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Abstract 

Facing climate change, seasonal forecasts, and weather warnings are increasingly important to warn 
the public of the risk of extreme climate conditions. However, being confronted with inaccurate fore- 
cast systems may undermine individuals’ responsiveness in the long run. Using an online experiment, 
we assess how false alarm and missed alarm-prone forecast systems influence individuals’ adaptation 
behaviour. We show that exposure to false alarm-prone forecasts decreases investments if a warning 
is issued (the ‘cry-wolf effect’). Exposure to missed alarm-prone forecasts increases adaptation invest- 
ments if no warning, but also if a warning has been issued. Yet, individuals exposed to both false and 
missed alarm-prone forecasts still adjust their adaptation investments depending on the forecasted 
probability of extreme climate conditions. Individuals with missed alarm-prone forecasts are, however, 
less sensitive to the forecasted probability if a warning has been issued. In case of low probability 
warnings, overshooting investments in adaptation hence becomes more likely. 
Keywords: Climate information, Decisions under uncertainty, Economic online experiment, Forecast design, Early 
warning signals 
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. Introduction 

limate change globally increases the frequency and intensity of weather and climate ex-
remes such as heatwaves, droughts, and heavy precipitation (IPCC 2022 ). Individual adap-
ation decisions that are solely guided by experience runs the risk of severely underesti-
ating the need to adapt to these new conditions. In this context, seasonal forecasts and
regional) climate information are increasingly recognised as important sources of informa- 
ion and guiding tools for governments’, private sectors’, and households’ adaptation actions 
Stainforth et al. 2007 ; Bruno Soares et al. 2018 ; Knudson and Guido 2019 ; Webber 2019 ;
acchetti et al. 2021 ). While climate information models, which predict long term changes in
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local) climates, are potentially useful in guiding long-term private and public investment 
n climate adaptation (Stainforth et al. 2007 ; Pacchetti et al. 2021 ), seasonal forecasts, and 
arnings of extreme weather events can be especially useful to inform individual adapta- 
ion choices in the context of recurring decisions (e.g., cropping choices in agriculture) or 
emporary behavioural responses (e.g., in response to hurricane or flood warnings). 
However, seasonal forecasts, as well as extreme event warnings, are often highly uncertain 

nd inaccurate, which poses a challenge for both the communication of their predictions 
nd their use (Zommers 2012 ; Taylor et al. 2015 , 2018 ; National Institute of Water and 
tmospheric Research (NIWA) 2016 ; Katzav et al. 2021 ). Besides adverse direct effects of 
ollowing inaccurate forecasts in the short run, for example, experiencing a loss due to the 
ailure to take preparatory measures based on a forecast, the repeated exposure to inaccu- 
ate forecasts may also have longer-term effects. Specifically, inaccurate forecasts may erode 
ecision-makers’ trust in the forecast system and lead them to ignore future forecasts or 
arnings (e.g., LeClerc and Joslyn 2015 ; Ripberger et al. 2015 ; Burgeno and Joslyn 2020 ).
hus, policymakers and agencies that are responsible for forecast and warning system design 
hould take the consequences of inaccuracies into careful consideration. If not, they could 
isk limiting the overall contribution of forecast systems to climate change adaptation. 
This paper uses an online experiment to address the question to what extent exposure 

o inaccurate forecast systems—that result in the repeated experience of false or missed 
larms—affects individuals’ adaptation decisions. Prior literature has identified two types 
f potential errors that individuals—who base their adaptation decisions on possibly inaccu- 
ate warnings—face (Losee and Joslyn 2018 ). On the one hand, they may experience a false 
larm , where a warning is issued but an extreme event does not occur. In this case, decision- 
akers may comply with the warning and invest in costly adaptation, which later turns out 
o have been unnecessary. The effect that experiencing false alarms more frequently in the 
ast decreases individuals’ responsiveness to warnings is also known as the cry-wolf effect 
e.g., LeClerc and Joslyn 2015 ; Trainor et al. 2015 ). Some studies find that high rates of 
rior false alarms reduced individuals’ compliance with extreme weather warnings, leading 
ndividuals, for example, to be less likely to seek shelter in response to tornado warnings 
Donner et al. 2012 ; Jauernic and Van Den Broeke 2017 ; Ripberger et al. 2015 ; Simmons 
nd Sutter 2009 ) or react to extreme weather warnings (LeClerc and Joslyn 2015 ). However,
ther studies of behavioural responses to hurricanes (Dow and Cutter 1998 ) and tornado 
arnings (Schultz et al. 2010 ) do not find clear evidence of such a cry-wolf effect , or yield
ixed results (Lim et al. 2019 ; Trainor et al. 2015 ). 
On the other hand, individuals may experience a missed alarm , i.e., a situation where no 
arning is issued but extreme weather conditions strike. In this case, decision-makers might 
ely on the forecast and decide against adaptation, but then experience losses from extremes 
hey were unprepared for. There are only a few empirical studies that focus on the impact of 
issed alarms on behaviour. Experimental findings suggest that larger forecast inaccuracies 
increasing both the false and missed alarm rate at the same time) lead to lower trust in fore- 
asts and compliance (Burgeno and Joslyn 2020 ; Joslyn and LeClerc 2012 ). Experimental 
tudies that focus on fast responses to automatic machine alerts found that experiencing 
issed alarms more frequently affects behaviour. In these experiments, participants can ac- 
uire more information after either receiving an alarm or not. Experiencing missed alarms 
ore frequently increases an individual’s propensity to acquire more information in case no 
larm has been issued (Chancey et al. 2015 ; Wiczorek and Meyer 2016 ).1 

According to frequency-based probability learning theory (Estes 1976 ), individuals are 
ble to approximate risks over time through repeated experiences. In the case of weather 
orecasts, one would expect individuals to learn about the false and missed alarms frequency 
ver time and adapt their decisions accordingly. Forecast users would become less reactive 
o warnings and no-warnings, if they were exposed to a false- and missed-alarm prone sys- 
em, respectively. But recent research has also shown that inaccuracies can cause a general 
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ecrease of trust in the forecast system (Joslyn and LeClerc 2012 ; LeClerc and Joslyn 2015 ;
urgeno and Joslyn 2020 ; Ripberger et al. 2015 ) and thereby may also affect how individu-
ls react to the opposite signal. A history of false alarms may affect how individuals respond
f no warning is issued. And vice versa, missed alarm experience may affect individuals’ re-
ponse if a warning is issued. We refer to these two effects as the cross-effects of inaccurate
orecast systems. Empirical evidence concerning these cross-effects is scarce. LeClerc and 
oselyn (2015) find that a decrease of false alarms, while simultaneously increasing missed
larms, decreases compliance suggesting the presence of a missed alarm cross-effect. Using 
urvey data on hypothetical behaviour in case of a tornado warning, Ripberger et al. (2015)
nd that an increase in the perceived missed alarms rate decreases trust in warnings and
ubsequently lowers compliance. Experimental studies on automated machine alerts yield 
ixed results, finding evidence of negative cross-effects of false alarms (Wiczorek and Meyer
016 ) or no evidence for any cross-effects (Manzey et al. 2014 ). 
With a few exceptions (Burgeno and Joslyn 2020 ; Joslyn and LeClerc 2012 ; LeClerc and

oslyn 2015 ; Losee and Joslyn 2018 ), studies regarding forecasts or extreme event warnings
re observational and mostly rely on self-reported data (Dow and Cutter 1998 ; Simmons
nd Sutter 2009 ; Schultz et al. 2010 ; Donner et al. 2012 ; Ripberger et al. 2015 ; Taylor
t al. 2015 ; Trainor et al. 2015 ; Lindell et al. 2016 ; Jauernic and Van Den Broeke 2017 ;
im et al. 2019 ). Controlling confounding factors is thus challenging and poses a challenge
or identifying causal effects. For example, the frequency of accurate and inaccurate fore-
asts likely correlates with the location of residence, which in turn likely correlates with
any other confounding factors (such as socio-economic characteristics, background risk,
isk preferences, etc.) that also influence individual adaptation decisions. It is consequently 
hallenging to identify the causal effect of repeated false and missed alarms with observa-
ional data. We circumvent this problem, by reporting the results of an incentivised online
xperiment. In the experiment, we randomly assign respondents to accurate, false, or missed
larm-prone forecast systems. In contrast to observational studies, our experiment allows 
o identify causal effects with high internal validity. 
Our contribution to the existing literature is fourfold: First, we conceptually differentiate 

etween false and missed alarm-prone forecast systems, a trade-off that decision-makers 
ace when designing warning systems. For example, in the context of tornado warnings,
overnmental agencies responsible to publish warnings need to decide on a threshold when
o issue an alarm. Under the same forecasting system, decreasing the missed alarm rates
ill ultimately result in more false alarms as more low-probability warnings are issued
Brooks and Correia 2018 ). Our experimental design allows us to identify the main and
ross-effects of missed and false alarm-prone forecast systems, which to our knowledge has
ot been done in the context of weather forecasts and warnings. We evaluate separately
hether exposure to increased missed alarm and false alarm rates does affect investments
n protective adaptation measures when a warning as well as no warning is issued. While
he existing experimental literature predominantly focused on the reaction to warnings, we 
xtend the analysis to behaviour when no warnings are issued. 
Second, in contrast to existing experimental studies (Burgeno and Joslyn 2020 ; Joslyn 

nd LeClerc 2012 ; LeClerc and Joslyn 2015 ; Losee and Joslyn 2018 ), we elicit behaviour
n a continuous scale instead of focusing on binary decisions, and are thus able to capture
ore nuanced differences in behaviour. The cry-wolf effect, for example, may reduce the
illingness to react to a warning, but possibly not to an extent of complete inaction. Such
uances would be potentially lost with a binary decision, but are relevant in the context of
ecisions that allow for different degrees of protection, such as actions to reduce potential
amages from hurricanes or floods, or cropping decisions of farmers at the beginning of a
rowing season. 
Third, our experimental design allows disentangling the short- and long-term effects of 

naccurate forecasts on adaptation behaviour. Prior to assessing the impact of error-prone 
24
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orecast systems, participants are, in our experiment, exposed to nine seasons. This allows 
s to assess whether the impact of false and missed alarms in the early seasons fades over 
ime. Few researchers have explored the temporal dimension of false and missed alarms.
ne exception is Joslyn and LeClerc (2012) , who conclude that trust is lost in the long run 
hen exposed to a large-error forecast system early on even if forecast accuracy improves 
ver time. Their design, however, does not differentiate between false and missed alarms,
ut instead focuses on forecasts errors in general. 
Fourth, we assess whether exposure to a false and missed-alarm prone forecast systems 

lso affects the sensitivity to the forecasted probabilities. Prior research indicates that false 
larm rates, and error rates in general, affect trust and compliance less when forecasts are 
robabilistic instead of deterministic (Joslyn and LeClerc 2012 ; LeClerc and Joslyn 2015 ).
o our knowledge, no study has evaluated to what extent forecast inaccuracies affect the 
ctual sensitivity of adaptation behaviour to forecast probabilities. If inaccurate forecast 
ystems undermine general trust in forecasts, individuals may not only be less responsive to 
arnings but also to the communicated probabilities. 
Our results show that exposure to a false alarm-prone forecast system decreases indi- 

iduals’ willingness to invest in adaptation if they receive a forecast warning of extreme 
limate conditions in the future (the ‘cry-wolf effect’), but does not influence future adap- 
ation investments in the absence of a warning. Thus, we find no evidence for a false alarm 

ross-effect. Exposure to a missed alarm-prone forecast system, as expected, increases in- 
ividuals’ adaptation investments if no warning is issued. Surprisingly, missed alarm-prone 
ystems also increase adaptation in the case when a warning is issued. Overall, we find that 
he main and cross-effects of false and missed alarm-prone forecast systems on adaptation 
nvestments are relatively small compared to the effect of the forecasted probabilities them- 
elves. Individuals still react with an increase in their adaptation investment to increasing 
orecasted probabilities of upcoming climate extremes. Ultimately, our experimental results 
uggest that integrating probabilities into the forecast design is potentially more relevant 
han the long-term rate of false and missed alarms. 
In the following section, we present the experimental design, our pre-registered hypothe- 

es, and the analytic approach. Section 3 presents our results, and we conclude with a dis- 
ussion of our main findings in Section 4 . 

. Material and methods 

his paper is based on an online experiment with multiple decision rounds, and was con- 
ucted with a sample from the general population in the UK. In the experiment, individuals 
ecide over ten rounds—representing ten seasons—whether to invest in protection from ex- 
reme climate-related losses after receiving a probabilistic forecast that the upcoming season 
s of an extreme or normal climate. While protection minimises losses to zero if an extreme 
eason occurs, it also decreases the final payout in a normal season. We systematically ma- 
ipulate the accuracy of the forecast system to be either false or missed alarm-prone, which 
esults in more false or missed alarm experiences. In the following, we describe the experi- 
ent along the three stages that participants face in each of the ten seasons. 

.1 Experimental design 

t the beginning of each season, individuals have an endowment of 500 points and receive 
 probabilistic forecast that the upcoming season is of an extreme or normal climate, with- 
ut knowing the true underlying risk of facing extreme climate conditions. The risk for the 
eason to be extreme is randomly drawn from an underlying probability distribution shown 
n Table 1 , Column 1 (CTRL—accurate). Participants know that the outcomes are indepen- 
ent across seasons. In each season, the computer draws one of twelve possible risk options 
24
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ith a 1/12 probability. The risk options each have a probability between 15 and 85 per 
ent that an extreme season occurs, with an expected probability of 50 per cent. 
To simplify the understanding of our experiment, we introduce two forecast categories,

ormal and extreme seasons. Each forecast shows the probabilities of both extreme and 
ormal conditions for that upcoming season ( Fig. 1 A). If the forecasted probability for an 
xtreme season is 60 per cent or higher, participants receive an alarm in form of a warn- 
ng forecast ( Fig. 1 A.1). In contrast, if the forecasted probability for an extreme season is 
ower than 60 per cent, participants receive a standard forecast message (i.e., no-warning 
orecast , Fig. 1 A.2). This design of our experimental forecast is based on common seasonal 
orecasts of precipitation or temperature. Such seasonal forecasts present the probability of 
hether the upcoming season is likely to be normal, below normal, or above normal (see,
.g., the seasonal forecasts provided by the International Research Institute for Climate and 
ociety at Columbia University, U.S.A., https://iri.columbia.edu/, accessed 17 July 2023).
easonal forecasts are inevitably probabilistic due to the uncertainties in climate models 
nd imperfect knowledge of the atmosphere and climate system (Smith et al. 2019 ). Previ- 
us research also indicates that communicating the probabilistic nature of forecasts (versus 
tating forecasts as deterministic) reduces the perceived inconsistency of warnings and have 
 positive effect on trust in the forecast system in general (Fundel et al. 2019 ; LeClerc and 
oslyn 2015 ; Losee and Joslyn 2018 ). 
Secondly, after participants receive the forecast, we elicit their adaptation behaviour in 

orm of their willingness to pay (WTP) for protection from extreme climate conditions,
ith a minimum of 0 and a maximum of 500 points (see Fig. 1 B). Experiencing extreme 
limate conditions without any protection would result in losing all of their 500-point en- 
owment. If participants invest in adaptation and experienced a normal season, they paid 
or unneeded protection. We opted for eliciting individuals’ WTP based on the Becker–
eGroot–Marschak (BDM) method (Becker et al. 1964 ) to yield a continuous measure for 
daptation behaviour instead of simply eliciting a binary decision of whether to adapt (i.e.,
ollow the warning) or not. With this, we can measure fine, more nuanced treatment ef- 
ects.2 The BDM method has the advantage that it is incentivised and motivates individuals 
o state their true WTP because their stated values do not influence the final price (Schmidt 
nd Bijmolt 2019 ). 
Thirdly, after participants have stated their WTP, the computer randomly determines the 

limate conditions of the season based on the underlying risk option and the climate out- 
ome is revealed to participants (see Fig. 1 C). Thereby, participants receive indirect feed- 
ack on the accuracy of their forecast system each season and the underlying risk of an 
xtreme season. They can update their beliefs about the accuracy of the forecasts over time 
nd adjust their stated WTP in response to warning and no-warning forecasts accordingly.
espondents did not receive information on their earnings after each season. This would 
equire to determine a randomly selected price for protection (in accordance with the BDM 

ethod) and could have induced anchoring effects for the WTP in the upcoming seasons. 
After the tenth and final season, the computer randomly chooses the payout-relevant 

eason. Following the BDM method, it then randomly determines the price for protection 
n that season between 0 and 500 points. As participants know from the beginning that only 
ne season is randomly selected as payout-relevant at the end, it is not possible to hedge 
isks over the ten seasons. Participants also know that all prices for protection, between 0 
nd 500 points, were equally likely and that none of the events during the ten seasons would 
nfluence the randomly determined price set by the computer in the end. 
The final payout in points is calculated as follows and converted to Great British Pounds 

£1.00 = 100 points). If participants had indicated a WTP equal to or higher than the price,
hey purchase the protection for the determined price, irrespective of the climate conditions 
f the season. Consequentially, they receive the rest of their endowment as payout, irrespec- 
ive of an extreme or normal season. However, if participants had indicated a WTP lower 
24
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Figure 1. Screenshots of exemplary forecasts (A and B), the WTP elicitation (C) and the seasonal outcome 
information screen (D) in the experiment. Panel A presents the forecast design of the experiment with a 
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Figure 1. warning forecast, and Panel B presents a no-warning forecast. The forecast probabilities for an 
extreme and normal season are presented in both cases. Panel C presents the screen where participants are 
asked to state their willingness to pay for protection (WTP; between 0 and 500 points). Panel D depicts the 
screen at the end of each season, informing participants about the outcome of the season. The example 
here is an example where the season turned out to be extreme and thus states ‘Season was extreme’. In 
case of a normal season, it states ‘Season was normal’. 
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han the randomly determined price, they do not buy protection and are not protected from 

xtreme climate-related losses. Thus, their payout depends on the climate conditions of the 
ayout-relevant season. They lose their full endowment if the season is extreme, but keep 
heir full endowment if the season is normal. 
We decided to partially frame the experiment in the context of seasonal climate conditions 

nd forecasts to increase familiarity with the basic experimental decision environment: ‘In 
very season, you are at risk of losing all of your 500 points through extreme climate con- 
itions. Extreme climate conditions could come in the form of heatwaves, droughts, heavy 
torms and flash flooding events. However, you can protect yourself from extreme climate- 
elated losses by paying with your points for protection from extreme climate conditions.’ 
e opted, however, to not frame the specific adaptation behaviour at hand, since the avail- 
bility of specific adaptation behaviours largely differs between individuals (e.g., between 
ouse owners and tenants). This partial framing allows us to associate the overall design 
ith climate change adaptation and warnings of extreme weather events. At the same time,
ur design allows learning about general behavioural patterns by not being too specific with 
espect to adaptation behaviours. 

.2 Treatment manipulations 

e systematically vary the accuracy of the forecast systems in three treatment conditions 
represented in the three columns of Table 1 ). The underlying probabilities of an extreme 
eason and, thus, the risk options are identical across treatments. However, the three treat- 
ents differ in the forecasted probabilities, and consequently the number of warning and 
o-warning forecasts that participants receive. In the control treatment (CTRL) , the fore- 
ast system is accurate, and the forecasted probabilities show the true underlying risk of an 
xtreme season based on the drawn risk option for the specific season. Thus, on average,
alf of the forecasts issue a warning of an extreme season (i.e., probability of an extreme 
eason being 60 per cent or higher) and the other half do not (i.e., probability of an extreme 
eason being lower than 60 per cent). 
In addition, we include two treatments with inaccurate forecast systems that either issue 

oo many or too few warnings and systematically over- or underrate forecast probability. In 
he false alarm treatment (FA) , options 1 to 6 of the underlying risk options are matched with
n overrating forecast probability and consequently, with too many warnings being issued 
see Table 1 , Column 2 [FA—false alarm-prone]). In the missed alarm treatment (MA) , the 
orecasted probabilities matched with the risk options 7 to 12 understate the risk of an 
xtreme season, with too few warnings being issued (see Table 1 , Column 3 [MA—missed 
larm-prone]).3 As a result, both the MA and FA forecast systems are expected to generate 
issed and false alarms in 47 per cent of the seasons, respectively.4 

For the analysis of treatment differences, we solely focus on behaviour in season 10. To 
alance the number of warning and no-warning forecasts between treatments in season 10 
nd to assure that the communicated probabilities of extreme seasons are the same across 
reatments, the forecasts for season 10 show the true underlying risk of an extreme season in 
ll forecast systems. We can verify our treatment designs regarding the forecast inaccuracy 
y analysing the frequency at which accurate forecasts, false and missed alarms occurred 
n the first nine seasons (lower section of Table 1 ). In CTRL ( N = 667), 38 per cent of the
arning forecasts and 35 per cent of the no-warning forecasts were accurate, 13 per cent 
24
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ere false alarms, and 13 per cent were missed alarms. In FA ( N = 667), 35 per cent were
ccurate warnings, 3 per cent were accurate ‘no-warnings’, 48 per cent were false alarms,
nd 14 per cent were missed alarms. Whereas in MA ( N = 666), 3 per cent were accurate
arnings, 38 per cent were accurate ‘no-warnings’, 13 per cent were false alarms, and 47 per
ent were missed alarms. Thus, the a posteriori probabilities for the four different forecast
ases match the a priori probabilities that we aimed for, and both the false and missed
larm-prone forecast systems led to the desired rate of inaccuracy. 
At the beginning of the experiment, participants only know that they are randomly as-

igned to a forecast model (treatment) that generates all forecasts that they receive during
he experiment. Participants do not know up front how (in-)accurate the forecasts gen-
rated by their assigned model are and whether forecast models differed in the degree of
in-)accuracy, but just receive the following information: ‘ Before the first season, you will be
andomly assigned a forecast model, which will generate all forecasts you receive for all 10
easons. You will not be informed of how accurate (or inaccurate) the forecasts generated
y your assigned model are.’ Over the course of the first nine seasons, participants are able
o get a sense of the accuracy of their assigned forecast model, in terms of false and missed
larm frequencies. We do not explicitly explain what we mean by accuracy to reduce the
ognitive load for subjects at this stage. We consider the first nine seasons sufficient to get
n understanding of what accuracy in this experimental context implies. 

.3 Treatment assignment 

he computer assigned participants to one of the three treatments based on the order in
hich participants finished the instructions. The first participant to finish was assigned to
he control treatment CTRL, the second participant to the FA treatment, the third partic-
pant to the MA treatment, the fourth to CTRL again, and so on. This was done because
ntirely random treatment assignment may have resulted by chance in treatment imbalances 
ithin a given time period (e.g., the first hour of the data collection or at a specific time of
he day). Particularly, the time of participation could be correlated with behaviour, and thus
ould induce a confounder for the identification of treatment effects. For example, partic-
pants who are more eager to earn money by participating in experiments, are potentially
ore experienced on Prolific (the online recruitment platform used for the data collection),
onitor available studies more frequently, and are more likely to participate early on. If
he random treatment assignment would not be balanced in the beginning, any treatment
ifferences may be an artefact of these imbalances. Since participants were not aware of
he treatment assignment mechanism and could not control the timing of finishing the in-
tructions to an extent that would allow them to influence their treatment assignment, we
onsider our procedure quasi-random. We do not find statistically significant differences at 
he 5 per cent level in the socio-economic characteristics between treatments ( Table S1 ),
ndicating that our assignment procedure resulted in comparable treatment groups. 

.4 Hypotheses 

s with real weather forecasts, participants face two different uncertainties in our exper- 
ment.5 Firstly, they do not know the true risk of an extreme season, nor the outcome of
he next season. According to frequency-based probability learning (Estes 1976 ), individ- 
als are expected to approximate their risk of being exposed to an extreme season over
he course of the ten experimental seasons. Secondly, participants are uncertain of the ac-
uracy of the forecasts themselves. Again, based on frequency-based probability learning 
Estes 1976 ) subjects likely learn over time how accurate their forecasts were, based on the
xperienced frequency of false and/or missed alarms. As outlined above, learning over time
egarding forecast inaccuracy may result in either lower trust in the forecasts in general
 24
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r lower trust in specific forecast signals (warnings and no-warnings).6 In both cases, this 
ould lead to the following hypothesised behaviour: 

Hypothesis 1: Being exposed to a false alarm-prone as opposed to an accurate 
forecast system decreases adaptation investments in response to a warning forecast 
(‘cry-wolf effect’). 

Hypothesis 2: Being exposed to a missed alarm-prone as opposed to an accurate 
forecast system increases adaptation investments in response to a no-warning 
forecast. 

rior research has indicated that forecast inaccuracies decrease trust in the general forecast 
ystem. Based on survey data, Ripberger et al. (2015) found that perceived false and missed 
larm ratios are negatively correlated with stated trust in the US National Weather Service.
urgeno and Joslyn (2020) report that lower forecast accuracy (including both false and 
issed alarms) results in lower post-outcome trust in an experimental setting. Based on 
hese studies, we would expect false and missed alarm-prone forecast systems to undermine 
verall trust in forecasts and lead to following two cross-effects: 

Hypothesis 3: Being exposed to a false alarm-prone as opposed to an accurate 
forecast system increases adaptation investments in response to a no-warning 
forecast. 

Hypothesis 4: Being exposed to a missed alarm-prone as opposed to an accurate 
forecast system decreases adaptation investments in response to a warning forecast. 

.5 Data collection 

or our experiment, we recruited 2,000 residents of the United Kingdom (UK) via the online 
rowdsourcing platform Prolific (Prolific 2021 ) in July 2020. Participants received a fixed 
ayment of £2 and a variable payment between £0 and £5 (0 and 500 points) depending on 
he experimental outcomes. The average payout, including the variable payment was £4.95 
SD = 1.99, N = 2,000). Our study was programmed using the ‘Software Platform for Hu- 
an Interaction Experiments’ (SoPHIE) (Hendriks 2012 ). The study consisted of two parts,
n economic experiment followed by a post-experimental questionnaire. The average com- 
letion time was 14 minutes (SD = 7, N = 1,996) of which 10 minutes (SD = 5, N = 2,000)
ere spent on the experiment itself. Participation was voluntary and we followed the com- 
on ethical standards of data confidentiality and anonymity. All participants gave their 
onsent at the beginning of the study. We preregistered our study and hypotheses at ‘AsPre- 
icted.org’ ( https://aspredicted.org/ay5zm.pdf) (Wharton Credibility Lab 2017 ). The ex- 
erimental material, the pre-analysis plan, and the replication data and analysis scripts are 
vailable on the Open Science Framework ( https://doi.org/10.17605/OSF.IO/TMESK ). 
We successfully assured gender balance (50 per cent female participants). The average 

ge of participants was 34.5 years (SD = 12.7), with the majority living in urban areas with 
0,001 to 100,000 inhabitants (49 per cent). The average household size was three indi- 
iduals (SD = 1.4), and 76 per cent of all participants had a disposable monthly household 
ncome below £4,500, and 41 per cent were the owners of the house they live in. The ma-
ority of participants had either a college degree (27 per cent) or a bachelor’s degree (38 per 
ent). Please see Table S1 for further details of participants’ socio-economic characteristics,
ection 2 of the Supplementary Information (SI) for a discussion on the correlation between 
24
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ocio-economic characteristics, respondents’ attitudes, and behaviour in the experiment,
nd SI, Section 3 for the experimental instructions, including the post-experimental 
uestionnaire. 
We implemented control questions as part of the instructions and added a trap question

o assure participants’ understanding and attentiveness during the experiment (Berinsky et 
l. 2014 ; Malone and Lusk 2018 ). Our trap question was a colour screener similar to the one
resented in Berinsky et al. (2014) , where respondents are asked for their favourite colour
ith an explanatory note to not answer the question and instead enter ‘none’. Overall, the
esults of our control and attention questions point out that the majority of participants
ead the instructions carefully and paid attention to the experiment (see Table S1 ). 

.6 Identification strategy 

ur outcome variable of interest for the data analysis is individuals’ WTP for protection
n the final season (season 10). In the analysis, we test for treatment effects in the two
ub-samples who received and did not receive a warning in this season 10, as we specified
eparate hypotheses for these two sub-samples (see also the pre-registration). 
In our analysis, we first focus on a treatment-level comparison between FA and MA rel-

tive to CRTL. As indicated in Table 1 , both treatments systematically vary the accuracy
f the forecasts by increasing either the FA or MA rate. Please note, however, that partici-
ants in all three treatments experienced FA, MA, and accurate forecasts. As such, our main
nalysis—in accordance with our hypotheses—estimates the aggregated impact of being ex- 
osed to a FA and MA prone-forecast system, rather than the impact of actual FA and MA
ates. We estimated Tobit models to account for the censoring of the outcome between 0
nd 500 points: 

W T P| ( no ) warning = α + β1 ∗MA + β2 ∗ FA + β3 ∗ Prob + ε, (1) 

here MA and FA are dummy variables, taking on 1 if the participant was assigned to
he MA and FA treatment, respectively, and otherwise 0, Prob specifies the probability of
he forecast in season 10. While the forecasted probability of an extreme season is by de-
ign not independent of the warning itself, we can control for the forecasted probabilities,
onditional on having received or not received a warning. We estimate four separate Tobit
egression models: We used the observations of CTRL repeatedly for the comparisons to FA
nd MA and have two sub-samples per treatment depending on whether or not a warning
as issued in season 10. The estimates for the FA main and cross effect are represented by
1 for the sub-samples who received and did not receive a warning, respectively. The esti-
ates for the MA main and cross effect are represented by β2 for the sub-samples who did
ot receive and received a warning, respectively. 
In a second step, we focus—instead of comparing outcomes between treatment groups—

n the history of experienced FA and MA. Please note that this analysis is exploratory and
as not part of the pre-registration. We aggregate the frequency of false and missed alarms
n seasons 1–3, 4–6, and 7–9. While an analysis strategy that takes into account the more
uanced differences in alarm histories would be ideal, we aggregated the outcomes in order
o maintain sufficient statistical power. We can, therefore, identify whether the effects of FA
nd MA early on in the experiment persist and affect behaviour until the end. Again, we
ocus here on WTP in season 10 as outcome variable. The corresponding Tobit model was
pecified as follows: 

W T P| ( no ) warning = α + β1 ∗MA1 −3 + β2 ∗MA4 −6 + β3 ∗MA7 −9 + β4 ∗ FA1 −3 

+ β5 ∗ FA4 −6 + β6 ∗ FA7 −9 + β3 ∗ Prob + ε, (2) 
24

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoad031#supplementary-data


12 Hembach-Stunden et al . 

Table 2. Summary statistics of the main outcome, WTP in season 10. 

Warning No Warning 

Treatment 
Mean WTP 

(SD) N 

Mean WTP 
(SD) N 

CTRL 330 
(120) 

342 170 
(130) 

325 

FA 305 
(131) 

316 170 
(137) 

351 

MA 349 
(129) 

353 202 
(147) 

313 

Note: N denotes the number of observations. Mean WTP is the mean WTP in season 10. Given the bonus of 500 
points, the minimum possible WTP was 0 and the maximum was 500 in all treatments. Standard deviations (SD) 
are presented in parentheses. ‘Warning’ includes only the observations where individuals received a warning in 
season 10, while ‘no warning’ includes only the observations of individuals receiving no warning in season 10. 
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here the six variables MA and FA indicate the frequency of false and missed alarms in 
easons 1–3, 4–6, and 7–9, respectively (ranging between 0 and 3), and Prob specifies the 
orecast probability that was provided in season 10. We estimate two separate Tobit models 
epending on whether a warning or no warning was issued in season 10. 

. Results and discussion 

n season 10, the average WTP for protection across treatments was 329 points if a warning 
SD = 128, N = 1,011) and 180 points if no-warning was issued (SD = 139, N = 989). The
verage WTP per treatment is shown in Table 2 . The development of average WTP from 

easons 1 to 9 is provided in Figure S1 . We observe that WTP remains relatively constant in 
TRL, decreases over time in FA and increases over time in MA, indicating that participants 
nfer the accuracy of the forecast system based on their experiences over time and adapt their 
TP accordingly. 
We will first focus on testing the four hypotheses outlined in Section 2 . Figure 2 presents 

he treatment coefficients of the four Tobit models (see Eq. 1 ) (see Table S2 for the full 
egression results), one for each hypothesis. 
Exposure to a false alarm-prone forecast system decreases average adaptation investments 

n response to a warning. Individuals’ WTP if they received a warning forecast is on aver- 
ge significantly lower in FA than in CTRL ( Fig. 2 B), confirming Hypothesis 1. However,
alculating Cohen’s d as a measure of the effect size shows that the effect is only 0.2 stan-
ard deviations and thus, small (Cohen’s d = –0.20).7 Our finding of a cry-wolf effect is in 
ine with previous experimental studies that focus on binary decisions whether to follow a 
arning (LeClerc and Joslyn 2015 ) and observational studies focusing on tornado warnings 
n the US (Donner et al. 2012 ; Jauernic and Van Den Broeke 2017 , Ripberger et al. 2015 ; 
immons and Sutter 2009 ). 
Exposure to a missed alarm-prone forecast system increases adaptation investments in 

he absence of a warning. We find a significant increase in the WTP among individuals who 
xperience no warning in MA compared to CTRL ( Fig. 2 A). We therefore also confirm Hy- 
othesis 2, and again, the treatment effect is small (Cohen’s d = 0.231). This finding is in 
ine with previous studies that focus on deterministic machine warning systems (Chancey 
t al. 2015 ; Wiczorek and Meyer 2016 ). We find that also with a probabilistic forecast,
ndividuals rely less on no-warning forecasts if they are exposed to a missed alarm-prone 
orecast system. These results confirm the presence of both false and missed alarms’ main ef- 
ects and are in line with frequency-based probability learning (Estes 1976 ). Participants are 
24
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Figure 2. Coefficient plots based on the four separate Tobit regression models with the dependent variable 
‘WTP in season 10’. The coefficient plots display the point estimates for the coefficients ‘False alarm 

treatment’ (FA) and ‘Missed alarm treatment’ (MA) with their 95 per cent-confidence intervals along the 
x -axis. These coefficients represent the treatment effect on WTP and are estimated relative to the control 
treatment CTRL. Figure 2 A shows the coefficient plots for if no warning was issued (Hypotheses 2 and 3), 
also defined as the MA main and FA cross effect. Figure 2 B shows the coefficient plots if a warning was 
issued (Hypotheses 1 and 4), also known as FA main and MA cross-effect. The dotted, vertical line at zero is 
a reference line to visualise which coefficients are significantly different from zero at the 0.05 level. See 
Table S2 for the corresponding Tobit regression models. 
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ess likely to follow the forecast because they have updated their beliefs about the forecast
ccuracies throughout the experiment. 
There is no evidence of a negative cross-effect on adaptation investments in the absence

f a warning from being exposed to a false alarm-prone forecast system. We do not observe
 significant difference in individuals’ WTP when comparing FA to CTRL if they do not ex-
erience a warning forecast ( Fig. 2 A). Our data thus does not support Hypothesis 3, namely
hat exposure to a false alarm-prone system increases adaptation investments if no warning
s issued. This result agrees with Manzey et al. (2014) , who also did not find evidence for a
A cross-effect, but is in contrast with Wiczorek and Meyer (2016) , who observe a negative
ross-effect. Both experimental studies focus on machine warning systems. 
Contrary to Hypothesis 4, we find evidence of a positive cross-effect on adaptation in-

estments from exposure to a missed alarm-prone forecast system if a warning is issued.
verage WTP after receiving a warning forecast is, surprisingly, significantly higher among 
ndividuals in MA compared to CTRL ( Fig. 2 B). Thus, our result does not concur with pre-
ious studies on deterministic warning systems that find evidence for a negative cross-effect 
LeClerc and Joslyn 2015 ; Ripberger et al. 2015 ) or evidence for no effect (Manzey et al.
014 ; Wiczorek and Meyer 2016 ). Nonetheless, the MA cross-effect in our study is smaller
han the two main effects (Cohen’s d = 0.15). Consequently, it is potentially negligible, even
hough it is statistically significant. 
Our cross-effect results are partially in line with the frequency-based probability learn- 

ng theory. Accordingly, individuals in the MA treatment have experienced that the forecasts
ystematically underestimate the risks of an extreme season and thus assume that this is also
he case if a warning is issued. Surprisingly, this is, however, not the case in the FA treatment.
ne possible explanation would be that individuals exposed to false alarm-prone systems 
nly update their beliefs regarding the accuracy of the warning; hence, merely the trust in
he warning signal is undermined. In contrast, individuals exposed to missed alarm-prone 
ystems update their beliefs about the accuracy of the warning and the forecast probabilities
s well, leading to lower trust in the overall forecast system. Both mechanisms could be—in
rinciple—compatible with the frequency-based probability learning theory (Estes 1976 ).
 24
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owever, the different inaccurate signals would lead to the updating of different probabil- 
ties: the probability of a correct warning in the case of false alarms and the probability of 
 correct probabilistic forecast in the case of missed alarms. We provide additional analysis 
f trust in the forecast that was elicited after the last season in Section 3 of the SI. While
e find that the FA and MA treatments lead to lower trust compared to CTRL, trust in 
he forecast only affects decisions if a warning is issued. These findings echo Chancey et al.
2015) , who analysed deterministic a warning system and found that trust does not mediate 
he relationship between missed alarms and behaviour in the absence of a warning. 
Our results are robust to specifications, including a broad set of controls (socio- 

emographics, prior experiences of climate extremes, risk preferences, attention during and 
nderstanding of the experiment) ( Table S3 ), a restricted sub-sample analysis based on our 
omprehension questions ( Table S4 ), and pooling observations of respondents who received 
nd did not receive a warning in season 10 ( Table S5 ). 
In addition to the treatment-level comparison, we also estimated the effect of the relative 

alse and missed alarms frequency in seasons 1–9 on behaviour in season 10 ( Table S6 ).
hese findings corroborate the treatment level analysis. Being exposed to more false alarms 
ecreases adaptation investments if a warning is issued. Being exposed to more missed 
larms increases adaptation investments, both if a warning is issued and not issued. In- 
luding both false and missed alarms frequencies and treatment indicators in regression 
odels, renders the treatment coefficients insignificant, which indicates that the treatment 
ffects are entirely mediated through the frequency of inaccurate forecasts ( Table S7 ). 

.1 Persistence of false and missed alarm effects 

n the next step, we again depart from the treatment level comparison. Instead, we focus on 
he frequency of false and missed alarms at different stages of the experiment (see Eq. 2 ) to 
est for the persistence of false and missed alarm effects over time. Figure 3 illustrates the 
esults of the corresponding regression analysis that focuses again on adaptation decisions 
n season 10. 
Experiencing more frequent false alarms has a persistent negative impact on adaptation 

ecisions, while the impact of missed alarms on adaptation decisions is larger for recent 
han earlier seasons. Similar to the results reported above, we find that the main effects of 
oth false and missed alarms lead to less and more adaptation if a warning and no warning 
s issued, respectively. Interestingly, the impact of false alarms early on in the experiment 
seasons 1–3 and 4–6) have a similar impact on decisions as false alarms in later seasons 
seasons 7–9), suggesting that the cry-wolf effect is relatively persistent and does not fade 
ver time. Once trust in the warning signal is lost, it is not regained. We do not observe 
his dynamic for missed alarms in case that no warning was received. Here, we find that 
issed alarms in the three most recent seasons (7–9) increase adaptation investments to a 

arger extent than missed alarms in earlier seasons (1–3 and 4–6). Joslyn and LeClerc (2012) 
ound that trust—lost due to inaccurate forecasts early in their experiment—is difficult to 
egain with more accurate forecasts later on. Our findings complement theirs and suggest 
hat missed and false alarms may be perceived differently. False alarms have more persistent 
ffects on behaviour, while more recent missed alarms weigh heavier than earlier ones. 

.2 Treatment effects relative to forecasted probabilities 

ven though we observe statistically significant treatment effects for three of our four hy- 
otheses, one key question is how strong these effects are relative to other determinants of 
daptation. In this section, we, therefore, compare the treatment effects to the effects of the 
orecasted probabilities in season 10.8 In addition, we also assessed if exposure to a false 
r missed alarm-prone forecast system affects the sensitivity to the forecasted probabilities.
o do this, we estimate separate Tobit models for the sub-samples who received and did 
24

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoad031#supplementary-data
https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoad031#supplementary-data
https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoad031#supplementary-data
https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoad031#supplementary-data
https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoad031#supplementary-data


False and missed alarms in seasonal forecasts affect individual adaptation choices 15 

Figure 3. Coefficient plots based on the two separate Tobit regression models with the dependent variable 
‘WTP in season 10’ and the frequency of MA and FA as explanatory variables. The coefficient plots display 
the point estimates for the coefficients ‘False alarm’ (FA) and ‘Missed alarm’ (MA) frequency in Seasons 1–3, 
4–6, and 7–9 with their 95 per cent-confidence intervals along the x -axis. Figure 3 A shows the coefficient 
plots if no warning was received. Figure 3 B shows the coefficient plots if a warning was received. The 
dotted, vertical line at zero is a reference line to visualise which coefficients are significantly different from 

zero at the 0.05 level. See Table S8 for the corresponding Tobit regression models. 

n  

f  

p
i  

t  

s  

o  

W  

(  

p
a
t

 

a  

d  

t  

e  

a  

o
 

m  

i  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/qopen/article/4/1/qoad031/7459342 by Leibniz-Zentrum

 fuer Agrarlandschaftsforschung (ZALF) e.V. - user on 26 M
arch 20
ot receive a warning in season 10 and include the interaction of the treatment dummy and
orecasted probability (see Table S9 ). Based on these regression models, Fig. 4 illustrates the
redicted adaptation investments by treatment in relation to the different forecast probabil- 
ties in season 10. The figure also illustrates the optimal WTP of a risk-neutral individual, if
he forecasted probabilities are expected to reflect the underlying probability of an extreme
eason (red line). We use this as a benchmark to which we compare the predicted WTP of
ur estimated models. If no warning is issued (with a forecast probability < 0.6), predicted
TPs are mostly above the benchmark, which is expected as most individuals are risk averse

Dohmen et al. 2011 ). However, if a warning is issued (with forecast probabilities ≥ 0.6),
redicted WTPs are mostly below the benchmark, suggesting that subjects systematically 
nticipate lower probabilities than communicated in the forecasts (under the assumption 
hat individuals are on average risk averse). 
The treatment effects are relatively small compared to the effects of the forecasted prob-

bilities. We observe that overall, the higher the forecasted probability, the higher the pre-
icted WTP ( Fig. 4 ). These relative effects of the forecasted probabilities are overall stronger
han the treatment effects measured as Cohen’s d (0.2 < d > 1.09, see Table S10 ; treatment
ffects range between −0.15 < d > 0.23). The behavioural responses to the forecasted prob-
bilities are thus stronger than the impact of false or missed alarm-prone forecast systems
n individual behaviour. 
More frequent false alarms do not affect the sensitivity to forecasted probabilities, while
ore frequent missed alarms to some extent do. In case that no warning is issued, the near-

dentical slopes of the treatments indicate that the sensitivity to the forecast probabilities
s very similar across treatments (see Fig. 4 , left section). Similarly, if a warning is issued,
 24
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Figure 4. Predicted mean WTP in season 10 per treatment with 95 per cent confidence interval bands. CTRL 
treatment is the control treatment with accurate forecasts, FA the false alarm-prone and MA the missed 
alarm-prone treatment. The red line shows the theoretically predicted WTP for a risk-neutral, rational 
individual for reference. The left section refers to the cases if no warning was issued with a forecasted 
probability for an extreme season below 0.4. The right section refers to the cases if a warning was issued 
with forecasted probability for an extreme season above 0.6. See Table S9 for the corresponding Tobit 
regression models. 
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he predicted WTP in FA and CTRL is nearly parallel indicating that the sensitivity to the 
robability in both treatments is similar ( Fig. 4 , right section). In contrast, the slope of 
A compared to both CTRL and FA is flatter, and thus WTP is, on average, less sensi- 

ive to the forecasted probability if individuals receive a warning in season 10 in MA. The 
orresponding interaction term between the MA treatment and the forecast probability in 
able S9 , Models 3 and 4, is negative and statistically significant as opposed to the re- 
aining treatment-probability interactions. In the MA treatment, WTP is generally higher 

ndependent of the forecast probabilities (the MA cross-effect found above). 
Our results on the sensitivity to forecast probabilities emphasise the importance of com- 
unicating probabilities as part of forecasts (LeClerc and Joslyn 2015 ; Taylor et al. 2015 ).
ven if repeated false alarms lead to lower investment in adaptation if a warning is issued,
ndividuals still increase their investment in adaptation with higher forecasted probabili- 
ies of extreme climate conditions ( Fig. 4 , right section). This remaining sensitivity to the 
orecast probabilities potentially limits their economic losses as high probability forecasts 
till motivate individuals to invest more in adaptation, even if they are exposed to a false 
larm-prone system. However, individuals with a history of missed alarms are less likely 
o adjust their adaptation to the forecasted probabilities if they receive a warning, which 
akes them prone to overshoot their investments and potentially leads to welfare loss in 
he long run. The relative advantage of probabilistic forecasts as discussed in the literature 
Fundel et al. 2019 ; LeClerc and Joslyn 2015 ; Losee and Joslyn 2018 ) may therefore not 
aterialise if forecast systems have provided frequent missed alarms in the past. 
24
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. Conclusions 

his paper uses an online experiment to explore the extent to which exposure to inaccu-
ate forecast systems affects individual adaptation decisions in response to forecasts. To this
nd, we systematically manipulated the accuracy of the forecast systems that result in the
epeated experience of either false or missed alarms and explore: (1) the existence and mag-
itude of both main effects and cross effects of these inaccuracies, (2) the persistence of these
ffects, and (3) the magnitude of these effects relative to the responsiveness to forecasted
robabilities. 
Overall, we find evidence that exposure to inaccurate forecast systems affects individuals’ 

esponsiveness to forecasts. The first main finding of this study is related to the systematic
nalysis of false and missed alarm-prone forecasts on behaviour when a warning and no
arning is issued (relative to a more accurate forecast system). False alarm-prone forecast
ystems decrease individual adaptation investment if a warning is issued (the cry-wolf effect ).
n contrast, missed alarm-prone forecast systems increase individual investments irrespec- 
ive of whether or not a warning is issued. Disentangling the effect of false and missed alarm
istories, we find that false alarms have a relatively persistent negative impact on adapta-
ion behaviour, while more frequent missed alarms affect behaviour relatively stronger than 
arlier ones. 
Taken together, these results suggest that there are systematic differences in the mecha-

isms how false and missed alarms affect behaviour. One compatible explanation would be
hat false alarms lead individuals to update their beliefs about the accuracy of the warning.
s such, only trust in the warning itself is affected, but not trust in the forecasted proba-
ility. As a result, individuals are less likely to comply with an issued warning but still rely
n the forecast in the absence of a warning. Individuals exposed to missed alarms, on the
ther hand, potentially update their beliefs about the forecasted probabilities and assume 
hat the forecasts generally underestimate the risk of an extreme season. Further research
s warranted to systematically test this hypothesis. Ideally, such research would elicit the
eliefs about the accuracy of the warnings and forecast probabilities separately, to assess if
alse and missed alarm-prone forecast systems have different impacts on the two types of
eliefs. This would also allow to explore how beliefs ultimately affect adaptation behaviour.
n the broader literature, it has also been debated to what extent individuals attach more
eight to positive than negative signals in belief updating (e.g., Coutts 2019 ; Sharot et al.
012 ), which could provide an interesting avenue for future studies. 
Our second main finding relates to the importance of forecast system inaccuracies rel-

tive to the impact of the communicated forecast probabilities. We find that the observed
reatment effects are relatively small in relation to the effects of the forecasted probabilities.
ven if the forecast system is prone to false alarms, individuals respond to an increase in the
orecasted probabilities with larger adaptation investments. However, if individuals experi- 
nce frequent missed alarms, their sensitivity to the forecasted probabilities is affected. Once
 warning has been issued, they exhibit relatively high adaptation investments irrespective 
f the forecast probability. Overshooting adaptation investments is, hence, becoming more 
ikely in cases of low probability warnings. 
Our findings provide insights for the design of forecast and warning systems, for exam-

le, of extreme weather events such as heavy rain and hurricane warnings, or for seasonal
eather forecasts (e.g., for farmers). Firstly, practitioners who are designing forecast systems 
ommonly face the decision whether to decrease the likelihood of missed alarms at the costs
f increasing the frequency of false alarms (Brooks and Correia 2018 ). Survey evidence from
otential users of seasonal weather forecasts in Europe indicates that there is a substantial
illingness to accept high false alarms rates, in order to be warned of extreme conditions
Taylor et al. 2015 ). Our research highlights that both types of inaccuracies affect behaviour
n the long run, indicating that no panacea exists when designing forecast systems. Whether
 024
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ore frequent false or missed alarms cause more harm in the long run inevitably depends 
n the case-specific stakes at risk and the level of adaptation costs. Hence, our experiment 
an provide only limited insights. Nonetheless, it highlights that decision-makers, such as 
orecast designers should carefully assess the users and their risk profiles, as well as potential 
osses and adaptation costs before deciding on the communication and design of forecasts 
nd warnings. To this end, also more user-specific research is needed, for example, with 
armers as potential users of seasonal weather forecasts. 
Secondly, our findings highlight the benefits of using probabilistic forecasts that commu- 

icate the probabilistic nature of forecasts. This recommendation is in line with an emerging 
iterature on the advantages of probabilistic instead of deterministic forecasts (Fundel et al.
019 ; LeClerc and Joslyn 2015 ; Losee and Joslyn 2018 ). Despite exposure to false and 
issed alarm-prone forecasts, individuals remained overall receptive towards the forecast 
robability. The higher the likelihood of an extreme season, the higher the adaptation in- 
estment. This effect is relatively strong compared to the long-term impact of missed and 
alse alarms. 
Lastly, we would like to discuss the external validity of our study. We decided to use an 

nline experiment instead of a lab experiment because the former are known to be more 
ost-efficient, allow for much larger samples with higher power, and participants are more 
epresentative of the general population than students (Palan and Schitter 2018 ; Peer et al.
017 ). Nonetheless, it should be acknowledged that the composition of the participants’ 
ample and the constructed experimental environment limit the external validity of the out- 
omes of this study (Al-Ubaydli and List 2015 ). Yet, we see our experiment as a valuable 
rst step to the understanding of general behavioural patterns that are important to under- 
tand the implications of forecast inaccuracies on climate change adaptation behaviour. A 

etter understanding of these general behavioural patterns can improve forecast and warn- 
ng systems’ design. In the future, additional (more strongly framed) experiments with users 
f domain-specific seasonal forecasts or early warning signals (e.g., with farmers) will al- 
ow us to expand our knowledge of the implications of forecast inaccuracy on adaptation 
ehaviour. 
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nd Notes 

 Overall, we believe that caution is warranted when generalising findings from automated machine
alerts to another behavioural domain. Machine alerts require immediate attention, so it is an intuitive
decision made within seconds and often not based on conscious deliberation (e.g., alarms of life support
machines in hospitals). In contrast, responses to seasonal forecasts or extreme weather warnings are
typically slower and more deliberate (cf Kahneman 2011 ).

 Alternatively, we could have allowed for continuous adaptation decisions that would either reduce the
risk of being affected by an extreme season or the damage caused by an extreme season. However,
this would require explaining the function relating investment amounts to risk/damage reduction and
would have increased the complexity of the experiment. We therefore opted for the BDM method,
which allows to elicit a continuous measure with a relatively simple mechanism.

 To balance the a priori probabilities such that participants in all three treatments have a chance to
experience all four forecast cases (accurate warning, false alarm, accurate no-warning and missed alarm)
and to have a level of forecast accuracy similar to real-world forecast systems which is around 33 per
cent (National Institute of Water and Atmospheric Research (NIWA) 2016 ), we match option 11 and
12 in the FA treatment with underrating forecast probabilities and option 1 and 2 in the MA treatment
with overrating forecast probabilities.

 The false alarm prone system is more sensitive (likelihood to issue a warning prior to an extreme season)
with 72 per cent than specific (likelihood to issue no warning prior to a normal season) with 6 per cent.
The numbers for the missed alarm-prone system are the opposite (sensitivity 6 per cent, specificity 72
per cent). Both forecast systems have the same accuracy with 39 per cent (likelihood to issue correct
warnings and no-warnings) which is lower than in CTRL (72 per cent).

 Individuals also face a third uncertainty, namely which season is payout-relevant. This is determined
by a lottery at the end of the experiment. Since the probabilities are evenly distributed and this is
known by participants, we assume this uncertainty to not affect individual decision-making apart from
incentivising the decision in each season. The actual loss of income and wealth in the real world that
is hence not present in our experiment may influence future decisions regarding individuals’ responses
to forecast systems as well. However, this aspect is not the focus of this study and the design of our
experiment excludes income and wealth effects as potential drivers.

 Our experimental design is related to two streams of experimental research on decision-making un-
der uncertainty in psychology and behavioural economics, but features key differences that may limit
the transferability of previous findings. Firstly, a vast number of experiments have focused on the role
of biases and heuristics in the context of Bayesian belief updating. These experiments are different to
our experiment insofar as our participants do not receive information about possible ‘states of the
world’, the frequency of particular signals in each state, or prior probabilities which state is true (see
Benjamin 2019 ). Furthermore, these experiments typically elicit individuals’ a priori and a posteriori
beliefs, whereas we focus on individuals’ behavioural response in terms of adaptation behaviour, which
 24
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is in our view the more relevant outcome when it comes to seasonal forecasts and extreme weather 
warnings. Secondly, some individuals may erroneously believe that independent events are instead con- 
ditional on each other, known as the gambler’s fallacy (Rabin and Vayanos 2010 ). In our experiment,
both seasonal outcomes and forecasts are independent from the outcomes and forecasts of the prior 
seasons. However, in accordance with the gambler’s fallacy, individuals could erroneously believe that 
an inaccurate forecast (or extreme season) is less likely in the future if they have experienced inaccurate 
forecasts (or extreme seasons) before. This bias has been predominantly observed in individuals facing 
decisions with risk, where they know the underlying probabilities of events. However, individuals in 
our experiment do not know the underlying probabilities and instead face several layers of uncertainty,
which leads us to assume that the gambler’s fallacy is likely not applicable.

 We calculated Cohen’s d by using the Stata command ‘esize’ for two independent samples using groups 
from the Stata 15 software (StataCorp 2017 ). The subtraction of the means of WTP in season 10 is
divided by the pooled standard deviation of the relevant two sub-samples.

 Please note that we do not compare the effect of receiving a warning to the effect of an increase in
the communicated forecasts. Since forecast probabilities of ≥ 60 per cent are always associated with 
a warning (and vice versa), we cannot disentangle these two effects. We therefore estimate separate 
models conditional on receiving and not receiving a warning. We can therefore estimate the impacts of 
an increase in the forecast probability for the two ranges: < 60 per cent and ≥ 60 per cent.
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