Fachrepositorium Lebenswissenschaften (FRL)

Repository for Life Sciences

Recognition of Biodiversity-related Named Entities by Fine-tuning

General-domain BERT-based Language Models

Tabanao, Geilah | Pagdanganan, Andrew Miguel | Batista-Navarro, Riza | Gabud,

Roselyn

Version: Postprint (Verlagsversion)/Postprint (Publisher Version) Typ/Type: Kongressschrift/Conference Proceeding Jahr/year: 2024 Quelle/Source: https://repository.publisso.de/resource/frl:6461785 Schlagwörter/Keywords: Named Entity Recognition, Transformers, Biodiversity, Information Extraction

Zitationsvorschlag/ Suggested Citation:

Tabanao, Geilah et al. (2024): Recognition of Biodiversity-related Named Entities by Fine-tuning General-domain BERT-based Language Models. International SWAT4HCLS Conference 2024. DOI: 10.4126/FRL01-006461785

Nutzungsbedingungen: Dieses Werk ist lizensiert unter einer Creative Commons Lizenz: https://creativecommons.org/licenses/by/4.0/

Terms of use: This document is licensed under creative commons license: https://creativecommons.org/licenses/by/4.0/

15th International SWAT4HCLS Conference Semantic Web Applications and Tools for Health Care and Life Sciences February 26-29, 2024 | Leiden, The Netherlands

Recognition of Biodiversity-related Named Entities by Fine-tuning General-domain BERT-based Language Models

Geilah T. Tabanao¹, Andrew Miguel V. Pagdanganan¹, Riza Batista-Navarro^{2,3} and Roselyn S. Gabud^{1,2,*} ¹Department of Computer Science, University of the Philippines Diliman, Quezon City, Philippines ²Institute of Computer Science, University of the Philippines Los Baños, Laguna, Philippines ³Department of Computer Science, University of Manchester, UK *rsgabud@up.edu.ph

Background

1) Growing need for Information Extraction tools: from text to structured formats 2) A biodiversity occurrence database that has been curated with the support of NLP systems could potentially provide researchers with longterm, broad-scale data from the literature, that will then be readily available for analysis.

Research Objectives

1) To assess the NER performance of BERT models [1] that were pre-trained on massive amounts of general-domain data, when fine-tuned on a domain-specific corpus.

2) To employ the best performing NER model in a biodiversity Information Extraction pipeline, which was applied on the forestry compendium of the Centre for Agricultural and Biosciences International Digital Library (CABI).

Methodology

We developed NER models by fine-tuning BERT-base, DistilBERT, ALBERT, ROBERTa, and DeBERTa models [2] on the COPIOUS dataset [3], the biggest annotated corpus relevant to species occurrence data.

Results

F1-scores obtained by the BERT-based NER models on the COPIOUS test set.

Amongst our fine-tuned models,	NE Туре	DistilBERT	ALBERT	BERT-base	RoBERTa	DeBERTa	BiodivBERT
DeBERIa obtained the best	Taxon	85.59	83.64	85.72	86.11	87.60	86.81
	Geographic Location	85.62	84.16	86.74	87.85	87.58	86.74
84.18%. This is comparable and	Temporal Expression	78.11	73.58	81.50	79.58	70.28	82.59
competitive with that obtained by a	Habitat	69.91	65.70	66.21	68.76	70.93	66.99
BERT model pretrained on domain-	Person	64.71	63.24	69.15	65.88	68.08	69.32
specific data.	OVERALL	82.77	80.67	83.51	83.87	84.18	84.23

Knowledge Graph Curation

Taking a corpus of CABI textual descriptions, our pipeline:

1) applies NER to extract mentions of geographic locations, habitats and temporal expressions;

- 2) applies RE to identify related habitats and geographic locations (i.e., habitat-geographic location relations) and related reproductive conditions and temporal expressions (i.e., reproductive conditiontemporal expression relations); and
- 3) populates a graph database to store the related entities, to allow for querying and visualisation.

Conclusions

We demonstrated that general-domain, enhanced variants of the original BERT language model that were fine-tuned for the NER task on the COPIOUS corpus obtained performance that is comparable and competitive with that obtained by a BERT model pretrained on domain-specific data.

[1] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019. URL: http://arxiv.org/abs/1810.04805. doi:10.48550/arXiv.1810.04805, arXiv:1810.04805 [cs]. [2] K. S. Kalyan, A. Rajasekharan, S. Sangeetha, AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing, 2021. URL: http://arxiv.org/abs/2108.05542. doi:10.48550/arXiv.2108.05542, arXiv:2108.05542 [cs].

[3] N. T. Nguyen, R. S. Gabud, S. Ananiadou, COPIOUS: A gold standard corpus of named entities towards extracting species occurrence from biodiversity literature, Biodiversity Data Journal (2019) e29626. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351503/. doi:10.3897/BDJ.7.e29626.

[4] N. Abdelmageed, F. Löffler, B. König-Ries, BiodivBERT: a Pre-Trained Language Model for the Biodiversity Domain, in: A. Yamaguchi, A. Splendiani, M. S. Marshall, C. Baker, J. T. Bolleman, A. Burger, L. J. Castro, O. Eigenbrod, S. Österle, M. Romacker, A. Waagmeester (Eds.), 14th International Conference on Semantic Web Applications and Tools for Health Care and Life Sciences (SWAT4HCLS 2023), Basel, Switzerland, February 13-16, 2023, volume 3415 of CEUR Workshop Proceedings, CEUR-WS.org, 2023, pp. 62-71. URL: https://ceur-ws.org/Vol-3415/paper-7.pdf.

