed E. coli OP50. After 
4 days, 35 μL of LK solution (final concentration, 10  mg/mL) and 
FUdR were added to the medium. The day on which LK was added 
was defined as day 0. Worms were collected on days 3, 10, and 17 
and mounted onto 2% agarose pads. The fluorescence intensity (Ex: 
340–380 nm; Em: 430–485 nm) of over 20 worms in each group was 
analyzed using the ImageJ software.

2.8  |  Evaluation of oxidative stress resistance

Age-synchronized L1 stage larvae were seeded in a medium con-
taining heat-killed E. coli OP50 and cultured at 20°C with continu-
ous shaking at 100 rpm for 3 days. Thirty-five microliters of peptides 
(final concentration, 10 mg/mL) and FUdR were added, and culturing 
was continued for 4 days. Each group contained at least 20 worms. 
Subsequently, adult worms were washed three times with 300 μL 
of S-buffer and treated with 25 mM paraquat (Kanto Chemical Co.). 
Dead worms were counted and recorded every 2 days.

2.9  |  Statistical analysis

All experiments were independently repeated three times. Data 
are expressed as the mean ± standard error of the mean (SEM). 
Statistical significance for lifespan differences was analyzed using 
the log-rank test. We also conducted one- or two-way repeated 
ANOVA followed by the Tukey–Kramer multiple comparison test for 
the measurements of antioxidant and antiglycation activity. Other 
parameters were analyzed using Student's t-test. All statistical 
analyses were conducted using Excel-Toukei ver.7.0 (Social Survey 
Research Information Co., Ltd.).

3  |  RESULTS

3.1  |  Antioxidant activity of dipeptides

To determine the antioxidant activity of LK and KL, DPPH, superoxide, 
and OH/ClO radical-scavenging assays were performed. Both LK and 
KL exhibited DPPH radical-scavenging activity (LK: 22.04% ± 1.96%, 
KL: 22.31% ± 2.18%, Car: 27.04% ± 2.39% Figure 1a). In contrast, a 
significant difference in superoxide radical-scavenging activity was 
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observed between LK and KL (Figure 1b, p < .05). LK showed higher 
scavenging activity (20.49% ± 0.95%) than KL (4.06% ± 0.49%) and 
the same levels as Car (25.22% ± 3.51%). Moreover, dilutions of LK 
and KL were used to calculate the EC50 values, which were 52.86 mg/
mL, >100 mg/mL, and 44.26 mg/mL for LK, KL, and Car, respectively 
(Table 1). The results of the OH radical-scavenging activity analysis 
are shown in Figure  1c. Although there was no significant differ-
ence between the OH radical-scavenging activities, LK also showed 
higher OH radical-scavenging activity (57.47% ± 8.32%) than KL 
(30.10% ± 15.13%). Moreover, the LK scavenging activity against OH 
radical was also the same as Car (60.04% ± 11.55%).

3.2  |  Antiglycation activity of dipeptides

The specific fluorescence intensity of the AGEs increased with incu-
bation time. The addition of dipeptides to the BSA–glucose model sig-
nificantly inhibited the increase in fluorescence intensity compared 
with that in the control group (Figure 2). Fluorescence intensity in 
the control group increased according to incubation time. Significant 
differences were not observed between control and peptides 

groups at day 1 (DW: 132.16% ± 0.59%, AG: 113.62% ± 4.92%, LK: 
134.72% ± 5.61%, KL: 136.50% ± 10.27%, Car: 121.39% ± 5.71%) and 
3 (DW: 185.31% ± 3.95%, AG: 133.48% ± 3.27%, LK: 155.93% ± 7.39%, 

F I G U R E  1  Antioxidant activity of the 
dipeptides. (a) DPPH radical-scavenging 
activity, (b) superoxide radical-scavenging 
activity, and (c) hydroxyl radical-
scavenging activity. Data are expressed as 
the mean of three independent analyses 
and the SEM. Significant differences 
were determined by one-way repeated 
ANOVA followed by the Tukey–Kramer 
multiple comparison test (a-b, p < .05). Car, 
carnosine; KL, Lys−Leu; LK, Leu−Lys.
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TA B L E  1  Effective concentration (EC50) of dipeptides against 
superoxide radical.

EC50 (mg/mL)

LK 52.86

KL >100

Car 44.26

Abbreviations: Car, carnosine; KL, Lys−Leu; LK: Leu−Lys.

F I G U R E  2  Antiglycation activity of dipeptides in BSA−glucose 
model. The data are expressed as the mean of three independent 
analyses and the SEM. Statistical analyses of the fluorescence 
intensity values were performed by using two-way repeated 
ANOVA followed by Tukey–Kramer multiple comparison test. 
Different letters indicate significant differences on Day 7 (p < .05). 
AG, aminoguanidine hydrochloride; Car, carnosine; DW, distilled 
water; KL, Lys−Leu; LK, Leu−Lys.
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KL: 151.16% ± 14.67%, Car: 150.05% ± 18.86%). However, the fluo-
rescence intensity of peptides groups was suppressed at day 5 (DW: 
266.46% ± 12.70%, AG: 164.92% ± 4.52%, LK: 197.28% ± 20.66%, 
KL: 207.24% ± 23.93%, Car: 193.87% ± 29.88%). On day 7, KL 
showed higher inhibitory activity than LK, which was equivalent to 
that of the positive control on day 7 (DW: 388.04% ± 24.40%, AG: 
224.96% ± 12.24%, LK: 312.14% ± 23.79%, KL: 255.43% ± 23.70%, 
Car: 282.49% ± 38.98%, p < .05).

3.3  |  Effects of dipeptides on the lifespan of 
C. elegans

Based on the in vitro results, we measured the lifespan of C.  el-
egans treated with the dipeptides. Both LK and KL significantly pro-
longed the lifespan of C. elegans, and the duration of the treatment 
with LK was longer than that of the treatment with KL (Figure 3). 
As shown in Table 2, the mean lifespan (control: 20.52 ± 0.72 days, 
LK: 24.81 ± 0.61 days, KL: 22.92 ± 0.68 days, Car: 18.16 ± 0.71 days) 
and the maximum lifespan (control: 26.33 ± 1.67 days, LK: 

34.00 ± 1.73 days, KL: 31.00 ± 1.73 days, Car: 26.20 ± 1.20 days) were 
affected by treatment with the dipeptides. However, the treatment 
with Car significantly shortened the mean lifespan of C.  elegans. 
Compared with the control group, the mean lifespan of C. elegans 
was significantly prolonged by 20.91% (p < .01) and 11.70% (p < .05) 
after treatment with LK and KL, respectively. A significant differ-
ence was also observed between dipeptides (p < .05). In addition, the 
assay was performed by adding LK solution at final concentrations 
of 1 and 10 mg/mL (Figure 4 & Table 3). LK of 10 mg/mL showed a 
strong life extension effect compared with 1 mg/mL LK (p < .05). The 
results of this test showed that the degree of lifespan extension by 
LK increased in a dose-dependent manner.

3.4  |  Effect of LK on ROS and glycation levels in 
C. elegans

We evaluated the effect of LK treatment on oxidative and glycative 
stress in C.  elegans. H2DCF-DA generates fluorescent substances 
through oxidation by various ROS, such as H2O2, OH radicals, and 
peroxynitrite radicals (Kalyanaraman et al.,  2012). As shown in 
Figure  5a, compared with those in the control group, intracellu-
lar ROS levels were significantly decreased by 40% in nematodes 
treated with LK (Figure 5b, p < .01). Subsequently, DHE staining was 
performed to determine the effect of LK on the superoxide radical 
levels in C. elegans. LK treatment also significantly decreased by 20% 
(Figure 5c,d, p < .05). These results suggest that LK acts as an anti-
oxidant, both in vitro and in vivo. Next, we investigated whether LK 
exerted antiglycation activity in vivo. The intensity of blue autofluo-
rescence increased with aging in the control group. In the LK treat-
ment group, the blue autofluorescence intensity was suppressed on 
day 17 (p < .05, Figure 6a,b). This result suggests that the antiglyca-
tion activity of LK could also be exerted in vivo.

3.5  |  Effect of LK on the lifespan of C. elegans 
under oxidative stress

Changes in signaling pathways alter the expression of genes associ-
ated with antioxidant potential and stress response, resulting in the 
longevity of C. elegans. Since the exposure of C. elegans to paraquat 
induces an increase in ROS levels, it is frequently used to investi-
gate oxidative stress tolerance (Yokoyama et al.,  2021; Zhang, Li, 
et al.,  2020; Zhang, Zheng, et al.,  2020). Nematodes treated with 
LK were exposed to paraquat; however, the effects of LK on the 
mean lifespan were not observed (Control: 4.32 ± 0.30 days, 1 mg/
mL: 4.20 ± 0.07 days, 10 mg/mL: 4.25 ± 0.19 days; Figure 7 &Table 4).

4  |  DISCUSSION

Food-derived bioactive peptides exhibiting antioxidant, antihyper-
tensive, and immunomodulating effect have been reported. Such 

F I G U R E  3  Effect of dipeptides on the lifespan of C. elegans. 
The changes in survival rate are expressed as the mean of three 
independent analyses. Statistical analysis of the differences 
between the control groups was performed using the log-rank test. 
*p < .05, **p < .01. Car, carnosine; DW, distilled water; KL, Lys−Leu; 
LK, Leu−Lys.
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TA B L E  2  Effect of dipeptides on the lifespan in C. elegans.

Group
Total 
worms

Mean lifespan 
(day)

% of 
control

Maximum 
lifespan (day)

Control 101 20.52±0.72a – 26.33±1.67a

LK 127 24.81±0.61b +20.91 34.00±1.73b

KL 109 22.92±0.68c +11.70 31.00±1.73c

Car 115 18.16±0.71d −11.14 26.20±1.20a

Note: Different letters indicate significant differences (p < .05).
Abbreviations: Car, carnosine; KL, Lys−Leu; LK: Leu−Lys.
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bioactive peptides are also utilized as a functional food ingredient. 
Carnosine and anserine, typical antioxidant dipeptides in meats and 
fish, also exert antioxidant activity against OH radicals. However, 
their activity against DPPH radicals is extremely low (Abdelkader 

et al., 2016; Terashima et al., 2007). Other dipeptides derived from 
foods also exhibit scavenging activity against superoxide radical but 
not DPPH radical (Ozawa et al., 2022). Moreover, Yanai et al. (2008) 
reported the existence of different mechanisms underlying the 
radical-scavenging properties of antioxidants. Our results suggested 
that the antioxidant activities of LK and KL are more effective 
against ROS such as superoxide radicals than against DPPH radicals. 
The reason for such results includes the sequence of peptides. For 
example, hydrophobic amino acids (e.g., Ala, Val, and Leu) at N ter-
minus relate to an increase in antioxidant activity (Sabeena Farvin 
et al.,  2010). LK also contains Leu at the N terminus; therefore, it 
seems to possess a higher antioxidant activity than KL.

Dipeptides showed antiglycation activities by suppressing AGEs 
fluorescence intensity in the BSA−glucose model. Aminoguanidine 
hydrochloride, used as a positive control, exhibits antiglycation ac-
tivity by trapping carbonyl compounds (Abbas et al.,  2016; Nagai 
et al., 2012). Among dipeptides, Asn-Trp derived from yam hydro-
lysis and carnosine showed antiglycation activity in vitro (Freund 
et al., 2018; Han et al., 2014). Such antiglycation substrates inhibit 
AGEs formation by reacting with carbonyl compounds, which would 
be related to the Maillard reaction degree in vitro. Therefore, we 
confirmed the reactivity of each dipeptide with glucose and found 
that the reactivity of KL was three times higher than that of LK 
(Figure S1). Similarly, it has also been shown that the reactivity be-
tween KL, among all dipeptides containing Lys at the N terminus, and 

F I G U R E  4  Dose-dependent effect of LK treatment on the 
lifespan of C. elegans. The changes in survival rate are expressed as 
the mean of three independent analyses. Statistical analysis of the 
differences between the control groups was performed using the 
log-rank test. **p < .01. DW, distilled water; LK, Leu−Lys.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

)
%( etar lavivruS

Days

DW

1

10

**

**

Group Total worms Mean lifespan (day) % of control
Maximum 
lifespan (day)

Control 119 22.31±0.72a – 28.00±0.11a

LK
(mg/mL)

1 115 23.03±0.61a +3.2 29.25±0.74b

10 120 26.08±0.68b +16.9 33.20±0.73c

Note: Different letters indicate significant differences (p < .05).
Abbreviation: LK, Leu-Lys.

TA B L E  3  Effect of LK concentration on 
the lifespan in C. elegans.

F I G U R E  5  Effects of LK treatment 
on the intracellular ROS and superoxide 
radical levels. (a) Images of H2DFCDA 
in C. elegans; (b) Quantification of the 
fluorescence to determine intracellular 
ROS levels. (c) Images of DHE staining 
in C. elegans; (d) Quantification of the 
fluorescence to determine superoxide 
radical levels. Scale bar: 200 µm. The 
data are expressed as the mean of three 
independent analyses and the SEM. 
Statistical analysis of the differences 
between the control groups was 
performed using Student's t-test. *p < .05, 
**p < .01. LK, Leu−Lys.
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glucose is the highest (Liang et al., 2016). Depending on model con-
ditions, Lys is one of the more reactive amino acids in the Maillard 
reaction. Our results, along with those of a previous report, suggest 
that the antiglycation activity is influenced by peptide sequence.

Between the two dipeptides used in this study, one showed high 
antioxidant activity (LK), and the other showed superior antiglyca-
tion activity (KL). However, the effect on the lifespan was greater 
in the LK group. Therefore, it was assumed that the effects of the 
antioxidant activity of the dipeptides on the longevity of C. elegans 
were more prominent than their antiglycation activities. According 
to the result of lifespan assay, we used only LK for further experi-
ments. However, there is a possibility that the antioxidant activity 
of KL would be increased by the Maillard reaction in vitro. Maillard 
reaction products exhibit strong antioxidant activity and increase 
the lifespan of C.  elegans (Papaevgeniou et al.,  2019; Yokoyama 
et al.,  2021). Since KL has high reactivity in the Maillard reaction, 
its Maillard reaction products may affect the longevity in C. elegans. 
Carnosine, which exhibited antioxidant and antiglycation activity, 
unexpectedly shortened the mean lifespan of C.  elegans. Kingsley 
et al.  (2021) also reported that carnosine treatment under normal 
conditions did not affect the mean lifespan of C. elegans, but rather 
shortened at high concentration. Unlike LK and KL, carnosine may 
be harmful to C. elegans at a concentration of 10 mg/mL.

In C.  elegans, blue autofluorescence has been measured as an 
indicator of age-related pigment (lipofuscin) (Wang et al.,  2018; 
Zhao et al., 2021; Zhou et al., 2018). Moreover, it has shown that 
this fluorescence relates to AGEs accumulation, and is reduced by 
antioxidants (Komura et al., 2021). In our results, LK also decreased 
intracellular ROS levels and blue autofluorescence intensity in C. ele-
gans. Thus, reduction in oxidants by antioxidants such as LK lead to a 
decrease in blue autofluorescence. Natural foods, such as commonly 
consumed fruits, also decrease ROS and autofluorescence levels, in-
ducing longevity in C. elegans (Carlsen et al., 2010; Navarro-Hortal 
et al., 2022; Vayndorf et al., 2013). Therefore, the ingestion of LK 
and KL may have positive benefits in other organisms, such as hu-
mans. Although large doses are required when taken from food, this 
can be compensated for by using it as a food additive. Furthermore, 
no toxicity was observed with 10 mg/mL of peptides in our study. 
However, it should not be determined whether 10  mg/mL is the 
effective concentration in humans; therefore, further studies are 
needed.

A dipeptide Tyr-Ala derived from maize protein exerts antioxidant 
activity and prolongs the lifespan in C. elegans (Zhang et al., 2016). In 
this previous study, the life extension effect did not change regard-
less of E. coli condition (live/killed). We also examined the effect of 
live E. coli on the lifespan extension of C. elegans. Although the lifes-
pan was only prolonged by LK treatment, its effect was reduced by 
half compared with that of heat-killed E. coli (Figure S2 & Table S1). 

F I G U R E  6  Measurement of blue autofluorescence intensity 
with age. (a) Images of blue autofluorescence in C. elegans; (b) 
Quantification of fluorescence intensity. Scale bar: 200 µm. The 
data are expressed as the mean of three independent analyses 
and the SEM. Statistical analysis of differences between the 
control groups was performed by using two-way repeated ANOVA 
followed by Student's t-test. *p < .05, **p < .01. LK, Leu-Lys.
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F I G U R E  7  Effect of LK treatment on the lifespan of C. elegans 
under oxidative stress. The changes in survival rate are expressed 
as the mean of three independent analyses. DW, distilled water; LK, 
Leu−Lys.

0

20

40

60

80

100

0 2 4 6 8 10

)
%( etar lavivruS

Days

DW

1

10

TA B L E  4  Effect of LK on the lifespan under oxidative stress.

Group
Total 
worms

Mean lifespan 
(day)

Maximum 
lifespan (day)

Oxidative stress (25 mM paraquat)

Control 90 4.32±0.30a 7.33±0.77a

LK
(mg/mL)

1 80 4.20±0.07a 7.00±0.19a

10 88 4.25±0.19a 7.33±0.45a

Abbreviation: LK, Leu−Lys.
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Edwards et al. (2015) also used heat-killed E. coli to avoid catabolism 
in a lifespan assay with amino acids. LK may be decomposed by live 
E. coli and its life extension effect changes through catabolism. This 
change indicates that the functional properties of LK might affect 
lifespan extension.

Several signaling pathways influence the longevity of C.  ele-
gans (Lapierre & Hansen,  2008). The insulin/insulin-like growth 
factor-1 (Ins/IGF-1) signaling pathway, which is conserved in flies, 
mice, and humans, modulates various cellular processes, such 
as metabolism and stress response. The target of the rapamycin 
(TOR) pathway also regulates the metabolic response and degree 
of aging via a nutrient sensor. Blueberry extracts contribute to 
the longevity of C.  elegans through Ins/IGF-1 signaling pathway 
(Wang et al.,  2018). Dipeptide Tyr-Ala also enhances oxidative 
stress tolerance via the Ins/IGF-1 signaling pathway in C. elegans 
(Zhang et al., 2016). However, LK did not prolong the lifespan in 
C. elegans treated with paraquat in this study. Signal changes in-
duce the upregulation of genes related to stress defense and then 
obtain resistance to various stress. Dose-dependent changes in 
mRNA expression through signaling pathways have also been re-
ported (Wang et al., 2018; Zhang, Li, et al., 2020; Zhang, Zheng, 
et al., 2020). We assume that this may be caused by the difference 
in the functional potentials of samples. In previous study, 1 mM (≒ 
0.27 mg/mL) of Tyr-Ala significantly prolonged the lifespan under 
oxidative stress, but LK did not even 10 mg/mL. Since peptide se-
quence affects its functionality including antioxidant activity, it 
may also influence the change in signaling pathway. To elucidate 
the detailed relationship between LK and signaling pathway, the 
comparison with various peptides and the assay using mutant 
worm are needed. Our results, along with those of a previous 
study, suggest that 10 mg/mL of LK would contribute to longevity 
without changes in the signaling pathways.

5  |  CONCLUSION

Aging is observed in all animal species. During aging process, 
stresses related to oxidation and glycation accumulate naturally. 
Previous studies have reported that food-derived bioactive peptides 
exert various physiological effects, such as antioxidant effects. In 
this study, we found that the synthesized dipeptide LK and KL ex-
hibited antioxidant and antiglycation activity. It was assumed that 
their activities are affected by peptide sequence. Both dipeptides 
significantly prolonged the lifespan of C.  elegans, but LK exerted 
more effect than KL. Moreover, treatment of C. elegans with LK sup-
pressed ROS and blue autofluorescence. Thus, LK may affect lon-
gevity by decreasing age-related stress. These findings suggest that 
dipeptides can be utilized as a functional food ingredient for health 
promotion.
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