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A B S T R A C T   

Researchers and engineers have increasingly used Deep Learning (DL) for a variety of Remote Sensing (RS) tasks. 
However, data from local observations or via ground truth is often quite limited for training DL models, espe-
cially when these models represent key socio-environmental problems, such as the monitoring of extreme, 
destructive climate events, biodiversity, and sudden changes in ecosystem states. Such cases, also known as small 
data problems, pose significant methodological challenges. This review summarises these challenges in the RS 
domain and the possibility of using emerging DL techniques to overcome them. We show that the small data 
problem is a common challenge across disciplines and scales that results in poor model generalisability and 
transferability. We then introduce an overview of ten promising DL techniques: transfer learning, self-supervised 
learning, semi-supervised learning, few-shot learning, zero-shot learning, active learning, weakly supervised 
learning, multitask learning, process-aware learning, and ensemble learning; we also include a validation 
technique known as spatial k-fold cross validation. Our particular contribution was to develop a flowchart that 
helps DL users select which technique to use given by answering a few questions. We hope that our review article 
facilitate DL applications to tackle societally important environmental problems with limited reference data.   

1. Introduction 

Over the last decade, Artificial Intelligence (AI) technologies, espe-
cially Machine Learning (ML) and Deep Learning (DL), have been 
increasingly used for understanding and predicting human-environment 
interactions (LeCun et al., 2015). ML is a subset of AI that implements 
algorithms which use data to learn how to perform a specific task 
without being explicitly programmed. DL is a subset of ML that focuses 
on training deep neural networks capable of implicit feature extraction 
from unstructured data, such as images, text, and sound (Chai et al., 
2021; Lauriola et al., 2022; Sztahó et al., 2021). Scientists have actively 
employed DL for image processing and data analysis, recently providing 
innovative solutions in the field of Remote Sensing (RS) to detect and 
classify objects on Earth. This study defines RS as the use of satellite and 
aircraft-based sensors. 

The expanding field of RS provides an abundance of data streams 
from numerous sources. This, combined with the growing array of 
available data products, delivers a wide range of data that is useful for 
addressing various problems. Among them, Landsat, has been opera-
tional since the early 1970 s and provides a unique long-term record of 
satellite imagery with a 30-metre spatial resolution. The Copernicus 
programme’s Sentinel-2 system generates data with a 10-metre spatial 
resolution, offering a balance between spatial detail and data continuity 
as well as radar imagery based on the Sentinel-1 mission. One recently 
launched hyperspectral mission, the Environmental Mapping and 
Analysis Program (EnMap), stands out with over 200 spectral bands and 
a 30-metre spatial resolution; this offers unique opportunities for re-
searchers to map ecosystems and their changes in detail. In addition, 
commercial platforms, such as SkySat, provide extremely high- 
resolution data with a spatial resolution of less than one metre (Fruth 
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et al., 2018; Murthy et al., 2014). Together, these diverse RS platforms 
contribute to a more comprehensive understanding of the Earth’s sur-
face across different scales and domains (Spoto et al., 2012). For this 
reason, these RS products are widely used to study local and regional 
environmental problems, including agricultural productivity (Sawada 
et al., 2020; Taiwo et al., 2023), the water quality of lakes and ponds 
(Bhateria and Jain, 2016), the ecological patterns of forests and grass-
lands (Zhu et al., 2023), and damage to natural, cultivated, and 
inhabited land through extreme weather events. Since the spatial and 
temporal resolution of RS products is likely to continue increasing, DL 
applications are expected to become even more popular for solving fine- 
scale local issues where each local site has its own unique conditions and 
context (Bai et al., 2022b; Kattenborn et al., 2021; Ma et al., 2019a). 

Since DL algorithms have fewer inductive biases but larger param-
eter counts than conventional ML algorithms, DL models normally 
require a large amount of data for training (Adugna et al., 2022; Akar 
and Güngör, 2012; Fang et al., 2021; Sharma et al., 2013; Thanh Noi and 
Kappas, 2018). DL methods usually learn from raw data and skip manual 
feature engineering steps; this means that human efforts are not needed 
to quantitatively measure some attributes from the data. For example, 
DL algorithms can learn from image data directly, instead of using the 
extracted shape and size of an object in an image. When sufficient data is 
available, DL methods can automatically extract the meaningful features 
from low to high levels for prediction (Zhang et al., 2019a). However, 
although raw data of common events is generally abundant, the lack of 
sufficient labelling information makes the collection and preparation of 
a large reference dataset (Russakovsky et al., 2015) a persistent chal-
lenge for many RS applications. Moreover, certain scenarios also lack 
available reference data. For instance, biodiversity monitoring needs a 
large number of human observers well trained in taxonomic classifica-
tion, which often prevents observation campaigns from generating 
datasets large enough for sound DL applications. Furthermore, anomaly 
events such as climate extremes and disease outbreaks are too rare for 
researchers to acquire sufficient data coverage. Their sample size is often 
as small as n = 1–300, which is usually insufficient for DL application 
(Kokol et al., 2022). 

The gap between the large data availability of RS imagery and the 
small data (Brigato and Iocchi, 2020) availability of several important 
real-world environmental problems (referred to as the “small data 
problem”) is a very common challenge. It is hard to acquire the ground- 
truth response labels associated with the input features. This makes 
sense, because the goal of most of these studies is to develop a model 
designed to predict a specific response variable from the various 
observed input features. However, traditional DL training methodolo-
gies require a large initial set of labelled data to train predictive models. 
It is increasingly clear that this is an emerging problem for AI, and re-
searchers have proposed several novel DL techniques that require less 
labelled data (e.g., transfer learning and self-supervised learning). 
However, to the best of our knowledge, there is no review article that 
offers an overview of these techniques and their applications in the RS 
domain. 

In this review, we show that the small data problem in the RS domain 
is a common technical challenge (particularly as it relates to DL) and 
then offer an overview of ten promising DL techniques to address this 
problem with different conditions. First, we explore how the small data 
problem can be defined. Second, we describe a few common elements of 
the previous studies. Third, we present the advantages and disadvan-
tages of using a small dataset. Last but not least, we provide an overview 
of ten DL techniques that can address the small data problem. Our 
particular contribution was the development of a flowchart that guide 
users to effectively identify which technique to use in their use cases just 
by answering a few questions. 

We believe that the small data problem is a common – but still 
understudied – issue for recent RS applications, and therefore, this re-
view should serve as a valuable resource for supporting DL applications 
in the RS domains while addressing a broader range of environmental 

problems where reference data is often hardly available. 

2. What is the small data problem? 

We argue that a dataset can be considered large (not small) when the 
dataset consists of > 100,000 annotated samples, or when it covers the 
entire probability distribution in a high-dimensional space. For example, 
there are several free large datasets that can be used for DL: the 
ImageNet dataset, containing over 14 million annotated images (Rus-
sakovsky et al., 2015), the Common Objects in Context (COCO) dataset, 
containing 330 K images, 1.5 million object instances, and 80 object 
categories (Lin et al., 2015), and the OpenImages dataset, containing 
over 9 million images (Kuznetsova et al., 2020). These datasets can be 
used for training a large DL model with thousands to millions of pa-
rameters. In the RS domain, land use / land cover classification would be 
a typical example. In these cases, model generalisability and trans-
ferability are expected to be high. Generalisability refers to how well a 
DL model can make accurate predictions on new, unseen data (Habib 
et al., 2023; Krois et al., 2021; Shah et al., 2022), and transferability is 
the ability of a trained model to perform well on a task or dataset 
different from the one on which it was originally trained (Romão et al., 
2020; Wang et al., 2019b; Zhang et al., 2020). 

In contrast, data is more likely to be regarded as small (or not large 
enough) when the dataset consists of < 1,000 annotated samples, the 
dataset covers the distribution poorly, or the number of samples is ex-
pected to be insufficient when using DL to find meaningful features. It is 
noteworthy that not only the total data volume but also class imbalance 
and skewed data distribution can be regarded as a part of the small data 
problem. This is a frequently occurring situation, but it can be a sig-
nificant challenge for training deep neural networks (Adadi, 2021; Du 
et al., 2019). A relatively small dataset can negatively affect the per-
formance of a DL model due to overfitting, which is when a model 
performs well with the training data but poorly on new, independent 
testing data. This therefore results in low levels of model generalisability 
and transferability. A common case within the RS domain (but partic-
ularly relevant) is that the data can be “extra-small”, meaning that the 
dataset consists of just 1–10 annotated samples (e.g., historical natural 
disasters and disease outbreaks). The size would be sufficient for human 
beings to start guessing what features can uniquely describe the target, 
but it would not be sufficient for automated, implicit DL feature 
extraction. 

In the DL domain, the Tiny ImageNet Dataset (also known as 
MicroImageNet) contains 500 images for each class (of 200 classes), 
indicating that DL scientists regard this level of data size as small. Ac-
cording to the articles we reviewed in the following section, the majority 
of the studies targeted classification of a few types, and many of them 
collected less than 500 images for each class (Blekos et al., 2020; Dyr-
mann et al., 2016; Freeman et al., 2019; Guirado et al., 2017; Hong-Yu 
et al., 2023; Li et al., 2022b; Liu et al., 2022d; Liu and Zheng, 2017; 
Malambo et al., 2019; Pang et al., 2020; Putra and Wijayanto, 2023; 
Safonova et al., 2019, 2021, 2022; Sapkota et al., 2022; Windrim et al., 
2019; Zenkl et al., 2022). 

There should not be a strict divide between “small” and “large” when 
training DL models, because the size of the dataset required may depend 
on various factors such as the complexity of the task and the number of 
features in the data. Typically, the challenges stemming from a limited 
amount of labelled data increase with system complexity, the rarity of 
observations (e.g., endangered biological species), and the coverage of 
geographic area. Also, classification and detection problems may need 
less data than regression problems. Nevertheless, a convincing theoret-
ical argument for separating the two could be made based on whether a 
trained DL model exhibits a “double descent”, which means that a 
model’s performance initially improves with increased complexity, 
worsens, and then improves again, contradicting the traditional expec-
tations of a bias-variance trade off (Nakkiran et al., 2019). When the 
dataset is not large enough, the model tends to remember all possible 
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case-by-case instances without generalisation (and thus overfit). How-
ever, once the dataset is large enough, the DL model starts learning a 
handful of general features (Elhage et al., 2022). 

In RS, the “small data” problem is often associated with the chal-
lenges in collecting reference data, which is labour-intensive and 
expensive. Data collection is often limited to small areas and short 
temporal coverage. Collected data may cover the spatial variability and 
heterogeneity sparsely when targeting diverse environmental condi-
tions. Moreover, when one attempts to integrate multiple datasets, data 
integration often faces differences in data collection protocols, 
completeness, consistency, and compatibility (Wu et al., 2019b). This 
challenge can further prevent from collecting a large amount of labelled 
reference data from the viewpoint of data harmonisation. There are 
standardised initiatives like GeoWiki (Fritz et al., 2012), Joint Experi-
ment for Crop Assessment and Monitoring (JECAM) (Borg et al., 2018), 
and European-wide land survey LUCAS (Land Use/Cover Area frame 
Survey) that gather substantial reference data (Martino and Fritz, 2008). 
However, their primary concentration is on land cover and land use. 
Specifically, LUCAS also provides soil information (Panagos et al., 
2013), but primarily over Europe. Apart from land use/cover, there is a 
notable data deficiency for other applications, such as crop yield and 
vegetation biomass estimation especially with high spatial granularity. 
Additionally, achieving a balanced geographic distribution of this data 
remains challenging as hydrometeorological, agricultural, and various 
other monitoring networks continue to be sparsely distributed across 
many regions (Sheffield et al., 2018). 

The small data problem may be relevant to the “small n, large p (n < 
p)” problem in statistics, where the sample size n is much smaller than 
the number of parameters p (also known as the “short, fat data” prob-
lem). As a rule of thumb, each parameter can be reasonably estimated 
with n = 5–10. According to this logic, it is then possible to estimate how 
many samples might be needed for a given DL model. Even one of the 
simplest convolutional neural network (CNN) architectures, LeNet-5 
(two convolutional and three fully connected layers), still has about 
60,000 parameters (Lecun et al., 1998). The most popular CNN archi-
tectures have 10 million to 100 million parameters (e.g., AlexNet, VGG, 
Inception, and ResNet), (Khan et al., 2020), and there is a trend towards 
increasing the number of parameters for achieving better performance 
(e.g., large language models). For instance, vision transformers (Doso-
vitskiy et al., 2021) have recently gained more and more traction, with 
some models consisting of more than 20 billion parameters (Dehghani 
et al., 2023). 

3. Deep learning applications in RS with the small data problem 

This section is a literature survey describing how common the small 
data problem is in the RS domain. The aim of this section is not to have a 
comprehensive overview of all relevant literature but to offer some 
common issues with the small data problems. Our approach may have 
omitted several articles that also addressed the small data problem, but 
the goal here was not to cover every single previous study. Instead, we 
have attempted to describe how broad the issue is, and such an effort 
may not be worthwhile, given the speed of scientific progress, where 
today’s comprehensiveness may be far less important in the next couple 
of years. 

Initially, we made a Web of Science Core Collection search withapp 
the following keyword combination in the “all fields” category: {“remote 
sensing” AND (“deep learning” OR “convolutional neural” OR “recurrent 
neural”) AND (“small data” OR “small sample” OR “limited sample” OR 
“limited data”)}. 

We found 161 articles as of 18 January 2023. We first examined all 
titles and abstracts and discarded irrelevant articles. Moreover, we 
relied on snowball sampling of relevant papers from the reference lists of 
the literature that had not emerged via the systematic search but were 
relevant to the main goals of this review. This resulted in 80 additional 
articles. The list of articles with detailed information is available at DOI 

10.13140/RG.2.2.33529.24161. 
As a general publication trend over time, we found that the number 

of papers, as well as the spatial extent of interest, have increased over 
the years; most papers were related to vegetation monitoring (Fig. 1). In 
addition, we summarise and describe the reviewed publications in the 
following subsections based on five key findings: 

(1) Various DL algorithms with various RS data sources have been 
used for a few common problems. 

(2) The small data problem is a scale-dependent issue. 
(3) Data augmentation and transfer learning are popular, but other 

techniques are rarely used. 
(4) Reported model performances are suspiciously high, indicating a 

lack of appropriate evaluation schemes. 
(5) Using a small dataset has several attractive benefits. 

3.1. Various DL algorithms using different RS data sources are used for a 
few common problems 

RS and DL have had a major impact in many areas, particularly in 
vegetation-related applications (49 of the 80 articles), followed by land 
use / land cover classification (16 articles), and vehicle detection or 
classification (5 articles). The majority of the studies conducted classi-
fication (44 articles), followed by segmentation (19 articles), and object 
detection (17 articles). The majority (86 %) of the studies had 1,000 or 
fewer annotated samples per class (median: 242 samples per class; mean 
616). Few studies addressed a regression problem, but this does not 
necessarily indicate a lack of research on RS and DL for regression. 
Rather, it suggests that such tasks are more complex and require larger 
labelled datasets, as evidenced by the reliance on larger amounts of 
labelled data in several published studies (Osco et al., 2021; Yuan et al., 
2020). 

Vegetation-related applications included mapping crop type (Lange 
et al., 2022; Li and Stein, 2020; Odebiri et al., 2022), as well as moni-
toring plant health (Feng et al., 2022a; Ho et al., 2022; Safonova et al., 
2019; Xue et al., 2022b; Astolfi et al., 2021) and predicting crop yields 
(Kim et al., 2021; Li et al., 2022a; Pang et al., 2020; Sagan et al., 2021). 
For instance, around 800 labelled data points were used for classifica-
tion of crops using Sentinel-1 data (Zhao et al., 2019), and around 300 
field data points were used for yield estimation with Planet and 
WorldView data from 2D and 3D CNN (Sagan et al., 2021). In addition, 
RS has contributed to biodiversity conservation by its use in analysing 
complex ecosystems, tracking habitat changes, and identifying plant 
species. For example, (Muro et al., 2022) used Sentinel-1 and − 2 data in 
a DL model to predict plant biomass and species richness, using around 
500 observations. Another example is a study by (Lange et al., 2022), 
where CNNs were used to map grassland use intensity. 

Besides vegetation studies employing global satellite data, various 
other RS sources have been used. For example, one study focused on 
mapping urban areas used in high-resolution satellite imagery to create 
detailed maps of buildings and infrastructure (Li and Stein, 2020), while 
another study focused on monitoring changes in vegetation cover used 
in lower-resolution imagery from a different satellite sensor (Lioutas, 
2020). In addition, a study of land cover mapping used a combination of 
different data sources, including aerial imagery, LiDAR, and field data 
(Sanlang et al., 2021; Uhl et al., 2021). Hyperspectral RS, a technology 
that acquires high-dimensional spectral information across hundreds of 
contiguous spectral bands, is another popular data source. However, 
obtaining manual annotations for hyperspectral data is challenging, 
leading to an insufficient number of labelled pixels (Chen et al., 2015; 
Pan et al., 2016). While DL techniques may hold potential for hyper-
spectral image classification (e.g., Spectral MugNet), further research is 
required to explore their effectiveness in scenarios with limited data (Jia 
et al., 2021; Pan et al., 2018). 

We also found that several studies used the same dataset repeatedly 
by using different DL algorithms. One series of studies (Ding et al., 2022; 
Feng et al., 2022a; Gao et al., 2021a; Kang et al., 2019; Wang et al., 
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2020b; Wu et al., 2019a; Xu et al., 2022; Xue et al., 2022b; Zuo et al., 
2020; Blekos et al., 2020) used the same hyperspectral images (HSIs) 
from a dataset held by the Italian University of Pavia. Some of these 
authors compared these HSIs with other available HSI datasets: Salinas – 
six papers (Ding et al., 2022; Gao et al., 2021b; Wang et al., 2020b; Wu 
et al., 2019a; Xue et al., 2022b; Zuo et al., 2020), Indian Pines – six 
papers (Ding et al., 2022; Feng et al., 2022a; Kang et al., 2019; Wang 
et al., 2020b; Wu et al., 2019a; Xue et al., 2022b; Zuo et al., 2020), 
Kennedy Space Center – two papers (Gao et al., 2021a; Xu et al., 2022), 
and Houston – two papers (Feng et al., 2022b; Xue et al., 2022b). 

Analysing the same dataset using different approaches is a reason-
able way to confirm how well a new technique may perform in com-
parison to previous ones, but this repetition also indicates that similar 
investigations of various issues is still challenging, probably due to the 
small data problem. Nevertheless, we found that a few studies have 
investigated the monitoring of extreme events, including natural fire 
occurrences (Kato et al., 2021; Xue et al., 2022a) and algal bloom events 
(Shin et al., 2022). We expect future studies to address other equally 
important global change events, such as conflicts, energy issues, and 
biodiversity problems. 

3.2. The small data problem is a scale-dependent issue 

The importance of spatial resolution and spatial extent in RS data is 
another factor that directly influences the level of detail captured and 
the subsequent insights that can be derived from the imagery (Katten-
born et al., 2019; Leitão et al., 2018). The small data problem becomes 
more pronounced when analysing high-resolution data, such as data 
obtained from Unmanned Aerial Vehicles (UAVs), which can offer 
centimetre-level granularity. This is because the fine-scale details 
captured in high-resolution imagery increase the variability and het-
erogeneity of the landscape, making it more difficult to generalise from a 
limited set of labelled examples. In contrast, satellite data with spatial 
resolution generally in the range of a few metres have different chal-
lenges related to labelled data. This relative lack of resolution can reduce 
the variability of the terrain and oversimplify the representation of 
features in the imagery. 

Different sources of data also exhibit different advantages and dis-
advantages related to their spatial extent. Satellite data typically covers 
a much larger area compared to UAV data. The spatial predictions 
generated from satellite datacan be reliable across vast regions if there is 
an adequate number of labelled samples and if their spatial distribution 
is representative of the entire area of interest (e.g., geographically iso-
lated areas). The distribution of labelled data plays a critical role in the 
performance and generalisation capabilities of DL models trained on RS 
data. In contrast, when working with high-resolution UAV data, the 
focus is more on capturing the fine-scale details and variations within a 
smaller area of interest. In this context, the challenge lies in accurate 
local measurements that reveal subtle differences. 

3.3. Data augmentation and transfer learning are popular, while other 
techniques are rarely used 

Data augmentation and transfer learning (TL) have become very 
common ways to improve models when applying DL techniques to RS 
data under conditions of small data. Our review found that 71 % of all 
studies employed some sort of data augmentation technique (Shorten 
and Khoshgoftaar, 2019) while TL was present in 14 works (Guirado 
et al., 2017; Reedha et al., 2022; Yu et al., 2022). Data augmentation is a 
technique to artificially expand a dataset by creating new samples 
through various transformations, such as rotation, scaling, and flipping, 
to improve a model’s generalisability and robustness. Transfer learning 
is a technique where a pre-trained model, often on a large-scale dataset, 
is fine-tuned for a different but related task or dataset, leveraging the 
previously learned features to improve generalisability. 

Various data augmentation techniques were used in most of the pa-
pers included in this review. The choice of data augmentation technique 
depends on the quantity, quality, and type of RS data. Most commonly, 
this method was applied to limited data from satellite imagery obtained 
from Landsat, WorldView, extremely high-resolution imagery, images 
from UAVs, and others. The most common methods of increasing RS 
data were: manual or automatic cropping of a large image or orthophoto 
image into small patches ranging from 15 × 15 pixels to 250 × 250 
pixels or more, geometric image transformations (resizing, cropping, 
rotation, horizontal reflection, etc.), and colour transformations 
(changing contrast, brightness, colour, applying various noise filters, 
etc.). Nevertheless, as we show in the practical recommendation section, 
other DL techniques exist, but they are still rarely used. 

3.4. Reported model performances are suspiciously high 

While it was challenging to compare the studies under review in 
terms of model performance because they reported different metrics, we 
found an interesting but potentially problematic trend throughout the 
previous works. In essence, many studies tended to report an over-
optimistic, overfit result, without testing model generalisability and 
transferability. 

One of the most popular metrics was Accuracy (59 papers). The 
following evaluation metrics were also frequently used: Precision (P) in 
39 papers, Recall (R) in 30 papers, F1 score (F1) in 28 papers, Kappa 
coefficient (k) in 16 papers, Intersection over Union (IoU) in 13 papers, 
mean Average Precision (mAP) in 10 papers, Sensitivity (S) in 3 papers, p- 
value by Freeman et al. (Freeman et al., 2019), Root Mean Squared Error 
by Wang et al. (Wang et al., 2022a) and Hong-Yu et al. (Hong-Yu et al., 
2023), Mean Absolute Percentage Error by (Barbosa et al., 2021), and Dice 
Similarity Coefficient by (Khan et al., 2021). Most papers used metric 
combinations (55 articles, 68 %). 

We found that the reported performance was extremely high. In 32 of 
the 59 articles reporting “Accuracy”, the score was 95 % or more. Ac-
curacy of 99–100 % was achieved in 11 studies. Measurements of 

Fig. 1. Overview of publication trends with studies using remote sensing with limited annotated data and deep learning since 2016. (A) is the number of peer- 
reviewed articles per year, (B) is the maximum spatial coverage increasing over time, and (C) is the relative proportion of focal topics. 
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“Precision” were higher than 0.98 in some studies. The F1 metric was 90 
or higher in at least 14 of the 28 papers. Some studies reported even 100 
% accuracy or an F1 metric of 100, which is a clear sign of overfitting. 
The tendency of these outstandingly high scores might result from the 
model evaluation scheme. Typically, the test dataset should be collected 
independently from the data collection used for model training and 
validation, and the model performance should be evaluated using the 
test dataset. Otherwise, the model test was done for the same, biased 
dataset, e.g., the test was not done in another region, spatial autocor-
relation was ignored, or the test was not done with data from other 
years. As a result, the models are neither generalisable nor scalable, but 
highly specialised for the particular data acquisition pipeline. Also, it is 
possible that augmented data was used in both training and test datasets. 
In the practical recommendation section, we suggest some promising 
solutions – cross validation in particular – to these problems. 

3.5. Using a small dataset has several attractive benefits 

It is often the case that it is impossible to obtain additional annotated 
data regardless of whether the researcher wants it or not: these include, 
for instance, studies that investigate rarely observed phenomena (e.g., 
climate extremes, rare species, and disease outbreaks), cover a specific 
narrow geographic space (e.g., a single agricultural field), are limited by 
time and resources (e.g., studies in low-income countries), or those that 
employ data recorded before digitalisation. However, this does not 
mean there are no advantages of using a small dataset to solve various 
RS problems by using DL. 

One of the biggest advantages of using a small RS dataset is faster 
training times. This can be particularly useful for prototyping and 
experimentation with different models and hyperparameters. With 
smaller datasets, multiple models can be trained in a relatively short 
time, making it easier to compare and select the best model (Althnian 
et al., 2021; Prusa et al., 2015). Another benefit is reduced memory 
requirements and less storage. The use of a smaller dataset reduces the 
memory requirements, making it possible to train on resource- 
constrained devices, such as laptops or embedded systems (Katsar-
agakis et al., 2020). A small dataset may also make it difficult to train 
(overly) complex models with many parameters. In these cases, simpler 
models may indeed be more suitable; they also have the advantage of 
being easier to train and validate the performance of the model (D’souza 
et al., 2020; Elsken et al., 2017; Keshari et al., 2018; Liu and Deng, 
2015). The use of a small dataset combined with a low-complexity 
model can still result in sufficient performance (Brigato and Iocchi, 
2020). Collecting and labelling an RS dataset is in some cases a complex, 
time-consuming, and costly task for research centres and organisations, 
which often leads to the use and preparation of a small set of available 
data. It could be drone data, digital camera imagery, or a few plots of 
satellite data. Thus, the use of a small dataset can reduce operating costs 
(Wang et al., 2023; Zhao, 2017). Finally, small datasets are easier to 
annotate, which is useful in cases where manual annotation is required. 

Of course, small datasets have downsides as well. The main disad-
vantage is the lack of generalisability and transferability due to over-
fitting (Liu et al., 2017a), resulting in poor performance when using 
unforeseen datasets (Bailly et al., 2022; Wu et al., 2021a; Power et al., 
2022). Small datasets also may be biassed (Althnian et al., 2021; Lones, 
2023; Schat et al., 2020). 

4. Practical recommendations for DL implementation strategies 

In the previous section, we noted that data augmentation and 
transfer learning are popular, but other techniques are also promising. 
To address this issue, this section offers practical recommendations on 
strategies for the implementation of DL. We introduce the following 
techniques: TL, self-supervised learning, semi-supervised learning, few- 
shot learning, zero-shot learning, weakly supervised learning, process- 
aware learning, multitask learning, and ensemble learning. The 

literature search in this section was conducted in the same way as the 
previous search for major issues. However, we added a query that was 
able to return studies applying one of the above-mentioned techniques 
(e.g., “transfer learning”, “semi-supervised learning”, “few-shot 
learning”) to the main search keywords. In addition, Table 1 shows a 

Table 1 
Summary of ten useful deep learning techniques + one validation technique for 
effectively analysing small datasets. No. corresponds to the subsection number 
in Section 4 in this article.  

No. DL technique Short description with potential advantages (+) and 
disadvantages (–) 

1 Transfer To use a model that is pre-trained using a large, relevant 
dataset after fine-tuning using the target dataset   
+) improved performance, reduced data requirements, 
enhanced generalisability   
–) risk of performance reduction if transferred to a 
different domain, unnecessarily large model size 

2 Self-supervised To build a model that is pre-trained using the unlabeled 
target dataset with self-created labels, followed by 
supervision with provided labels   
+) no label required for learning features, unlabelled data 
usability, enhanced generalisability   
–) computationally expensive, chance that a model stops 
learning with some methods 

3 Semi- 
supervised 

To use a mix of supervised and unsupervised learning for 
training a model with labelled and unlabelled datasets   
+) mixed use of labelled and unlabelled data, enhanced 
generalisability   
–) computationally expensive, over-fitting risk, sensitive to 
data quality 

4 Few-shot To teach a model to generalise for new tasks or problems 
with only a few labelled examples per class   
+) directly targeting small data problems, rapid model 
adaptation, enhanced generalisability   
–) limited task complexity, over-fitting risk, sensitive to 
data quality 

5 Zero-shot To use a few-shot learning model that is trained to 
recognise objects/classes it has never seen before   
+) adaptable to an unknown class or entity, enhanced 
transferability   
–) extremely sensitive to data quality of new instances 

6 Active To train a model while selecting informative examples, 
labelling them, and adding them to the training dataset   
+) reduced labelling cost, efficient training for a specific 
task   
–) over-fitting risk, lower generalisability 

7 Weakly 
supervised 

To train a model by using data that are labelled partially, 
noisily, or imprecisely   
+) reduced labelling cost, allowing inaccurate label 
(uncertainty of ground truth) for scalability   
–) computationally expensive, less accurate than (fully) 
supervised learning 

8 Multi-task To develop a model that learns general features useful for 
solving multiple tasks   
+) efficient training for multiple tasks, enhanced 
generalisation, reduced data requirement   
–) modeling complexity, task interference, limited 
scalability 

9 Ensemble To combine many individual models that learned 
differently from each other for prediction   
+) enhanced generalisability, robustness for data 
perturbation, accounting for uncertainty   
–) computationally expensive, lower interpretability than a 
single model 

10 Process-aware To incorporate process-based regulation into learning   
+) relying on mechanistic understanding, enhanced 
transferability   
–) risk of performance reduction if relying on a wrong 
assumption 

11 Cross 
validation 

To train and validate a model for several times using 
alternating partitions for training and validation to avoid 
gaining an over-optimistic model performance score   
+) less biassed model evaluation, enhanced 
generalisability   
–) computationally expensive  
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succinct summary about the advantages and disadvantages of each DL 
technique for use with small datasets. We found 37 articles as of 16 
February 2023 (Fig. 2). We also present a practical flowchart for 
deciding which algorithm to use in each specific use case: We believe 
that this flowchart is a unique contribution to DL users as it can help 
identify which techniques to use for different use cases in a simple way 
(Fig. 3). We do not explicitly cover other methods such as data 
augmentation and regularisation, since they have been widely covered 
in various literature, such as by the work by (Shorten and Khoshgoftaar, 
2019). 

4.1. Transfer learning 

As described before, TL is a popular technique that derives learning 
from one task and reuses it to solve another (similar) task. As (Iman 
et al., 2022) have explained TL is widely used in labelled dataset fields 
such as radar images, medical images, malware classification, facial 
emotion recognition, mechanics, vision, human activity recognition, 
civil engineering, Natural Language Processing (NLP), military, human 
sciences/psychology, chemistry, security, physics/astrophysics, and 
telecommunications. 

Typically, TL takes place when a neural network is pre-trained on a 
large dataset, such as ImageNet (Russakovsky et al., 2015), and then its 
weights are used to fine-tune it on a smaller dataset for a specific task 
(Fig. 4). TL can also be used as a feature extraction method to develop a 
second model that can be trained on the target data. The idea of TL is to 
apply knowledge from the source task to the target task, potentially 
improving performance, reducing the need for large training data, pre-
venting overfitting, reducing the otherwise huge computation cost, and 
saving time (Rawat and Wang, 2017). Pre-training on a general dataset 
is particularly effective when the task-specific dataset is small or when 
there is limited labelled data available. 

We found three ways that TL was used in the literature: fine-tuning a 
pre-trained model, using pre-trained features as input for a new model, 
and combining pre-trained models. Fine-tuning involves taking a pre- 
trained model and training it further on the target task (Dong et al., 
2021; Ziegler et al., 2020). Using pre-trained features means that the 
output of one or more layers of a previously trained model is used to 
develop a new model trained on the target task. Combining pre-trained 
models involves training multiple pre-trained models on related tasks 
and then subsequently combining them to make predictions about a 
different, previously unexplored phenomenon. 

TL is already actively used to solve a variety of problems in RS when 

the dataset is small. We found a total of 14 papers regarding the use of TL 
in RS on a small sample. For example, a paper by (Wang et al., 2018b) 
proposed a DL framework for RS image registration based on TL that 
would reduce the huge computational cost in the training stage, speed 
up the framework, and achieve additional performance gains. The ex-
periments conducted on seven sets of RS images acquired by RADAR-
SAT, SPOT, and Landsat showed that the proposal improved registration 
accuracy by between 2.4 % and 53.7 %. 

(Zhang et al., 2019b) used TL to classify HSI due to very limited 
training data and the massive parameters of end-to-end 3-D lightweight 
models. Moving to the problem of radar-jamming detection (Hou et al., 
2022) and (Lv et al., 2022) separately proposed methods based on TL. In 
(Character et al., 2021), researchers used TL not only to compensate for 
a small dataset (Lidar and Sonar), but also to address false positives by 
training the YOLOv3 model on both shipwrecks and background 
topography. Another example was forest-fire detection using YOLOv5 
by (Xue et al., 2022a), improving the performance of mAP@0.5 by up to 
10.1 %. (Wang et al., 2022b) applied TL to weed density extraction 
based on few-shot learning through UAV and multispectral images in an 
ecological irrigation area using a pre-trained AlexNet algorithm. 

A kind of TL known as domain adaptation was applied to synthesise 
training data under diverse environmental conditions with automatic 
labels using YOLOv3 (Zhao et al., 2021b). The results from that paper 
showed that their proposed method improved bale detection. Moreover, 
this approach could be easily scaled to many other crop field objects. 
(Chen et al., 2022) used the Faster R-CNN domain adaptation for aircraft 
detection on the DOTA dataset. In (Yu et al., 2022), the authors showed 
that their method based on TL could accurately extract terraced field 
surfaces and segment terraced field boundaries with an overall accuracy 
above 93.12 %. 

In another experiment, TL solved the problem of poor adaptability of 
the DenseNet-121 network to RS images acquired from different plat-
forms, and was able to properly identify disaster-damaged buildings 
(Yang et al., 2021). Other examples included scattering shrub detection 
(Guirado et al., 2017), fir tree detection (Safonova et al., 2019), HSI 
classification (Feng et al., 2022a), land cover classification (Naushad 
et al., 2021; Qiu et al., 2022), and seismic data analysis (El Zini et al., 
2020). The average accuracy in these works after applying TL to the new 
small datasets was over 93 %. 

Key recommendations for using TL include selecting the right pre- 
trained model, determining the level of TL (feature extraction, fine 
tuning, or both), determining which layer(s) to transfer, generously 
employing data augmentation, regularising the network, and evaluating 

Fig. 2. The number of articles that use particular deep learning techniques addressing the small data problem in remote sensing applications as of February 2023.  
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performance. One common practice is to import and use ready-made 
models from DL libraries such as TensorFlow, Keras, Theano, and 
PyTorch. The most popular models were AlexNet, VGG, Xception, 
Inception, MobileNet, DenseNet, ResNet, GoogleLeNet, and YOLOs. In 

(Abu et al., 2022; Sharma et al., 2021; Zhao, 2017), all suggested 
considering fine-tuning several hyperparameters (feature map, filter 
size, activation function, pool size, optimiser, learning rate, batch size, 
epoch, dropout rate, loss function, and evaluation metric) of the pre- 

Fig. 3. Practical flowchart for selecting an appropriate deep learning technique (as of May 2023) to address the small data problem in remote sensing applications.  

Fig. 4. A schematic diagram of transfer learning. The upper part depicts model pre-training with Dataset 1 (e.g., ImageNet). The weights are transferred and fine- 
tuned for a specific task with Dataset 2. Here, Dataset 2 contains only images of land cover taken with UAVs, where the convolutional neural network (CNN) model 
aims to predict the class (tree or not). 
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trained model. 

4.2. Self-supervised learning 

Self-supervised learning is a technique related to transfer learning. 
However, in contrast to traditional transfer learning, self-supervised 
learning does not require labelled data for pre-training – it can 
leverage the structure of unlabelled data to generate labels for the pre- 
training task. However, like transfer learning, a model pre-trained 
with self-supervised learning is further fine-tuned on the labelled 
downstream task (Rani et al., 2023). 

This technique has been employed in medicine and healthcare (Chen 
et al., 2019; Krishnan et al., 2022), physics (Ma and Liu, 2020), speech 
representation (Mohamed et al., 2022), RS (Wang et al., 2022b), time- 
series analysis (Pöppelbaum et al., 2022), vide o processing (Wang 
et al., 2022d; Yan et al., 2020; Jing and Tian, 2019), speech processing 
(Hsu et al., 2021), and target tracking (Yuan et al., 2021) for example. 
The most-cited papers involve medical research, solving problems such 
as accurate detection of tissue in monocular endoscopy (Liu et al., 
2019b), retinal disease diagnosis (Li et al., 2020), MRI parameter 
mapping or reconstruction (Liu et al., 2021; Yaman et al., 2020), 3D 
medical-image analysis (Zhu et al., 2020), and homography estimation 

(Wang et al., 2019a). 
However, we only found four papers dealing with self-supervised 

learning in RS using a small sample (Liu et al., 2022a; Rangnekar 
et al., 2020; Song et al., 2022; Xue et al., 2022b). These were related to 
solving the HSI classification problem. The main reason for using self- 
supervised learning was the scarcity and high cost of labelled HSI 
samples. In (Song et al., 2022), the authors proposed a dual-branch re-
sidual neural network (ResNet) to fuse spectral and spatial information. 
(Liu et al., 2022a) presented a novel ensemble self-supervised feature 
learning method using multiple HSI datasets. As the papers presented 
performed the same task on the same datasets, some of their compara-
tive results can be presented in Fig. 5. (Xue et al., 2022b) proposed a 
generative self-supervised feature learning architecture for multimodal 
RS-imaged land cover classification. In this case, the self-supervised 
feature learning architecture was able to extract highly sophisticated, 
robust feature representations from multi-view data; this process did not 
require any labelled information, thus alleviating the otherwise critical 
need for annotated samples. To solve the same problem, (Rangnekar 
et al., 2020) compared the performance of SegNet, U-Net, and Res-U-Net 
for scene understanding and object identification by using dense se-
mantic segmentation to establish a benchmark for a given scene. 

Despite the fact that the use of self-supervised learning technology on 

Fig. 5. Comparative results from the application of self-supervised learning technology in remote sensing using hyperspectral images (HSIs) from Italian University 
of Pavia (UP) and Salinas (SA) datasets, where A and C are the results presented by (Song et al., 2022), and B and D are the results presented by (Liu et al., 2022a). 
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small datasets is relatively unexplored, we have come across some works 
on similar topics (Cao and Wu, 2021; Su et al., 2020). (Su et al., 2020) 
presented a systematic study by varying the degree of domain shift and 
analysing the performance of multiple meta-learners on a variety of 
domains. The authors found that the improvements were greater when 
the training set was smaller or the task was more challenging. They also 
noted that self-supervised learning can degrade performance if the dis-
tributions of the images used for meta-learning and self-supervised 
learning are different. (Cao and Wu, 2021) proposed a system of 
scaled-down self-supervised learning, which included three parts: small 
resolution, small architecture, and small data. The authors showed that 
this approach could achieve impressive results on small data alone, even 
without a large pre-training dataset. 

4.3. Semi-supervised learning 

Semi-supervised learning is a technique that has been actively 
implemented in a number of different areas over the past few years. Self- 
supervised learning is a mix of supervised learning and unsupervised 
learning to leverage unlabelled data, in which a model is repeatedly 
trained and updated using both the labelled and the generated pseudo- 
labels (that is, predicted labels) for the unlabelled data. This can result in 
better performance than supervised learning alone (Han et al., 2022; 
Wang et al., 2021). 

Across all scientific disciplines, one of the most-cited papers was 
presented by (Ma et al., 2019b) dealing with probabilistic representation 
and the inverse design of metamaterials. Another work was dedicated to 
detecting fake users on Twitter (BalaAnand et al., 2019). Later, (Xu 
et al., 2021) presented a paper on image recognition and facial attribute 
recognition using a semi-supervised, self-growing generative adversarial 
network (SGGAN). The authors claimed that when they used training 
data with only 4 % labelled facial features, their approach was never-
theless able to achieve accuracy comparable to that of leading super-
vised DL methods with all labelled facial features. (Rostami et al., 2020) 
used semi-supervised learning to choose a subset of available features 
that had the lowest redundancy with each other but also the highest 
relevance to the target class with limited training data in a Synthetic 

Aperture Radar (SAR) classification. (Tseng et al., 2021) proposed 
DNetUnet for medical image segmentation. As of 2022, some of the most 
cited papers investigated road damage detection (Shim et al., 2022), 
drift compensation for olfactory sensors (Lu et al., 2022), and mechan-
ical fault diagnosis (Feng et al., 2022b). 

As for the implementation of the semi-supervised learning strategy in 
the field of RS under conditions of small sample sizes, we came across 
only two articles. (Jozdani et al., 2021) deployed a teacher-student semi- 
supervised learning approach (based on the U-Net and U-Net++ net-
works) involving unlabelled UAV and WorldView-2 data to assist with 
improving model performance to map caribou lichen. This approach 
produced a reasonably accurate (overall accuracy of 85 % and F1 score 
of 84 %) lichen map at the WorldView scale. 

Although semi-supervised learning is suitable for unlabelled data, it 
is recommended to use labelled data because the quality of the labelled 
dataset will directly affect model performance. Another important point 
is to experiment with different ratios of labelled and unlabelled data to 
find the optimal balance for a particular task (Chapelle et al., 2009; He 
et al., 2021). 

4.4. Few-shot learning 

The goal of few-shot learning is to teach models to generalise for new 
tasks or problems with only a few labelled examples per class (Fig. 6). 

Few-shot learning is therefore a type of meta-learning, which in-
volves training a model on a set of related tasks so that the model can 
then learn to quickly adapt to new, similar tasks with only a few ex-
amples (Hospedales et al., 2020). This method has gained popularity in 
RS for its ability to solve the problems of agriculture and areal scene 
classification (Li and Yang, 2021; Zhang et al., 2021). Recently, (Gao 
et al., 2021b), (Zuo et al., 2022), and (Li et al., 2022d) all applied meta- 
learning to HSI classification. Another approach is to use a widely cited 
generative adversarial network to teach the model a high-level repre-
sentation of the data (Goodfellow et al., 2014). Despite the widespread 
popularity of such methods in the field of medicine (Yi et al., 2019), they 
are only recently beginning to be used in RS (Liu et al., 2018; Zhong 
et al., 2020; Zhu et al., 2018). 

Fig. 6. An example of few-shot learning. The “tree” class label prediction by the pre-trained model to determine similarity probabilities on the query image by using 
the support set information. 
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The application of few-shot learning in RS was found in seven articles 
in our search: (Bai et al., 2022a), (Li et al., 2022d), (Liu et al., 2022b), 
(Rao et al., 2019), (Zuo et al., 2022), (Wang et al., 2022b), and (Wang 
et al., 2022c), and other. Most of the papers dealt with HSI classification 
problems. (Wang et al., 2022b) proposed weed and crop density 
extraction using RGB and multispectral images in an ecological irriga-
tion area. (Liu et al., 2019a) proposed an algorithm based on few-shot 
learning in three steps. First, spectral-spatial features are extracted to 
reduce the labelling uncertainty via a deep residual 3-D CNN. Second, 
the network is trained in episodes to learn about a metric space where 
samples from the same class are close and those from different classes 
are far. Finally, the testing samples are classified by a nearest neighbour 
classifier in the learned metric space. A similar algorithm was also 
proposed by (Bai et al., 2022a). A small-scale high-precision network 
called “3-D convolution random Fourier features (3-DCRFF)” was pre-
sented by (Wang et al., 2022b). Yet another method was based on an 
edge-labelling graph neural network (FSL-EGNN) created by (Zuo et al., 
2022). 

4.5. Zero-shot learning 

Zero-shot learning is a special type of few-shot learning method, 
which is trained to recognise objects or classes it has never seen before. 
The model is trained on a set of known classes or objects, but is also 
given additional information about the relationships between these 
classes, such as semantic or visual similarities (Wang et al., 2020a). This 
additional information is used to help the model recognise new, unseen 
classes or objects that are related to the known classes. This method is 
useful in situations where it is difficult or expensive to obtain labelled 
data for new classes or objects. The method has been applied to medical 
image segmentation (Wang et al., 2018a), attribute-based classification 
(Lampert et al., 2014), industrial fault diagnosis (Feng et al., 2022b), 
label-embedding for image classification (Akata et al., 2016), and 
instance segmentation RS images based on the segment anything foun-
dation model, incorporating semantic category information (Chen et al., 
2023). We found only one article in RS applications with small dataset, 
by (Sumbul et al., 2019). Their paper presented object recognition for 40 
different types of street trees using areal data. Experiments showed that 
their proposed model achieved a 14.3 % normalised recognition accu-
racy for the classes with no training examples, which was significantly 
better than a random guess accuracy of 6.3 % for 16 test classes, as well 
as the accuracy levels of three other zero-shot learning algorithms. 

Both few-shot and zero-shot learning methods can be a valuable 
technique for extracting the best performance from limited data (Villon 
et al., 2021; Zhang et al., 2019b). However, when using them with small 
samples, special attention should be paid to data augmentation, the 
selection of an appropriate evaluation metric, and the ensemble of 
multiple few-shot learning models. All of these can significantly improve 
the performance of the model. 

4.6. Active learning 

Active learning is a powerful technique that can help ML models 
achieve greater accuracy, while reducing the amount of labelled data 
required (Koller et al., 2022; Pardakhti et al., 2021; Ren et al., 2021; 
Settles, 2009). This technique involves selecting the most informative 
examples, labelling them, and adding them to the training dataset. 
Active learning has been successfully applied in many disciplines, 
including medicine (Littlewood et al., 2013; Nakarmi and Santosh, 
2023), NLP (Arora and Agarwal, 2007; Zhang et al., 2022) and computer 
vision (Takezoe et al., 2022; Wu et al., 2022a). The idea of active 
learning use in RS in particular has been presented by (Liu et al., 2017b) 
and (Cao et al., 2020) for HSI image classification. However, we found 
only two papers using active learning for RS on a small dataset. For 
example, (Han et al., 2020) select information-rich and representative 
samples by combining the idea of active learning and input into a 

support vector machine (SVM) classifier, and achieve superior classifi-
cation accuracy of remote sensing sea ice images with small samples. In 
another work (Zhou et al., 2020), SAR target classification was achieved 
with limited data using data-driven active learning. Since active 
learning can be guided by the user’s intention, it can reduce labelling 
costs and training time, and improve accuracy compared to randomly 
selecting examples for a specific task. Active learning can be especially 
useful for small datasets, as it allows the model to learn more efficiently 
from a limited number of labelled examples (Pardakhti et al., 2021). 
However, due to this data limitation, the model may be more prone to 
overfitting (Farquhar et al., 2020). To avoid this, we recommend 
applying regularisation methods and monitoring the performance of the 
model during training. 

4.7. Weakly supervised learning 

In cases when collecting full ground-truth labels is time-consuming, 
expensive, or otherwise practically impossible, then it is useful to use 
weakly supervised learning (Zhou, 2018). This is a type of ML in which 
the training data has been labelled partially, noisily, or imprecisely. One 
popular application of this is label propagation: the use of a small set of 
labelled data to generate labels for a larger set of unlabelled data. 
Another application is multi-instance learning, where each point of the 
training data exists in multiple instances, but a subset of these instances 
are labelled. 

Weakly supervised learning has been successfully applied in various 
applications, including image classification, object detection, semantic 
segmentation, and NLP. However, the use of weakly supervised learning 
under the conditions of a limited dataset has only been presented in a 
small number of papers. In one striking case, (Liu et al., 2022c) pre-
sented an application that could identify acute lymphoblastic leukaemia 
with outstanding accuracy, approximately 91.9 %. Another example was 
the classification of tiny spike-like projections on the basement mem-
brane of the glomerulus by (Wu et al., 2022b). According to the results of 
the trial, the accuracy was 94.05 %. (Ruan et al., 2022) conducted two 
fault diagnosis experiments on ball bearings and bevel gears with 97.23 
% and 99.76 % accuracy. Another example is a work presented by (Kim 
et al., 2021) with segmentation for an autonomous combine harvester. 
Their results showed that their proposed weakly supervised crop area 
segmentation (WSCAS) method could be performed with the lowest 
inference time, and crop area could be localised with an IoU of about 94 
%. In all experiments, the authors of these papers claim that their pro-
posed algorithms are superior to other existing methods, even under the 
conditions of a small sample size. It should be noted that we did not 
come across works where the methodology was used for RS on a small 
dataset. However, this technology has been actively used for optical 
images (Cheng and Han, 2016; Han et al., 2015), areal and satellite 
images (Wei and Ji, 2020), and HIS (Yao et al., 2016). 

Weakly supervised learning has the potential to reduce the cost and 
effort of collecting accurately labelled data, and can be used in various 
applications where obtaining reliably labelled data is difficult or 
impractical, even in small datasets. One common approach is to use 
transfer learning and active learning, which can help improve model 
performance. In addition, using the weakly supervised learning method 
with limited data can help reduce the need for large amounts of labelled 
data, while still achieving high accuracy. 

4.8. Multi-task learning 

Multi-task learning is another powerful technique that can be 
implemented in RS when only a small dataset is available. It is designed 
to improve the performance of multiple related learning tasks by 
leveraging useful information among them (Zhang and Yang, 2018). The 
goal is to develop a model that can learn to generalise well about new 
instances of each task, while also benefiting from the shared knowledge 
learned across all tasks. This means that the model learns to solve 
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multiple related problems using the same or shared representations, 
instead of developing independent models for each task. The model 
typically shares lower-level layers across all tasks, while having task- 
specific layers at higher levels. This way, the model can extract gen-
eral key features shared across multiple tasks. 

Multi-task learning’s impressive track record has helped it gain 
popularity in recent years. The frequency of publications describing the 
use of this technology is growing by 25–30 % every year. It has led to 
success in many ML applications, from NLP and speech recognition to 
computer vision and drug discovery (Ruder, 2017; Sosnin et al., 2019; 
Zhao et al., 2023). Multi-task learning is also actively used in RS, 
particularly for classification (Qi et al., 2017), target detection (Wu 
et al., 2019c; Zhang et al., 2017), semantic segmentation (Li et al., 
2022c; Volpi and Tuia, 2018), and feature representation tasks (Xiong 
et al., 2019). However, its application when using a small number of 
training samples is still rare, as only two papers have discussed this 
(Quan et al., 2023; Zhao et al., 2021a). The first paper proposed a multi- 
aspect SAR target recognition method based on a prototypical network. 
The second paper deals with the detection of building changes using 
pseudo-labels generated by high-availability semantic segmentation on 
three available RS datasets. This method can significantly improve the 
recognition performance of the DL model under a small number of 
samples, and thus the recognition accuracy can approach that of a model 
with a complete training set. 

4.9. Ensemble deep learning 

Ensemble learning is a method that combines many individual 
models to obtain better generalisation performance (e.g., random forests 
and boosting). While this approach is commonly used for tabular data 
analysis, its application in DL models is far less popular because it re-
quires huge computational resources and time. Nevertheless, ensemble 
DL models have the potential to harness the benefits of DL architecture 
as well as ensemble learning (e.g., to avoid overfitting). Previously, this 
method has been applied to predicting short-term traffic flow (Zhang 
and Xin, 2022), predicting plant miRNA–IncRNA (Hamdy et al., 2023), 
and identifying the drivers of vehicles by using Controller Area Network 
(CAN) bus data (Hu et al., n.d.). Ganaie et al. also reviewed a variety of 
techniques that have been applied in different domains (Ganaie et al., 
2022). (Liu et al., 2022a) presented a novel ensemble self-supervised 
feature learning method on multiple HSI datasets. Since any of the 
above-mentioned learning techniques can be combined, ensemble 
learning has promising potential for further applications. 

4.10. Process-aware learning 

Process-aware learning refers to the process of incorporating 
knowledge into ML models about the underlying processes or mecha-
nisms that generate data. It is particularly helpful for understanding the 
underlying causal relationships between variables, thus leading to better 
predictions and decisions. One popular application is known as “physics- 
informed learning” (Karniadakis et al., 2021; Raissi et al., 2019, 2017) in 
the domain of physics. Also, this technology was previously used in 
mechanics (Cai et al., 2021), medicine (Fossan et al., 2021; Meier and 
Heijman, 2022), and computer science (Doan et al., 2019; Kashefi and 
Mukerji, 2022). Although we did not find the process-aware learning 
approach in any RS domain, we can imagine several use cases. For 
instance, researchers could use a vegetation growth model to simulate 
parameters that are difficult to measure in the field, use these simulated 
parameters as labelling for images, and then train a DL model with the 
labelled data. 

4.11. Cross validation 

As we mentioned above in subsection 3.4, it seems that previously 
reported model performances have been suspiciously high, indicating a 

lack of appropriate evaluation systems. Applying an appropriate vali-
dation strategy is important for model generalisability and trans-
ferability (Vabalas et al., 2019), while preventing overfitting (Ying, 
2019). Note that cross validation does not belong to learning technique, 
but the method can be jointly used with any of the above-introduced 
learning methods. 

The most commonly used type of validation strategy in ML is cross- 
validation (Little et al., 2017). This procedure is quite common in ML via 
tabular dataset analysis, but it is rarely applied to large datasets for DL. 
We believe that k-fold cross-validation would be useful for evaluating DL 
model performance with a small dataset – and this capacity for valida-
tion is another benefit of using a small dataset. Moreover, in the area of 
RS, random sampling for validation may not be the best idea, because 
spatial and temporal data typically reveal high autocorrelation levels. 
Several recent studies have pointed out that autocorrelation leads to a 
violation of the assumption of data independence between training data 
and the validation set (Kattenborn et al., 2022; Le Rest et al., 2014; 
Ploton et al., 2020). Spatial rather than random cross-validation can be 
used for less biased model assessments (Roberts et al., 2017) (Fig. 7). 

The cross-validation technique was used by (Xue et al., 2019) and by 
(Chen et al., 2018) to solve problems with estimating PM2.5 concen-
trations across China, and (Yang et al., 2018) to estimate grassland 
biomass. Other case studies have included mapping soil properties from 
high-resolution RS data (Forkuor et al., 2017), mapping fire intensity 
(Gibson et al., 2020), and quantifying rangelands (Rigge et al., 2020). 
We found four papers that directly investigated cross-validation for RS 
imagery under small sample conditions (Freeman et al., 2019; Lange 
et al., 2022; Odebiri et al., 2022; Wu et al., 2021b). All the publications 
applied random cross-validation with different fold sizes (4 and 10 
folds), each at different scales (local, regional, and national). The tasks 
performed were the mapping of regressed soil organic carbon content, 
HSI-based land cover classification, and plant water stress detection. 

5. Conclusions 

In this review paper, we performed a survey of the small data 
problem in RS data in DL implementation and suggested promising DL 
techniques to address the problem. First, we summarised 80 studies from 
2016 to 2023, and presented the possibilities to address the small data 
problem with advanced DL techniques beyond conventional learning 
methods. For this, we first had to define what “small data” means. Then, 
we described the few previous studies that had analysed RS processes 
employing DL techniques under conditions of small data, and we looked 
at the advantages and disadvantages of using small datasets. Finally, we 
offered a set of practical recommendations about how RS scientists can 
better implement DL techniques to fully take advantage of a small 
dataset. As one previous paper noted (Keshari et al., 2020) a variety of 
approaches can be used to solve the small data problem, such as data 
augmentation, data fine-tuning, the adaptation of pre-trained models, 
and reducing the dependence on large-sample learning. However, in our 
review, we also presented even more techniques that are worth 
considering when working with a small dataset. We identified a total of 
ten learning techniques for addressing the small data problem: Transfer 
learning, self-supervised learning, semi-supervised learning, few-shot/ 
zero-shot learning, active learning, weakly supervised learning, multi-
task learning, ensemble learning, and process-aware learning. Cross- 
validation is also a valuable tool for improving the use of DL in RS 
(Fig. 3). Our goal has been to show ways to implement DL applications 
for research where ground-truth (annotation) data is difficult to obtain, 
while making it possible to solve various problems involving classifi-
cation, detection, or segmentation. These problems could include 
biodiversity loss, climate extremes, and sudden changes in socio- 
environmental systems. For future work, we plan to apply different DL 
strategies to solve various practical problems in RS under small dataset 
conditions, where this modern technique has not been adequately used. 
In addition, the practical flowchart shown in Fig. 3 and the summary 
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table (Table 1) will be further improved based on the results of our 
future experiments and new studies presented by the RS scientific 
community using other AI techniques in small data problems. Finally, 
we hope that by justifying the use of small datasets, this review will 
motivate more researchers to experiment with other techniques and 
apply them to different RS problems. 
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Pöppelbaum, J., Chadha, G.S., Schwung, A., 2022. Contrastive learning based self- 
supervised time-series analysis. Appl. Soft Comput. 117, 108397 https://doi.org/ 
10.1016/j.asoc.2021.108397. 

A. Power Y. Burda H. Edwards I. Babuschkin V. Misra Grokking: Generalization Beyond 
Overfitting on Small Algorithmic Datasets 2022 https://doi.org/10.48550/ 
arXiv.2201.02177. 

Prusa, J., Khoshgoftaar, T.M., Seliya, N., 2015. The Effect of Dataset Size on Training 
Tweet Sentiment Classifiers. In: In: 2015 IEEE 14th International Conference on 
Machine Learning and Applications (ICMLA). Presented at the 2015 IEEE 14th 
International Conference on Machine Learning and Applications (ICMLA), 
pp. 96–102. https://doi.org/10.1109/ICMLA.2015.22. 

Putra, Y.C., Wijayanto, A.W., 2023. Automatic detection and counting of oil palm trees 
using remote sensing and object-based deep learning. Remote Sens. Appl. Soc. 
Environ. 29, 100914 https://doi.org/10.1016/j.rsase.2022.100914. 

Qi, K., Liu, W., Yang, C., Guan, Q., Wu, H., 2017. Multi-Task Joint Sparse and Low-Rank 
Representation for the Scene Classification of High-Resolution Remote Sensing 
Image. Remote Sens. 9, 10. https://doi.org/10.3390/rs9010010. 

Qiu, T., He, H., Liang, X., Chen, F., Chen, Z., Liu, Y., 2022. Using different training 
strategies for urban land-use classification based on convolutional neural networks. 
Front. Environ, Sci, p. 10. 

Quan, Y., Yu, A., Guo, W., Lu, X., Jiang, B., Zheng, S., He, P., 2023. Unified building 
change detection pre-training method with masked semantic annotations. Int. J. 
Appl. Earth Obs. Geoinformation 120, 103346. https://doi.org/10.1016/j. 
jag.2023.103346. 

M. Raissi P. Perdikaris G.E. Karniadakis Physics Informed Deep Learning (Part I): Data- 
driven Solutions of Nonlinear Partial Differential Equations 2017 https://doi.org/ 
10.48550/arXiv.1711.10561. 

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: A 
deep learning framework for solving forward and inverse problems involving 
nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://doi. 
org/10.1016/j.jcp.2018.10.045. 

Rangnekar, A., Mokashi, N., Ientilucci, E.J., Kanan, C., Hoffman, M.J., 2020. AeroRIT: A 
New Scene for Hyperspectral Image Analysis. Ieee Trans. Geosci. Remote Sens. 58, 
8116–8124. https://doi.org/10.1109/TGRS.2020.2987199. 

Rani, V., Nabi, S.T., Kumar, M., Mittal, A., Kumar, K., 2023. Self-supervised Learning: A 
Succinct Review. Arch. Comput. Methods Eng. https://doi.org/10.1007/s11831- 
023-09884-2. 

Rao, M., Tang, P., Zhang, Z., 2019. Spatial-Spectral Relation Network for Hyperspectral 
Image Classification With Limited Training Samples. IEEE J. Sel. Top. Appl. Earth 
Obs. Remote Sens. 12, 5086–5100. https://doi.org/10.1109/JSTARS.2019.2957047. 

Rawat, W., Wang, Z., 2017. Deep Convolutional Neural Networks for Image 
Classification: A Comprehensive Review. Neural Comput. 29, 2352–2449. https:// 
doi.org/10.1162/neco_a_00990. 

Reedha, R., Dericquebourg, E., Canals, R., Hafiane, A., 2022. Transformer Neural 
Network for Weed and Crop Classification of High Resolution UAV Images. Remote 
Sens. 14, 592. https://doi.org/10.3390/rs14030592. 

P. Ren Y. Xiao X. Chang P.-Y. Huang Z. Li B.B. Gupta X. Chen X. Wang A Survey of Deep 
Active Learning 2021 https://doi.org/10.48550/arXiv.2009.00236. 

Rigge, M., Homer, C., Cleeves, L., Meyer, D.K., Bunde, B., Shi, H., Xian, G., Schell, S., 
Bobo, M., 2020. Quantifying Western U.S. Rangelands as Fractional Components 
with Multi-Resolution Remote Sensing and In Situ Data. Remote Sens. 12, 412. 
https://doi.org/10.3390/rs12030412. 

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., 
Hauenstein, S., Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., 
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