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Abstract Heat stress is a major threat to global crop production, and understanding its impact 
on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects 
of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly under-
stood. Here, we investigated the impact of elevated temperature on centromere structure and 
chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, 
heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results 
reveal that elevated temperature causes a decrease in the amount of centromeric histone and the 
kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we 
show that heat stress increases the duration of meiotic divisions and prolongs the activity of the 
spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore 
attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric 
histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in 
meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the 
structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, 
and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adapta-
tion to increasing temperatures.

eLife assessment
This study is an important contribution to our insights into the impact of heat stress on sexual repro-
duction in plants and provides information about how centromere integrity is affected by heat stress 
during male meiosis in Arabidopsis thaliana. The evidence supporting the claims, specifically the 
dynamics of tagged proteins in meiocytes by live cell imaging is solid, even though a deeper mecha-
nistic understanding is still lacking.

Introduction
Global warming impacts crop productivity with more frequent and extreme heatwaves being particu-
larly damaging (Brás et al., 2021). The lower yields associated with heatwaves are mainly attributed 
to the impairment of the plant reproductive system (Lippmann et al., 2019). Thus, a fundamental 
understanding of how heat stress affects plant reproduction can guide breeding strategies toward 
generating climate change-resilient crops. Heat stress impairs both male and female reproductive 
structures, but male gametogenesis is particularly sensitive to higher temperatures (Zinn et al., 2010). 
Studies in crop and non-crop species have shown that heat stress affects pollen count, morphology, 
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viability, dehiscence, germination, and pollen tube growth (De Storme and Geelen, 2014; Chaturvedi 
et al., 2021).

Acute heat stress applied at different stages of flower development has been found to have the 
most detrimental effect during microsporogenesis (Pécrix et al., 2011; Hedhly et al., 2020). Meiosis, 
a reductive cell division that halves number of chromosomes in two consecutive rounds of chromo-
some segregation, is a crucial step of microsporogenesis. It is a relatively slow process, lasting approx-
imately 1.5–2 days in Arabidopsis and barley (Armstrong et al., 2003; Higgins et al., 2012; Prusicki 
et al., 2019; Valuchova et al., 2020). Prophase I, the longest phase of meiosis, is characterized by 
pairing and recombination of homologous chromosomes to form stable bivalents. It is followed by 
two chromosome segregation cycles that first divide homologous chromosomes and then the sister 
chromatids. Heat stress affects various aspects of plant meiosis. In prophase I, elevated temperature 
alters the rate and distribution of meiotic recombination (Higgins et al., 2012; Lloyd et al., 2018; 
Modliszewski et al., 2018) and a recent study in Arabidopsis has shown that heat shock response 
pathway directly regulates the recombination machinery (Kim et al., 2022). More severe heat stress 
can impair synapsis and pairing of homologous chromosomes (Loidl, 1989; De Storme and Geelen, 
2020; Ning et al., 2021). This is likely due to inefficient completion of homologous recombination, 
which is monitored by specialized pachytene checkpoint (De Jaeger-Braet et al., 2022).

Heat stress affects the later stages of meiosis as well. Elevated temperatures disturb spindle orien-
tation during meiotic divisions and the formation of radial microtubule arrays, resulting in aberrant 
cytokinesis and diploid microspores (Pécrix et al., 2011; De Storme and Geelen, 2020). Furthermore, 
acute heat stress leads to chromosome mis-segregation and the formation of micronuclei (Wang 
et al., 2017; De Storme and Geelen, 2020; De Jaeger-Braet et al., 2022). The meiotic micronuclei 
and chromosomal aberrations may arise as a consequence of abnormal repair of meiotic DNA breaks 
or homologous recombination intermediates in prophase I. However, they can also be caused by 
defects in chromosome segregation during meiotic divisions (Fenech et al., 2011). Proper attach-
ment of kinetochores to the spindle microtubules before anaphase is crucial for faithful chromosome 
partitioning to daughter cells, and this process is controlled by spindle assembly checkpoint (SAC). 
Therefore, micronuclei typically occur in mutants with impaired centromere/kinetochore structure or 
SAC when treated with spindle inhibitors (Kalitsis et al., 2000; Lermontova et al., 2011a).

In most eukaryotes centromeres are confined to a restricted region on each chromosome that 
serves as a platform for assembly of the kinetochore, a multiprotein structure that connects chromo-
some with the spindle. Centromeres are defined epigenetically by a specialized centromeric histone 
H3 variant (CENH3), which forms the foundation for the recruitment of kinetochore proteins (McAinsh 
and Marston, 2022). In contrast to canonical histones, replicative dilution of CENH3 is not replen-
ished immediately in S-phase, but in subsequent stages of the cell cycle (Stirpe and Heun, 2023). In 
plants, CENH3 is loaded on centromeres in G2 and persists there throughout the cell cycle (Talbert 
et al., 2002; Lermontova et al., 2006). CENH3 is a very stable component of centromeric chromatin, 
although its amount at centromeres gradually declines in terminally differentiated cells in plants and 
animals (Lermontova et al., 2011b; Swartz et al., 2019).

In this study, we have discovered that heat stress significantly reduces the amount of CENH3 on 
meiotic chromosomes in Arabidopsis thaliana. This loss of CENH3 leads to the formation of micronu-
clei, which in turn contributes to the decrease in pollen formation and fertility in plants exposed to 
heat stress. Additionally, we have found that plants with a genetic mutation that reduces the amount 
of centromeric histone are more sensitive to moderately elevated temperature. These results suggest 
that meiotic centromeres may represent a crucial point of vulnerability for plants in adaptation to 
raising temperatures.

Results
Pollen production and fertility decline with increasing temperature
In our previous work, we identified the cenh3-4 allele of Arabidopsis centromeric histone CENH3 
that carries a mutation in the splicing donor site of the third exon (Capitao et al., 2021). This leads 
to a 10-fold reduction in fully spliced CENH3 mRNA and a decreased amount of centromeric histone. 
Consequently, cenh3-4 plants have smaller centromeres and are sensitive to oryzalin (Capitao et al., 
2021). Under standard conditions, cenh3-4 mutants are barely distinguishable from wild type, but 

https://doi.org/10.7554/eLife.90253
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we noticed their reduced fertility when grown at an elevated temperature. To systematically assess 
this phenotype, we grew plants under standard conditions (21°C) until they formed four true leaves, 
and then continued their cultivation in growth chambers tempered to 16°C, 21°C, 26°C, and 30°C 
(Figure 1—figure supplement 1). At 16°C, plants exhibited the slowest growth, but also the highest 
fertility, as assessed by pollen count and silique length, which is indicative of seed yield (Figure 1). 
Fertility slightly decreased at 21°C and further declined at 26°C. In cenh3-4 mutants, we noticed 
a sharp decline in pollen production and fertility at 26°C (86±48 pollen per anther), whereas the 
fertility of the wild type was still relatively high (213±58 pollen per anther) (Figure 1B and C). Both 
cenh3-4 and wild type plants became infertile at 30°C. The heat-induced sterility was reversible and 
cenh3-4 as well as wild type plants transferred from 30°C to 21°C regained fertile flowers (Figure 1—
figure supplement 1C). These data indicate that pollen production and fertility gradually decline 
with increasing temperature and this trend is particularly pronounced in cenh3-4 mutants that have 
become almost sterile already at 26°C.

It has been reported that extreme heat stress alters chromosome segregation fidelity and the 
duration of Arabidopsis meiosis (De Jaeger-Braet et al., 2022). Temperatures of 34°C and above 
abolished chromosome pairing and synapsis and led to the formation of univalents. However, meiotic 
chromosomes are fully paired at 30°C (Ning et al., 2021; De Jaeger-Braet et al., 2022; Fu et al., 
2022), indicating that the recombination defects are not primarily responsible for abortive pollen 
development at this temperature.

Heat stress delays meiotic progression and induces micronuclei
To assess the effect of temperature on meiotic progression and chromosome segregation at tempera-
tures up to 30°C, we performed live imaging of meiotic divisions in the HTA10:RFP reporter line, 
which marks chromatin (Valuchova et al., 2020). We measured the duration of meiotic divisions from 
the end of diakinesis until the formation of haploid nuclei in telophase II (Figure 2—figure supple-
ment 1). Meiotic divisions were slowest at 16°C and lasted, on average, 441 and 459 min in wild 
type and cenh3-4, respectively (Videos 1 and 2, Figure 2A). Meiosis progressed significantly faster 
with increasing temperature. Wild type meiotic divisions took 169 min at 21°C and 142 min at 26°C 
(Videos 3 and 4). Meiotic divisions were also rapid in cenh3-4 at 21°C, lasting on average 156 min, but 
slowed down to 238 min at 26°C (Videos 5 and 6). This contrasts with the situation in wild type, where 
divisions occur at the fastest rate at 26°C. Interestingly, meiotic divisions were prolonged at 30°C in 
both wild type and cenh3-4 mutants to 286 and 264 min, respectively (Videos 7 and 8). The slowdown 
of meiosis at 26°C and 30°C in cenh3-4, and at 30°C in wild type coincides with the steep decline of 
pollen production (Figure 1B and C) and indicates problems with meiotic progression.

Live imaging in cenh3-4 plants and, at 30°C, also in wild type showed formation of micronuclei 
that began to form during meiosis I and persisted till telophase II (Videos 7 and 8). We quantified 
the micronuclei in fixed anthers at the tetrad stage using confocal microscopy (Figure 2B and C). The 
micronuclei were apparent in cenh3-4 mutants at all temperatures, which is consistent with partially 
impaired centromere function in these plants (Capitao et al., 2021). Nevertheless, their occurrence 
substantially increased at 26°C and severe defects in chromosome segregation were observed at 30°C 
(Figure 2B and C; Videos 6 and 8) resulting in very few regular tetrads. Whereas we occasionally 
detected micronuclei at lower temperatures also in wild type, albeit at a much lower level than in 
cenh3-4, their incidence increased 17-fold between 26°C and 30°C (Figure 2B and C, Videos 4 and 
7). In addition, we observed dyads and polyads, which is consistent with the previous study performed 
at a similar temperature (De Storme and Geelen, 2020). These data show that temperature-induced 
fertility reduction coincides with increased occurrence of micronuclei.

Micronuclei may arise from acentric fragments and dicentric chromosomes derived from defective 
repair of meiotic breaks. Indeed, temperatures above 30°C were reported to cause aberrant recom-
bination intermediates and induce pachytene checkpoint (De Storme and Geelen, 2020; De Jaeger-
Braet et al., 2022). In this scenario, the absence of meiotic breaks in SPO11-deficient plants should 
prevent the formation of temperature-induced micronuclei. Arabidopsis spo11-2 mutants do not form 
bivalents, and homologous chromosomes segregate randomly in anaphase I (Stacey et al., 2006; 
Hartung et al., 2007). Cytogenetic analysis in spo11-2 plants revealed a relatively high level of micro-
nuclei in tetrads at 21°C (Figure 2B and C). Because unpaired univalents cannot properly biorient 
at metaphase I spindle, these micronuclei are likely generated by chromosome mis-segregation. 

https://doi.org/10.7554/eLife.90253
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Figure 1. Effect of temperature on fertility in wild type and cenh3-4 plants. (A) Analysis of silique length through 
the main stem of wild type (WT) grown at 16°C (n=18), 21°C (n=25), 26°C (n=13), 30°C (n=20) and cenh3-4 mutant 
at 16°C (n=22), 21°C (n=20), 26°C (n=22), and 30°C (n=11). The silique position is numbered from the oldest to the 
youngest silique on the main stem. Error bars depict standard deviation. (B) Anthers of the abovementioned plants 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.90253
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Importantly, number of the micronuclei almost doubled in spo11-2 plants grown at 30°C (Figure 2B 
and C) arguing that temperature has a direct effect on chromosome segregation.

In its natural habitats, A. thaliana usually flowers from March to early summer under average daily 
temperatures lower than the ones used for cultivation in laboratories (Shindo et al., 2007; Brachi 
et al., 2010). Due to the day-night cycle, they never experience sustained temperatures over 30°C. 
Therefore, we tested whether meiotic defects observed after continuous cultivation at 30°C could also 

be induced under more physiological conditions 
that mimic a hot day. To this end, we cultivated 
plants in chambers tempered to 18°C overnight 
and increased temperature to 34°C for 6 hr during 
the day (Figure  2—figure supplement 2). We 
observed a drastic reduction in fertility and pollen 
count, as well as an increased frequency of micro-
nuclei compared to control plants grown under 
the 18°C/21°C night/day regime (Figure  2—
figure supplement 2B–D). These data suggest 
that heatwaves occurring during flowering can 
have a detrimental effect on Arabidopsis meiosis.

Heat stress reduces the amounts 
of centromeric histone on meiotic 
centromeres
Our phenotypic analysis indicates that cenh3-4 
mutants grown at 26°C exhibit the same behavior 
as wild type plants grown at 30°C. Therefore, 
we investigated whether increasing temperature 
weakens the centromere structure, which could 
explain the temperature sensitivity of cenh3-4 
plants with less centromeric histone. CENH3 
is present on meiotic chromosomes from early 
prophase I (Talbert et  al., 2002; Lermontova 

after Alexander staining. (C) Quantification of viable pollen per anther (n=45). Significance of the difference is 
counted using two-tailed t-test. Source values for (A) and (C) are available in Source data 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Effect of temperature on growth of wild type and cenh3-4 plants.

Figure 1 continued

Video 1. Live imaging of meiosis in plants carrying 
HTA10:RFP chromatin marker grown at 16°C.

https://elifesciences.org/articles/90253/figures#video1

Video 2. Live imaging of meiosis in cenh3-4 plants 
carrying HTA10:RFP chromatin marker grown at 16°C. 
Production of micronuclei could be seen in a few pollen 
mother cells.

https://elifesciences.org/articles/90253/figures#video2

https://doi.org/10.7554/eLife.90253
https://elifesciences.org/articles/90253/figures#video1
https://elifesciences.org/articles/90253/figures#video2
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et al., 2006) and its signal is most visible in pachytene when homologous chromosomes are fully 
synapsed.

To assess the effect of temperature on centromeres, we analyzed the CENH3 signal on pachy-
tene chromosomes in anthers of the Arabidopsis eYFP:CENH3 reporter line (Le Goff et al., 2020; 
Demidov et al., 2022) grown at 21°C, 26°C, and 30°C. While eYFP:CENH3 was readily detectable 
on pachytene chromosomes at 21°C, the signal decreased significantly at 26°C and declined further 
at 30°C (Figure 3A and B). This trend was observed in three independent experiments (Figure 3B). 
In contrast, the eYFP:CENH3 signal in tapetum nuclei adjacent to pollen mother cells (PMCs) 
exhibited the opposite trend and increased with elevated temperature (Figure  3A and C). This 
resulted in a striking difference in signal intensity at 30°C, where the tapetum exhibited a strong 
eYFP:CENH3 signal, whereas the signal on pachytene chromosomes in the same field of view was 
barely detectable (Figure 3A). We validated the observation that elevated temperature reduces the 

Figure 2. Effect of temperature on meiosis duration and micronuclei formation. (A) Graphical representation of the duration of meiosis I (from the end 
of diakinesis to the end of anaphase I; Figure 2—figure supplement 1), interkinesis, and meiosis II (prometaphase II to telophase II) calculated from 
live imaging of anthers in wild type (WT) and cenh3-4 plants grown at 16°C, 21°C, 26°C, and 30°C. Error bars represent standard deviation (from 16°C 
to 30°C: in wild type n=36, 36, 36, 45 and cenh3-4 n=35, 24, 24, 4, resp.) Significance of the difference is indicated (two-tailed t-test; ****p<0.0001). 
(B) Anther loculi in the tetrad stage of wild type, cenh3-4 and spo11-2-3 plants grown at 16°C, 21°C, 26°C, and 30°C. DNA was stained with DAPI. Blue 
arrowheads indicate examples of produced micronuclei. Scale bar = 10 µm. (C) Number of micronuclei per lobe in wild type (WT, n=19, 19, 19, 19), 
cenh3-4 (n=19, 19, 19, 19), and spo11-2-3 (n=19, 26, 21) plants. Error bars represent standard deviation. Significance of the difference from plants of the 
corresponding genotype grown at 21°C is indicated (two-tailed t-test; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). Source values for (A) and (C) are 
available in Source data 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. An example of a time lapse series of HTA10:RFP meiocytes indicating the meiotic stages used for calculating the duration of 
meiosis.

Figure supplement 2. Effect of changing night-day temperatures on wild type and cenh3-4 plants.

https://doi.org/10.7554/eLife.90253
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level of CENH3 on pachytene chromosomes also 
in non-tagged wild type plants by immunodetec-
tion using a CENH3 antibody (Figure 3—figure 
supplement 1).

CENH3 acts as a platform for the binding of 
additional kinetochore and SAC proteins. BMF1 
is an Arabidopsis BUB1-related protein that asso-
ciates with centromeres throughout the cell cycle 
(Komaki and Schnittger, 2017). We generated 
Arabidopsis marker lines expressing BMF1::BM-
F1:eYFP and BMF1::BMF1:TagRFP constructs, 
and validated BMF1 co-localization with CENH3 from early prophase I to telophase II (Figure 3—
figure supplement 2, Video 9). The BMF1 signal was not detected in roots or in meiotic cells of 
cenh3-4 mutants indicating that BMF1 loading on centromeres is CENH3 dependent (Figure 3—figure 
supplement 3). Analysis of the BMF1:eYFP signal in wild type plants grown at elevated temperatures 
showed a decrease in the signal on pachytene chromosomes at 26°C, and BMF1 was undetectable at 
30°C (Figure 3D and E). These data suggest that similar to CENH3, elevated temperature reduces the 
kinetochore protein BMF1 at meiotic centromeres.

Video 3. Live imaging of meiosis in plants carrying 
HTA10:RFP chromatin marker grown at 21°C.

https://elifesciences.org/articles/90253/figures#video3

Video 4. Live imaging of meiosis in plants carrying 
HTA10:RFP chromatin marker grown at 26°C.

https://elifesciences.org/articles/90253/figures#video4

https://doi.org/10.7554/eLife.90253
https://elifesciences.org/articles/90253/figures#video3
https://elifesciences.org/articles/90253/figures#video4
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Heat stress prolongs SAC in 
metaphase I
In our previous report, we showed that reduced 
amount of CENH3 and smaller centromeres 
prolong the biorientation of mitotic chromosomes 
in cenh3-4 plants (Capitao et al., 2021). Biorien-
tation is monitored by the SAC and its satisfaction 
triggers anaphase. We hypothesized that meiotic 
chromosomes with heat-induced reductions in 
CENH3 might take longer to properly attach to 
the spindle and satisfy the SAC. The core SAC 
proteins temporarily associate with the kineto-
chore during spindle formation and disappear just before the onset of anaphase.

Video 5. Live imaging of meiosis in cenh3-4 plants 
carrying HTA10:RFP chromatin marker grown at 21°C. 
Production of micronuclei could be detected in some 
pollen mother cells.

https://elifesciences.org/articles/90253/figures#video5

Video 6. Live imaging of meiosis in cenh3-4 plants 
carrying HTA10:RFP chromatin marker grown at 26°C. 
Production of micronuclei could be detected in most 
pollen mother cells.

https://elifesciences.org/articles/90253/figures#video6

https://doi.org/10.7554/eLife.90253
https://elifesciences.org/articles/90253/figures#video5
https://elifesciences.org/articles/90253/figures#video6
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BMF3 is one of the core components of the 
Arabidopsis SAC, which associates with the kine-
tochores during prometaphase and extends this 
association in the presence of a spindle inhibitor 
(Komaki and Schnittger, 2017; Lampou et  al., 
2023). To monitor the SAC on meiotic chromosomes, we generated Arabidopsis lines expressing 
BMF3::BMF3:TagRFP, and BMF3::BMF3:GFP together with the tubulin marker TagRFP:TUB4. First, 
we validated the localization of BMF3 on meiotic chromosomes by live cell imaging, as BMF3 has 
previously only been analyzed in the context of mitosis (Komaki and Schnittger, 2017). We observed 
the BMF3:GFP signal during prometaphase/metaphase I, it disappeared at the onset of anaphase I 

Video 7. Live imaging of meiosis in plants carrying 
HTA10:RFP chromatin marker grown at 30°C. Aberrant 
meiotic products are detected.

https://elifesciences.org/articles/90253/figures#video7

Video 8. Live imaging of meiosis in cenh3-4 plants 
carrying HTA10:RFP chromatin marker grown at 30°C. 
Most pollen mother cells (PMCs) undergo aberrant 
meiotic division and only a few PMCs undergo normal 
meiotic division resulting in forming unbalanced 
tetrads.

https://elifesciences.org/articles/90253/figures#video8

https://doi.org/10.7554/eLife.90253
https://elifesciences.org/articles/90253/figures#video7
https://elifesciences.org/articles/90253/figures#video8
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and reappeared again during metaphase II, suggesting that BMF3 is a component of the meiotic SAC 
(Figure 4A, Video 10). We then analyzed the effect of temperature on SAC duration. Since the signal 
was more prominent in metaphase I, we measured the duration of the active SAC during meiosis 
I. We observed that while the BMF3:GFP signal persisted for an average approximately 22.7  min 
at 21°C and 26°C, its appearance was prolonged to 40.5 min at 30°C (Figure 4B, Videos 11 and 
12). We also noticed that the intensity of the BMF3 signal appeared to decrease with increasing 
temperature (Figure 4—figure supplement 1A). A weaker but prolonged association of BMF3 with 
the meiosis I kinetochore was also observed in cenh3-4 mutants with reduced levels of centromeric 
histone (Figure 4—figure supplement 1B and C). These observations are consistent with the notion 
that elevated temperature leads to partial depletion of CENH3 and impairment of centromere struc-
ture, which may prolong the time required for chromosome biorientation and SAC satisfaction.

Figure 3. Effect of high temperature on centromere structure in wild type plants. (A) eYFP:CENH3 expression and DAPI staining of meiotic pachytene 
(blue dots) and mitotic tapetal cells (red dots) in wild type plants grown at 21°C, 26°C, and 30°C. Scale bar = 5 µm. (B) Quantification of CENH3 
fluorescence intensity per centromere in pachytene. Each interleaved scatter plot with median and interquartile range shows results of an independent 
experiment (left graph n=102, 103, 125, middle n=359, 220, 233 and right graph n=386, 268, 233). (C) Quantification of eYFP:CENH3 signal intensity in 
tapetum cells of plants grown at 21°C, 26°C, and 30°C. Each graph represents an independent experiment (left graph n=369, 262, 203 and right graph 
n=358, 266, 213). (D) Expression of BMF1:eYFP in pachytene in plants grown at 21°C, 26°C, and 30°C. DNA is counterstained with DAPI. Scale bar = 
5 µm. (E) Quantification of BMF1:eYFP signal intensity per centromere in pachytene in two independent experiments; left graph n=120 and right n=100. 
Two-tailed t-test is used to depict the significance of the difference. Source values for (B, C, and E) are available in Source data 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Immunodetection of CENH3 on meiotic chromosomes.

Figure supplement 2. Co-localization of the kinetochore BMF1:TagRFP (red) and centromeric eYFP:CENH3 (yellow) proteins through meiosis in DAPI 
stained (gray) meiocytes.

Figure supplement 3. Association of BMF1 with centromeres in cenh3-4 plants.

https://doi.org/10.7554/eLife.90253
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Discussion
In this study we investigated the impact of 
increased temperature on fertility and meiotic progression in Arabidopsis. We observed that A. 
thaliana (ecotype Col-0) exhibited the highest fertility when grown at 16°C, which closely resem-
bles the average temperature during flowering in its natural habitats (Brachi et al., 2010). At this 

Video 9. Live imaging of BMF1:eYFP kinetochore 
marker (cyan) and HTA10:RFP chromatin marker 
(magenta) during meiosis.

https://elifesciences.org/articles/90253/figures#video9

Figure 4. Effect of high temperature on the duration of BMF3:GFP localization during wild type meiosis. (A) Time lapse series of BMF3:GFP (cyan) and 
TagRFP:TUB4 (magenta) in pollen mother cell from nuclear envelope breakdown to telophase II. Scale bar = 5 µm. (B) Duration of BMF3:GFP signal in 
plants grown at 21°C (n=24), 26°C (n=32), and 30°C (n=31). Significance of the difference was calculated via two-tailed t-test. Source values for (B) are 
available in Source data 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Association of BMF3 with centromeres in cenh3-4 plants.

Video 10. Live imaging of BMF3:GFP spindle assembly 
checkpoint marker (cyan) and TagRFP:TUB4 tubulin 
marker (magenta) during both meiosis.

https://elifesciences.org/articles/90253/figures#video10

https://doi.org/10.7554/eLife.90253
https://elifesciences.org/articles/90253/figures#video9
https://elifesciences.org/articles/90253/figures#video10
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temperature, meiotic divisions took more than 
twice as long as at 21°C. Arabidopsis grown at 
17°C was reported to exhibit slower microsporo-
genesis, with the entire meiosis process lasting 
48  hr as opposed to 32  hr at 24°C (Zhu et  al., 
2020). Interestingly, the slower progression was 
found to be less detrimental for several muta-
tions that affect microsporogenesis, indicating 
that a slower pace provides greater robustness. 
Overall, these observations suggest that the pace 
of meiosis in Arabidopsis is well optimized for its 
natural growth conditions, enabling the plants to 
achieve maximum fitness.

The process of meiosis is progressively accel-
erated with increasing temperature (De Jaeger-
Braet et al., 2022; Figure 2). However, the speed 
of meiotic divisions reaches its maximum at 26°C 
and slows down at 30°C under the conditions 
used in this study. At 30°C, fertility is lost and 

high incidence of micronuclei is observed, implying that the temperature around 30°C impairs some 
molecular processes involved in chromosome segregation and genome integrity. The micronuclei 
can represent acentric fragments derived from aberrant processing of recombination intermediates. 
Indeed, the impact of temperature on recombination machinery is well documented. A moderate 
increase in temperature leads to shift in chiasma distribution and cross-over frequency (Higgins et al., 
2012; Lloyd et al., 2018; Modliszewski et al., 2018). Heat stress above 30°C severely impairs recom-
bination and synapsis, leading to univalents and chromosome segregation defects (De Storme and 
Geelen, 2020; Ning et  al., 2021; De Jaeger-Braet et  al., 2022; Fu et  al., 2022). Nevertheless, 
we observed an increased incidence of micronuclei also in SPO11-deficient plants that do not form 
meiotic DNA double-strand breaks indicating that only a portion of micronuclei is derived from aber-
rant recombination.

Micronuclei can also be formed by aberrant chromosome segregation during anaphase (Fenech 
et  al., 2011). The accurate partitioning of chromosomes depends on the correct attachment of 
centromeres to the spindle microtubules. Recent reports have indicated that the stability of microtu-
bules in plant meiocytes is compromised by heat stress (Wang et al., 2017; De Jaeger-Braet et al., 
2022). In this study, we have demonstrated that high temperature also affects the structure and func-
tion of meiotic centromeres. Our findings suggest that elevated temperature reduces the amount 

of CENH3 and BMF1 on meiotic centromeres 
(Figure 3). These weakened centromeres may be 
less effective in establishing productive interac-
tions with spindle microtubules. This is consistent 
with the prolonged SAC we observed through 
the longer residency of BMF3 on prometaphase 
I centromeres at 30°C (Figure 4). Taken together, 
our data indicate that heat stress impairs 
centromere function, which in turn decreases the 
efficiency of proper attachment of chromosomes 
to the meiotic spindle. As a result, these chromo-
somes may not be transported to their intended 
destination in a timely manner and, therefore, not 
incorporated into the newly formed nuclei. This 
scenario also explains the increased temperature 
sensitivity of cenh3-4 plants, which already have 
smaller centromeres (Capitao et al., 2021); even 
moderately elevated temperature may further 
enhance this defect.

Video 11. Live imaging of BMF3:GFP spindle assembly 
checkpoint marker (cyan) and TagRFP:TUB4 tubulin 
marker (magenta) during first meiotic division of plants 
grown at 26°C.

https://elifesciences.org/articles/90253/figures#video11

Video 12. Live imaging of BMF3:GFP spindle assembly 
checkpoint marker (cyan) and TagRFP:TUB4 tubulin 
marker (magenta) during the first meiotic division of 
plants grown at 30°C.

https://elifesciences.org/articles/90253/figures#video12

https://doi.org/10.7554/eLife.90253
https://elifesciences.org/articles/90253/figures#video11
https://elifesciences.org/articles/90253/figures#video12
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How elevated temperature affects the amount of CENH3 on centromeres? Studies in human cells 
have revealed that CENH3 nucleosomes are less stable than previously thought. The amount of 
CENH3 at centromeres declines over time and must be actively replenished to preserve centromere 
identity and proliferative potential (Swartz et al., 2019). Transcription has been shown to cause the 
eviction of pre-existing CENH3 from the centromeres (Swartz et al., 2019). In Arabidopsis, depletion 
of CENH3 from centromeres has been observed in leaf cells with increasing age, indicating that this 
phenomenon also occurs in plants (Lermontova et al., 2011b). The Arabidopsis centromeric satellite 
repeat CEN180 undergoes pervasive transcription, which is largely repressed by epigenetic silencing 
mechanisms (May et al., 2005). However, heat stress can alleviate the repression and induce tran-
scription of CEN180 from silent loci (Tittel-Elmer et al., 2010). This temperature-induced transcrip-
tion can increase the eviction of CENH3 nucleosomes, potentially compromising centromere structure 
if not replenished. Interestingly, in contrast to PMCs, tapetum cells do not exhibit CENH3 loss at 
elevated temperatures (Figure 3C). This may be due to the different efficiency of CENH3 deposition 
to replenish the heat-induced loss of CENH3 in these cell types. Accordingly, Arabidopsis meiotic cells 
possess a specialized CENH3 loading mechanism that seems more stringent than the loading mecha-
nism operating in mitotic cells (Lermontova et al., 2011a; Ravi et al., 2011; Schubert et al., 2014).

Crosses between wild type and plants with altered CENH3 can result in postzygotic loss of one 
set of parental chromosomes (Ravi and Chan, 2010). This is attributed to inefficient re-loading of 
CENH3 on the set of parental chromosomes with the altered centromeres in hybrid embryos (Marim-
uthu et al., 2021). Recent studies showed that heat stress applied during early embryogenesis could 
enhance the centromere-mediated genome elimination in Arabidopsis (Ahmadli et  al., 2023; Jin 
et al., 2023; Wang et al., 2023). This indicates that similarly to meiocytes, elevated temperature can 
also destabilize centromeres in embryonic cells.

In conclusion, our study highlights the significant impact of temperature on the centromere struc-
ture and reproduction in Arabidopsis. We found that already moderate increase in temperature has 
a discernable effect on pollen production and silique length, and exposure to 30°C impairs the struc-
ture of centromeres and leads to plant sterility. These findings are particularly relevant in the context 
of climate change, where rising temperatures and more frequent weather extreme periods pose a 
threat to global food security by disrupting plant reproductive processes. As such, our study provides 
important insights into the mechanisms that contribute to the reduction of plant fertility in response 
to elevated temperature. Further research on molecular aspects underlying these effects may help 
to develop strategies to generate plants more resilient to extreme weather during their reproductive 
phase.

Materials and methods
Plant material and growth conditions
A. thaliana ecotype Columbia (Col-0), cenh3-4 (Capitao et al., 2021), and spo11-2-3 (Hartung et al., 
2007) seeds were grown on soil in growth chambers at 21°C, 16 hr/8 hr light/dark cycles and 50% of 
humidity until the 1.04 growth stage. Plants were then transferred to different chambers with contin-
uous 16°C, 21°C, 26°C, 30°C or 34°C/18°C and 21°C/18°C at 16 hr/8 hr light/dark cycles and 50% 
of humidity. Plants used for live cell imaging were generated by crossing HTA10:RFP (Valuchova 
et al., 2020) and pRPS5A::TagRFP:TUB4 (Prusicki et al., 2019) reporter lines with cenh3-4 mutant 
and BMF3::BMF3:GFP reporter lines, respectively. eYFP:CENH3 reporter line was described and char-
acterized in previous studies (Le Goff et al., 2020; Demidov et al., 2022).

Generating reporter lines
To generate the BMF1 and BMF3 reporter lines, we amplified the promoter and genomic regions 
of BMF1 using the primers ​CACC​​TGAG​​TCTC​​CAAC​​GTTA​ and ​CGAA​​GAGC​​ATAA​​CGAG​​ATGC​G. The 
PCR products were then cloned into the destination vectors pGWB659 and pGWB640, respectively, to 
create marker lines tagged with TagRFP and eYFP at the C-terminus. Similarly, we amplified the BMF3 
promoter and genomic regions using the primers ​CACC​​ATGC​​AGAT​​GGTC​​CTCC​ and ​GAAG​​TCCA​​
TTGG​​CATT​​GCAA​A, and subcloned them into pGWB459 and pGWB650 destination vectors using 
gateway cloning to generate the BMF3::BMF3:TagRFP and BMF3::BMF3:GFP lines, respectively. We 
then introduced these constructs into wild type and cenh3-4 plants using Agrobacterium-mediated 

https://doi.org/10.7554/eLife.90253
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floral dip transformation. We used non-segregating homozygous transgenic lines for microscopic 
analyses.

Assessment of plant fertility
Pollen viability was determined by Alexander staining (Alexander, 1969). Anthers were imaged using 
Zeiss Axioscope A1 equipped with 20×/0.5 objective (Zeiss) and processed in Zeiss ZEN software. 
Silique length was assessed from images of main stems scanned by an Epson scanner and the siliques 
were measured using the Fiji Analyze/Measure function (Schindelin et al., 2012).

Cytology
To examine micronuclei, DAPI staining of PMCs was used in whole anther as described (Capitao et al., 
2021). Anthers were imaged using Zeiss LSM780 confocal microscope (63×/1.4 oil objective) and 
image processing was done using Zeiss ZEN software (Zeiss). To quantify the fluorescence signal inten-
sity of eYFP:CENH3 and BMF1:eYFP, anthers were DAPI stained as described above, and Z-stacks 
were acquired using Zeiss LSM880 confocal microscope equipped with the Fast module 32-channels 
Airyscan detector (63×/1.4 oil objective). The fluorescence intensity was quantified using Fiji (Schin-
delin et al., 2012) according to the procedure described by Shihan et al., 2021. This involved gener-
ating a SUM of signal in Z-stacks covering one nucleus, background subtraction, and measuring Raw 
Integral Density per one signal. This process was repeated individually in each nucleus.

Immunodetection of CENH3 was performed with a custom-made polyclonal antiserum raised 
against the N-terminal peptide of CENH3 (1:1000) (Capitao et  al., 2021) and anti-Rabbit-CY3 
(Jackson ImmunoResearch). Arabidopsis inflorescences were fixed in 1× PBS buffer supplemented 
with 4% formaldehyde and 0.05% Tween for 15 min in vacuum and 45 min at room temperature. 
The floral buds were washed with 1× PBS and digested with cytohelicase (0.1 g cytohelicase, 0.25 g 
polyvinylpyrollidone, and 0.375 g sucrose in 25 ml of water) for 2 hr. Buds were washed once with 1× 
PBS and anthers were dissected on glass slides, squashed and frozen in liquid nitrogen. The slides 
were blocked with 3% BSA in 1× PBS supplemented with 0.5% Triton X-100 for 30 min at 37°C. Anti-
CENH3 antibody in 1× PBS supplemented with 3% BSA was added to each slide and incubated over 
night at 4°C. Slides were washed with 1× PBS and anti-Rabbit-CY3 secondary antibody diluted in 
1× PBS supplemented with 3% BSA was added to each slide and incubated for 1 hr at 37°C. Slides 
were washed with 1× PBS, stained with DAPI, and mounted in Vectashield. Slides were observed 
using AxioImager.Z2 fluorescence microscope (Zeiss). Images were analyzed using ZEN (Zeiss) and 
Fiji (Schindelin et  al., 2012) softwares. Signal intensity was measured at the peak signal of each 
centromere and was normalized to the background signal.

Live cell imaging
Live cell imaging of meiosis was performed by light-sheet fluorescence microscopy using Light-sheet 
Z.1 microscope (Zeiss) as previously described (Valuchova et al., 2020; Capitao et al., 2021). Imaging 
of male meiosis was conducted using 10× or 20× objectives (Detection Optics 10×/0.5 or 20×/1.0), 
single illumination (Illumination Optics 10×/0.2) and two track imaging with 488 nm laser for GFP and 
eYFP, and 561 nm laser for RFP, in 5 min time increments. Imaging of BMF3:GFP and TagRFP:TUB4 
markers for SAC analysis was performed using fast scanning in 1 min time increments. Images were 
deconvolved with a Regularized Inverse Filter and further processed in Zeiss ZEN software for Light-
sheet (Zeiss). To correct occasional sample drift, the Correct 3D drift plugin in Fiji (Parslow et al., 
2014) was used.
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