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Abstract

Anthropogenic activity is leading to widespread changes in lake water quality—a key con-

tributor to socio-ecological health. But, the anthropogenic forces affecting lake water quality

(climate change, land use change, and invasive species) are unevenly distributed across

lakes, across the seasonal cycle, and across space within lakes, potentially leading to highly

variable water quality responses that are poorly documented at the global scale. Here, we

used 742 million chlorophyll-a (chl-a) estimates merged over 6 satellite sensors (daily, 1 to 4

km resolution) to quantify water quality changes from 1997 to 2020 in 344 globally-distrib-

uted large lakes. Chl-a decreased across 56% of the cumulative total lake area, challenging

the putative widespread increase in chl-a that is expected due to human activity. 19% of

lakes exhibited both positive and negative chl-a trends (p-value < 0.1) across different loca-

tions or times of the year. This spatiotemporal complexity demonstrates the value of moder-

ate resolution mapping of lake chl-a to inform water management decision-making and to

determine the local ecological consequences of human activity.

Introduction

Nutrient pollution and climate change may increase lake chlorophyll-a (chl-a) concentrations

through various direct and indirect pathways [1, 2]. For instance, industry, agriculture, and

urbanization have caused well-documented increases in chl-a by delivering nutrients to lakes

through runoff and atmospheric deposition [1]. In addition, climate change can increase chl-a

through the temperature dependence of primary production [3], by expanding the stratified

season [4], or by promoting lake conditions which favor bloom-forming algae [5–8]. Land use

and climate change can interact leading to synergistic increases in chl-a concentrations [9]

with potential negative consequences for the millions of people who depend on lakes for their

livelihoods [10].

However, global change is also associated with decreases in lake chl-a in some contexts. Cli-

mate change has been shown to reduce chl-a by impeding the entrainment of deep water
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nutrients into the surface waters where it is available to support algae growth [11–13] particu-

larly in nutrient-poor lakes [14, 15]. Increased temperatures may also reduce chl-a when tem-

perature-induced increases in the consumption and degradation of algae outpace

temperature-induced increases in algal production [16, 17]. Neobiota can affect chl-a indi-

rectly through trophic cascades or directly by grazing. For instance, neobiotic filter feeding

mussels reduce chl-a by rapidly filtering lake water [18, 19]. Localized reductions in aquatic

nutrient pollution can also reduce chl-a [20–22]. Climate or land use driven changes in water

clarity can also influence chl-a and it’s detection from space [23].

These environmental changes are unevenly distributed across lakes, across the seasonal

cycle, and across space within lakes, potentially leading to highly heterogeneous water quality

responses [1]. But this heterogeneity is not yet well-captured at the global scale. Thus, it

remains uncertain whether the environmental changes operating a global scale tend to increase

or decrease chl-a. An understanding of global patterns and spatial heterogeneity in long-term

changes in lake water quality at sufficient spatiotemporal resolution is necessary for improving

our macroecological understanding of lake ecosystems in a rapidly changing world. This

improved understanding would also allow managers to design and implement more precisely

targeted restoration strategies that are ultimately more effective at safeguarding lake resources

[24].

Past global syntheses of long-term trends in chl-a at the global scale have treated lakes as

discrete units with homogenous spatiotemporal changes [2, 15]. Here, we use a less discretized

approach [25] focusing on within-lake changes at the daily temporal scale and at moderate

spatial resolution (1km spatial resolution for Europe and 4 km spatial resolution for the rest of

the world). We used 742 million chl-a estimates merged across 6 satellite sensors (SeaWiFS,

MODIS AQUA, MERIS, OLCI-B, VIIRS NPP, and VIIRS JPSS-1) to assess long-term trends

in 344 large lakes (surface area greater than 100 km2) under ice-free and cloud-free conditions

from 1997 to 2020. The 344 lakes included in our study represent 94% of Earth’s liquid surface

water by volume and contain a global heritage of freshwater biodiversity and natural resources.

To detect chl-a, we used algorithms developed for coastal and inland waters [26] which we cali-

brated for specific lakes according to their mean depth, surface area, and shoreline complexity

using Boosted Regression Trees (BRTs). This lake-specific algorithm calibration was based on

comparing remote sensing and in situ chl-a data in 56 lakes where a total of 20,165 in situ chl-a

estimates were available. We estimated the uncertainty in chl-a trends using bootstrapped

error propagation techniques [27] incorporating the uncertainty in the chl-a algorithm and

the lake-specific algorithm calibration.

Method

Overview

We calculated long-term (1997–2020) chl-a trends using 23 years of remote sensing data for

344 lakes (listed in S1 Table). Trends were calculated from chl-a anomalies where the effects of

the day of the year, latitude, longitude, and remote sensing platform as well as the interactions

between these variables had been accounted for and removed from the data. We calculated a

single lake-wide trend where chl-a anomalies were pooled across pixels and seasons for each

lake. We also calculated separate trends for each pixel (where chl-a anomalies were pooled

across all days of the year) and for each day of the year (where chl-a anomalies were pooled

across pixels). The size of the pixels was 1-km for lakes in Europe and 4-km for the rest of the

globe based on the limitation of the data source used here [28].
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Remote sensing chl-a data

We used 742 million chl-a estimates merged across 6 space-borne spectroradiometers (Sea-

WiFS, MODIS AQUA, MERIS, OLCI-B, VIIRS NPP, and VIIRS JPSS-1) to assess long-term

trends in 344 lakes under ice-free and cloud-free conditions from year 1997 to 2020. Chl-a

data were retrieved from the “CHL-OC5” product produced by GlobColour [28] and made

available via the Copernicus Marine Environmental Monitoring Service (CMEMS) website:

http://marine.copernicuseu/services-portfolio/access-to-products/. Only the highest-quality

chl-a values were used according to the quality criteria provided as part of the CHL-OC5 data

product resulting the exclusion of 76% of data due to partial cloud or ice cover. The algorithm

used in the CHL-OC5 data product is a five-channel chlorophyll concentration algorithm

which was developed for optically complex “case II waters” [26] and has been partially vali-

dated using global in situ data from marine and inland waters [29–31]. We built on this valida-

tion by expanding it to in situ data from 53 lakes as described below. The daily chl-a data

reflect lake environments in the near surface layer during ice-free and cloud-free conditions.

The seasonal extent and the number of chl-a estimates varied across lakes ranging from 2601

estimates for Lake Mogotoyeyo to 365 million for Lake Ladoga. We downloaded and processed

the chl-a values in the R environment for statistical computing [32] using the “data.table” [33],

“dismo” [34], “sf” [35], “gbm” [36], “zyp” [37] and “lubridate” [38] packages. Data visualiza-

tions were made using “ggplot2” [39].

Chl-a algorithm cross validation and calibration for inland waters

We adapted remotely sensed chl-a values specifically for lakes based on a comparison of

20,165 in situ chl-a measurements (chl-a extracted from filtered water samples) from 56 lakes

matched to interpolated remote sensing data. To interpolate the remote sensing chl-a values,

we used fully deterministic BRTs (bag fraction = 1) which modelled remotely sensed chl-a as a

function of the decimal date, day of the year, sensor, latitude, and longitude separately for each

lake. We used the resulting boosted regression trees (BRTs) to estimate remotely-sensed chl-a

concentrations for all 6 sensors at the time and location of each in situ measurement. These

modeled values served as the remotely-sensed matchup value for each in situ measurement. In
situ data used for this purpose were downloaded, digitized, and compiled from published

sources (S2 Table; mean chl-a = 8.7 μg L-1, median chl-a = 3.9 μg L-1, range = 0.01 to 579.2 μg

L-1). We would expect the calibrated chl-a algorithm used here to be less accurate near the tails

and outside of the in situ chl-a distribution.

We modelled the difference between in situ values and their remotely sensed matchup val-

ues as a function of the raw remotely sensed chl-a value, the in situ data source, and 3 lake

characteristics (mean lake depth, surface area, and shoreline development index (a metric of

shoreline complexity; the ratio of a lake’s shoreline length to the circumference of a circle with

the equivalent lake area)) also using a BRT. These three lake characteristic variables were used

because they are associated with lake optical characteristics [40] and are freely available from

the HydroLAKES database [41]. Thus, the BRT allowed the difference between in situ and

remotely sensed chl-a values to vary from lake to lake. We then used the resulting model to

estimate the difference between in situ and remotely sensed values for all 742 million chl-a esti-

mates used here. We translated the remotely sensed chl-a values into an “in situ analogue” chl-

a value by subtracting the modelled differences from the raw remotely sensed values. The

resulting in situ analogue chl-a values were used for all subsequent analyses. The calibration of

the algorithm using in situ chl-a data reduced the median absolute error from 3.6 μg L-1 to

1.5 μg L-1.
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Chl-a anomaly calculations

To estimate lake surface chl-a anomalies, we accounted for and removed variation in each

lake’s in situ analogue chl-a data which could be attributed to the day of the year, latitude, lon-

gitude, and sensor using BRTs. Thus, the chl-a anomalies were defined as the residuals from a

BRT predicting in situ analog chl-a as a function of four predictor variables—the day of the

year, latitude, longitude, and sensor. This approach allowed us to account for patchiness in the

chl-a data [42] and bypass the need for gap-filling the time series. This allowed for the calcula-

tion of trends over time in chl-a anomalies such that the trends would be less influenced by the

seasonal or spatial coverage of the data, the sensor timespan or the interactions among these

factors. For the BRTs, we used a tree complexity of 5 to allow for high levels of interactions

among variables (e.g. sensor type could have different effects on in situ analog chl-a at specific

grid cells within lakes and at specific times of the year). To prevent model overfitting, the

BRTs were fit separately for each lake 10 times using a randomly selected 50% of the data. Pre-

dicted values were generated from each of the 10 models for all chl-a estimates and averaged to

generate more robust estimates. The residuals (i.e. difference between the in situ analog chl-a

values and the average of the 10 model predictions) were termed, “chl-a anomalies.” We con-

firmed that this process successfully removed the variation attributable to the day of the year,

latitude, longitude, and sensor using visual diagnostic plotting for all lakes (see example for

Lake Erie in S6 Fig).

BRTs include a variety of tuning parameters which influence the model performance in

cross validation. We selected a combination of tuning parameters (bag fraction = 0.62, tree

complexity = 5) which reliably gave good performance in 10-fold cross validation across all

lakes (median predicted residual error sum of squares = 0.35 μg L-1, and median correlation

between predicted and observed values = 0.85). We optimized the learning rate separately for

each of the 10 BRTs for each lake by iteratively running the model with smaller and smaller

learning rates (from 0.8, 0.4, 0.2, 0.1, 0.05, to 0.025) until the number of trees in the BRT which

minimized the predicted deviance was greater than 1000 as suggested in previous literature

[43].

Chl-a trends

We used a bootstrapped error propagation technique [27] to estimate chl-a trends and the

uncertainty in each trend. The residual errors from the BRT used for adapting remotely sensed

chl-a into in situ analogue values were propagated into the estimate of chl-a trend uncertainty.

We propagated the errors by adding a residual error (the product of a randomly selected %

error residual from the BRT’s error distribution and the original in situ analogue chl-a value)

to each chl-a anomaly. Distinct residual errors were iteratively added to each chl-a anomaly

value with 100 repetitions. For each repetition, Theil-Sen slopes and intercepts were calculated

based on mean annual chl-a anomalies. We calculated p-values of a Spearman rank correlation

test relating mean chl-a anomalies to year. The trends and their associated p-values were calcu-

lated as the average across all 100 repetitions of the Theil-Sen slope and Spearman correlation

calculations.

We calculated a single lake-wide trend where chl-a anomalies were pooled across pixels and

seasons for each lake. We also calculated separate trends for each pixel (where chl-a anomalies

were pooled across all days of the year) and for each day of the year (where chl-a anomalies

were pooled across pixels). Chl-a percent change was calculated from Theil-Sen nonparametric

regression in chl-a anomalies after the effects of the day of the year, latitude, longitude, and

sensor as well as the interactions between these variables had been accounted for and removed

from the data. Theil-Sen nonparametric regression results were translated into a proportion
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change by taking the difference between the Theil-Sen modelled chl-a anomalies in 2020 and

1997 as a proportion of the lake’s median chl-a in situ analog value. This proportion was trans-

lated into a percentage by multiplying by 100. All stationary variation in chl-a due to space and

season was removed using machine learning (BRT) prior to the calculation of trends, thus we

would not expect strong bias in the chl-a trends related to ice/cloud cover.

Results and discussion

We found that when chl-a trends were calculated as lake-wide averages, the median chl-a trend

across all lakes was +0.04 μg chl-a decade-1 (total range = -11.98 to +9.64 μg chl-a decade-1,

interquartile range = -0.03 to 0.27 μg chl-a decade-1, median % change = +3.2; Fig 1A). Lake-

wide average chl-a increased in 65% of lakes (225 out of 344; Fig 2) and decreased in the remain-

ing 35%. Increasing trends in 142 lakes and decreasing trends in 68 lakes had p-values less than

0.1. Thus, more lakes had trends with p-values less than 0.1 than what would be expected based

on chance alone and this was true regardless of which arbitrary threshold was used (we tested p-

value cutoffs of α = 0.1, 0.05, 0.01). These general findings are comparable to previous work

based on Landsat imagery which found that 68% of large lakes had increasing chl-a concentra-

tions since the 1980’s and 39% of lakes had trends with p-values less than 0.1 [2].

The lake-wide average trends agreed well with published literature on phytoplankton, chl-a,

and other phytoplankton proxies based on in situ data sources. For example, in situ phyto-

plankton biomass proxies decreased in Lake Tanganyika as enhanced thermal stratification

due to climate change has reduced the entrainment of deep-water nutrients and primary pro-

duction [11, 12, 44] (Fig 1). Conversely, chl-a variation in Lake Kivu shown here (Fig 1)

matched a strong cycle in phytoplankton biomass observed in situ due to background climate

variation [45]. Remotely-sensed chl-a also increased in Lake Erie which has experienced a

well-documented nutrient pollution trend for decades due to agricultural expansion and

intensification [46] (Fig 1).

While 63% of lakes had positive chl-a trends at the lake-wide average scale, only 44% of the

total lake area experienced increases in chl-a at the pixel scale. This difference arose because

chl-a tended to decrease in the largest lakes (Fig 1A). The global median chl-a trend was

-0.01 μg chl-a decade-1 when pixel-level trends were weighted by pixel area (pixel area varies

across latitude when a consistent equal angle grid is applied). In total, we investigated chl-a

trends at the pixel scale for 1,383,893 km2 of cumulative lake area. Chl-a increased for 612,014

km2 of the cumulative lake area and 17% (104,871 km2) had a p-value less than 0.1. Chl-a

decreased across 771,879 km2 of the cumulative lake area and 19% (148,175 km2) of the lake

area with decreasing trends had p-values less than 0.1. Thus, more lake area had trends at the

pixel scale with p-values less than 0.1 than what would be expected based on chance alone

which was also true using a cutoff of 0.05, and 0.01. This finding (Fig 2D) challenges the

broadly held assumption that global change has caused widespread increases in lake chl-a [1].

Decreases in chl-a observed here have been attributed to water management efforts in some

lakes (e.g. Ladoga [47]), and to invasive filter feeding mussels in others (e.g. Ontario, Huron,

Michigan [21]), but these drivers alone cannot explain decreases across all lakes. Decreases in

chl-a as a result of climate change through changes to terrestrial inputs [48], higher heterotro-

phic consumption of algae [49, 50], or climate change mediated reductions in deep water

nutrient entrainment to the well-lit surface waters [4, 51–53] may be an underrecognized

response to global change. While this result is most relevant for Earth’s large lakes, widespread

bluing trends have been observed in small lakes as well [48, 54, 55]. We recommend future

emphasis on how global-change may reduce chl-a, especially because chl-a reductions can

heavily affect lake ecosystems and the benefits that humans derive from them [20–22].
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Long-term trends based on lake-wide averages hid the complexity of long-term change in

chl-a across lake surfaces. Some lakes which had weak overall chl-a trends at the lake-wide

scale, had strong simultaneous increases and decreases in chl-a at different locations within

the lake (Fig 3). For example, the Caspian Sea had a weak overall trend at the lake-wide scale

but chl-a increased substantially in the northern shallows (Fig 3). Increasing trends in the

Fig 1. Chl-a percent change (1997–2020) based on lake-wide averages. Map showing lake-wide trends for 344 globally distributed lakes where the sizes

of the dots are proportional to the size of the lake and the transparency of the dot is proportional to the p-value (A). Time series show the chl-a anomalies

for the 6 lakes with the largest negative trends (B:G) in lake-wide chl-a and the 6 lakes with the largest positive trends (H:M) in lake-wide chl-a when

trends were weighted by each lake’s volume. The black lines (B:M) are the ordinary least squares regression line and the size of the dots represents the

number of chl-a estimates in each year (B:M). An inset map of Europe can be found in S1 Fig. Continent boundary map data come from Natural Earth.

(http://www.naturalearthdata.com/about/terms-of-use/; public domain).

https://doi.org/10.1371/journal.pwat.0000051.g001
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Caspian Sea primarily occurred near the inflowing Ural, Volga, and Terek rivers which deliver

large nutrient loads from the surrounding landscape [56] (S2 Fig). At the lake-wide scale, this

increase in chl-a in the northern shallows was offset by the statistically weaker but widespread

decrease in chl-a in the deeper offshore areas (Fig 3).

In addition to the Caspian Sea, many other lakes experienced local increases in chl-a in the

shallower areas closer to the shore near inflowing rivers that diverged from lake-wide average

Fig 2. Distribution of global chl-a percent change (1997–2020). Percent change at the lake-wide average scale (A, B), and at the lake area scale based on

pixel-level trends (C, D). Blue indicates decreasing trends and green indicates increasing trends. The solid portion of each bar represents the proportion of

trends with p-values less than 0.1.

https://doi.org/10.1371/journal.pwat.0000051.g002
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trends (Fig 3). For example, Lake Huron experienced very localized increases in chl-a in the

shallow Saginaw Bay where the Saginaw River enters the lake bringing with it a variety of agri-

cultural and industrial pollutants [57] (S2 Fig). At the same time, chl-a decreased in the

Fig 3. Spatial variation within and across lakes in chl-a trends (1997–2020). The relative positions of the lakes shown here do not reflect geo-spatial location but lake

sizes share a common scale except where indicated otherwise in the boxed insets. Lakes shown are those with the largest number of chl-a estimates. The opacity of the

color scale reflects the p-values associated with each pixel-level trend. The p-values associated with each grid cell can be found in S3 Fig. Lake boundary map data come

from the HydroLAKES database v1.0 which is licensed under a Creative Commons Attribution (CC-BY) 4.0 International License. (https://www.hydrosheds.org/

products/hydrolakes).

https://doi.org/10.1371/journal.pwat.0000051.g003
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offshore deeper areas of Lake Huron where the combined effect of nutrient mitigation and

invasive species expansion has caused reductions in chl-a [21]. Lake Titicaca experienced very

localized increases in chl-a in the smaller south east basin where inflowing rivers drain an

increasingly urbanized catchment near El Alto/La Paz, Bolivia [58] (S2 Fig). A strong reduc-

tion in chl-a concentrations in Lake Ladoga (Fig 3) suggests that continued efforts at reducing

nutrient pollution have improved water quality there. However, patchy greening areas in the

shallower parts of Lake Ladoga may indicate the potential for internal re-suspension of past

phosphorus loads resting in the sediment [59]. Lake Nasser/Nubia, one of the largest manmade

lakes in the world, has a pronounced greening trend near the inflowing Nile River which tran-

sitions into a bluing trend near the outflow of the reservoir. This transitioning from chl-a

increases to decreases along the axis of water flow was common in large reservoirs presumably

because nutrient loads from incoming rivers get diluted as they pass into larger volumes of

water with greater thermal stratification. Thus, simultaneous increases and decreases in chl-a

for specific locations within lakes can reflect differences in the location and strength of various

anthropogenic stressors affecting chl-a. Chl-a changes at the local scale within lakes may

diverge widely from the lake-wide average.

Long-term trends based on lake-wide averages also failed to capture the complexity of long-

term change in lake surface chl-a across days of the year for individual lakes. For example, in

Lakes Michigan, Huron, and Ontario, introduced mussels have reduced chl-a primarily in the

less stratified times of the year when the impact of filter feeding on phytoplankton is strongest

[19] (Fig 4). Chl-a decreases in Lake Tanganyika were most pronounced during the dry season

when climate change mediated changes to stratification patterns have dampened seasonal mix-

ing [11, 12]. Several lakes had serial increases and decreases in chl-a across the seasonal spec-

trum (Fig 4). For instance, earlier seasonal stratification in Lake Superior due to climate

change may have increased chl-a in early spring when phytoplankton benefit from being

Fig 4. Seasonal variation in lake chl-a trends (1997–2020). Panels (A:J) show seasonal trends in chl-a for the 10 largest lakes with broad seasonal data

coverage. Lines represent the LOESS-smoothed (span of 1) daily trend in chl-a weighted by the number of chl-a estimates included in the chl-a trend

calculation for each day of the year. The blue to green color reinforces values on the y-axes and is consistent across panels. The shaded area represents the 95%

confidence interval for the smoothed line.

https://doi.org/10.1371/journal.pwat.0000051.g004
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retained in the well-lit stratified surface layer where they can better photosynthesize. But the

increased chl-a in early spring in Lake Superior is combined with a summer decrease in chl-a

as prolonged summer stratification reduces the amount of nutrients available for primary pro-

ducers [60].

This within lake complexity (Fig 3, S4 Fig) and seasonal complexity (Fig 4) of chl-a trends

discounts the tendency in lake management to emphasize the dichotomous view that lakes are

either undergoing increases or decreases in chl-a. 19% of lakes exhibited positive and negative

trends in chl-a at different locations or at different times of the year (i.e. more than 10% of pos-

itive trends and more than 10% of the negative trends had p-values less than 0.1). The lakes

with both positive and negative trends represented 63% of the lake area. This combination of

positive and negative trends for individual lakes highlights the heterogeneity of lake responses

to global change. Whole-lake chl-a trends can mask spatiotemporal trend variability leading to

lakes with weak trends at the lake-wide scale but strongly contrasting increases and decreases

in chl-a at finer seasonal and spatial resolution (e.g. Caspian Sea in Figs 3 and 4). Policy makers

and lake managers should recognize the potential for local changes at specific times of the year

to vary widely from lake-wide averages. Major water management policies such as the Water

Framework Directive (EU) and the Clean Water Act (USA) have established management tar-

gets based on lake-wide and annual averages which fail to capture the spatiotemporal complex-

ity shown here. Instead, management decisions or policies should be based on finer metrics

(i.e. not lake-wide or annual averages) which more fully recognize spatiotemporal variation in

water quality and water quality trends.

Overall, we provide a global view of trends in near surface chl-a over the past 23 years for

large lakes. Our analysis of chl-a in lakes demonstrates the promise of spatially-explicit long-

term satellite observations for tracking chl-a conditions and disentangling the multiple over-

lapping drivers of change. The approach used here augments the geographically and tempo-

rally limited in situ chl-a monitoring efforts where data is often not shared readily nor in near

real time. This analysis applies a novel statistical approach to merge chl-a data from multiple

sensors to produce a validated data set that documents global lake surface chl-a dynamics with

new levels of spatial detail and accuracy. Global datasets documenting the aquatic concentra-

tion of chlorophyll-a (chl-a) with remote sensing can serve as a key indicator of lake responses

to human activity but so far have been underused. The accuracy of remote sensing based chl-a

estimates has been questioned at the local scale due to the presence of surface algae scums, sub-

merged vegetation, sediment, and high concentrations of organic matter [61–63]. However,

the cross validation and the performance of the lake-specific chl-a algorithm developed here

(S5 Fig) suggests that our main conclusions are robust to such effects. Nonetheless, we caution

against the overinterpretation of specific trend estimates reported here and suggest corroborat-

ing observed trends in chl-a with in situ measurements wherever possible. In the frequent

absence of such in situ measurements, remote sensing data of this type may provide the best

approximation of global scale trends yet available.

Conclusion

Our primary result that chl-a concentrations decreased for 56% of lake area when calculated at

the pixel scale challenges the putative widespread increase in chl-a intensity that is expected

due to human activity [1, 2, 64]. Furthermore, we highlight that lake chl-a trends vary substan-

tially across the surface of lakes, and across seasons making lake-wide average trends or pat-

terns extrapolated from small central extraction points potentially misleading. The findings

reported here reinforce the need for water-resource management strategies that integrate the

potential for both increases and decreases in chl-a due to global change. Spatially-explicit
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water quality monitoring is essential for evaluating the success of investments in water man-

agement and for detecting new management challenges. Management approaches that cur-

rently treat lake-wide surface chl-a trends in a simplistic fashion should immediately benefit

from the detailed maps of chl-a trends provided here. Resolving key challenges in water man-

agement requires spatially- and temporally-explicit approaches that engage policymakers and

water managers at scales relevant to their decisions, including subnational administrative

units, bays, and delimited stretches of lake shoreline. The data used herein hold promise for

identifying the timing and magnitude of lake phytoplankton variations at daily scales allowing

lake scientists and managers to concurrently capture human influences on surface water qual-

ity in near real time. The need to mobilize financial resources to support integrated approaches

using these data is imperative, before additional drift from past ecological conditions becomes

the new accepted norm for lakes.

Supporting information

S1 Fig. Chl-a percent change (1997–2020) based on lake-wide averages for European lakes

with data at higher spatial resolution (1 km x 1 km). The color of the dot indicates the trend

with green values corresponding to increases in chl-a and blue values corresponding to

decreases in chl-a. The opacity of the trend is proportional to its p-value with more opaque cir-

cles indicating more statistically stronger trends. The size of the dot is proportional to the area

of each lake. Continent boundary map data come from Natural Earth. (http://www.

naturalearthdata.com/about/terms-of-use/; public domain).

(TIF)

S2 Fig. Greening near the mouths of major inflowing rivers. Maps shown for Saginaw Bay,

Lake Huron (A), the Northern Caspian Sea (B), and Lake Titicaca (C). Lake boundary map

data come from the HydroLAKES database v1.0 and river map data come from the Hydro-

SHEDS database, both of which are licensed under a Creative Commons Attribution (CC-BY)

4.0 International License. (https://www.hydrosheds.org/).

(TIF)

S3 Fig. P-values associated with trends across space within lakes. Lakes shown are the same

as those in Fig 3. Darker reds indicate relatively higher statistical strength. P-values less than

0.5 appear white. Lake boundary map data come from the HydroLAKES database v1.0 which

is licensed under a Creative Commons Attribution (CC-BY) 4.0 International License.

(https://www.hydrosheds.org/products/hydrolakes).

(TIF)

S4 Fig. The proportion of lake area which exhibited decreases (blue bars) versus increases

(green bars) in chl-a for the largest 18 lakes in the world. The darker portion of each bar rep-

resents the proportion of lake area which had p-values less than 0.1. The Caspian Sea is plotted

separately to facilitate visualization of the smaller lakes which are plotted on a separate x-axis

scale.

(TIF)

S5 Fig. Cross validation of remotely sensed chl-a. Relationship between in situ chl-a and the

nearest raw remote sensing chl-a value (A). Relationship between in situ chl-a and the in situ ana-

logue chl-a values after adapting the chl-a algorithm for specific lakes according to their character-

istics (B). The shaded area reflects the density of the chl-a estimates at each gridcell. The red dots

are the lake-wide averages for each of the 56 lakes where in situ chl-a data were available.

(TIF)
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S6 Fig. Calculation of chl-a anomalies from in situ analog chl-a values. We used boosted

regression trees to remove the variation in chl-a (in situ analog values) attributable to the sen-

sor (A, B), the day of the year (C, D), and the location (latitude and longitude) (E, F). Locally

weighted scatterplot smoothing (LOWESS) lines are shown for raw chl-a values (A, C, E) and

chl-a anomaly values (B, D, F) demonstrating that the variation attributable to three variables

(sensor, day of the year, and location) and their interactions was successfully removed by this

method. Lake boundary map data come from the HydroLAKES database v1.0 which is

licensed under a Creative Commons Attribution (CC-BY) 4.0 International License. (https://

www.hydrosheds.org/products/hydrolakes).

(TIF)

S1 Table. List of all large lakes included in the analysis including their characteristics.

(XLSX)

S2 Table. In situ chl-a data used for chl-a algorithm calibration.

(XLSX)
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