
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports

Bashing irreproducibility
with shournal
Tycho Kirchner , Konstantin Riege  & Steve Hoffmann *

Arguably, the most important tool for many computational scientists is the Linux shell. Processing
steps carried out there are critical for a large number of analyses. While the manual documentation
of the work is time-consuming and error-prone, existing tools do not integrate well into the shell or
suffer from a large overhead. Here, we present shournal, which integrates tightly into the shell and
automatically records all shell commands along with their associated file events. Thus, for all files,
it can later be told how they were generated and processed. Additionally, it allows the creation of
detailed reports for whole project folders. shournal retrieves its data directly from the Linux kernel and
allows the monitoring of whole process trees with low overhead.

The daily work of many computational biologists, physicists, meteorologists, data scientists, and many others
involves the Linux shell. Despite its limited graphic capabilities and complex syntax, its unmatched flexibility
makes it the tool of choice for many file operations, such as sorting or concatenation, as well as for writing small
scripts and pipelines. A growing set of software is solely controllable via the command line, which is especially
true for the most recent advancements in computational science. However, in larger analysis projects, it quickly
becomes challenging to keep track of the work process, as a typical shell workflow involves executing commands
with many parameters, modifying scripts, and editing configuration files, usually in an iterative manner. Manu-
ally documenting all steps is an effort that is generally only spent for results the researcher considers valuable at
execution time or shortly afterward. Otherwise, the shell’s history is often the only way to manually reconstruct
the chain of commands that led to a given outcome. This process is rather time-consuming, error-prone, and
leaves some critical blind spots, especially in cases where many similar commands were entered. A reconstruc-
tion can quickly become impossible if the used scripts or configuration files are not available anymore or have
been changed without proper version control. For smaller ad-hoc shell, awk, Perl, or Python scripts, such version
control is often omitted, inherently posing a threat to the reproducibility of the work.

In recent years, a plethora of tools have been developed to address the general problem of computational
reproducibility1,2, a critical subset being the reproduction of pipelines across platforms to share them with other
researchers. Prominent tools include workflow engines like Snakemake3 or Nextflow4, which provide their own
language to describe pipelines and setup routines. For practical or motivational reasons, however, analysis pro-
jects are not always directly initiated or consequently carried out within these frameworks. Clearly, the additional
work required for using these powerful tools may be deemed excessive for smaller ad-hoc projects or certain
pre-processing steps.

Tools like CDE5, CARE6, or ReproZip7 do not require a substantial modification of the user’s workflow. Instead,
based on system tracing using the Linux built-in ptrace, they can automatically create an archive of the whole
pipeline and its dependencies. This archive is executable on another unconfigured computer, alleviating the pro-
cess of sharing a result with the scientific community. However, due to the high runtime- and storage overhead
(see our benchmark below), continuous usage for all shell commands is not advisable, at least not for compu-
tationally demanding pipelines. Thus, we assume that in practice, such archives are only created at important
milestones of a research project, requiring all intermediate steps to be reproducible on the local machine. As
outlined above, achieving local reproducibility can be quite challenging, especially, when several days or weeks
have passed until those archivers run, discouraging researchers from creating reproducible pipelines.

Another class of tools are so-called record-and-replay systems like Arnold8 or rr (Record–Replay)9, which aim
at recording entire process trees with plenty of details, e.g., used system calls and their return value, to allow
“replaying” them at a later time. However, while being very powerful and suitable for, e.g., debugging, forensics,
or finding data races, the amount of necessary tracing and logging to replay processes may be too high when
computationally demanding pipelines are monitored on a regular basis. For instance, Arnold reports a runtime
overhead of up to 100% for a simple CVS checkout and 1 TB of disk space per year and workstation. Further,
in order to use Arnold, a custom Linux kernel must be compiled, constituting a high burden for administrators

OPEN

Computational Biology Group, Leibniz Institute on Aging — Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
*email: steve.hoffmann@leibniz-fli.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-53811-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports/

or users. The more recent rr is based on an optimized ptrace using seccomp-bpf filters and does not require a
custom kernel. However, it reports an almost eightfold runtime overhead for the example of compiling source
code using make.

SPADE10 allows recording provenance on the system-level using the Linux kernel’s builtin auditd infrastruc-
ture. While it does not record shell commands, such functionality could be added by a plugin. However, while
the authors report a runtime overhead of about 10% when monitoring a web-server or a genomic sequence
alignment, we find overheads partially exceeding 100% in our own benchmark, discouraging us from using
SPADE as tracing backend.

The bash plugin of Burrito11 associates shell commands and their used files based on tracing with SystemTap12.
However, it yields a runtime overhead of partially more than 20% in our benchmark, which is, as we demonstrate
later, substantially higher than necessary. Further, Burrito relies on the NILFS versioning filesystem13 to save
previous file versions, posing a severe limitation for institutions built around network filesystems such as NFS .
Finally, Burrito’s unconditional preservation of all file versions could quickly result in an unacceptable storage
overhead.

Here, we present shournal, a configurable and integrated tracker for the bourne again shell (bash) and z shell
(zsh).

Results
shournal, the shell journal, keeps track of the provenance of files14 by continuously recording all shell commands
reading or writing them. The association is based on tracing within (Linux-)kernel space. shournal is designed
from scratch for low overheads to allow being enabled unconditionally for all the user’s shell sessions, even when
tracing computationally highly demanding pipelines using terabyte-sized files. According to our benchmark,
shournal induces a runtime overhead of less than 0.5% while the storage overhead is small, i.e., a few megabytes
in case of tens of thousands of file events. Overheads are kept low using three key concepts

: first, tracing is implemented using ftrace and tracepoints from within shournal’s own kernel module (KMOD),
or an alternative backend instrumenting the kernel-builtin fanotify filesystem API, both orders of magnitude
faster than ptrace15. Second, tracing of file actions is limited to the comparatively seldom close operation and
lets the traced process return quickly by delegating further provenance collection to another thread (Fig. 1a).
Third, by default, shournal primarily captures file metadata such as path, size, modification-time, and (partial)
checksums, so the amount of data read from and stored to disk is small.

Besides logging metadata, shournal can be configured to archive whole scripts or configuration files for
dedicated directories or file extensions. To prevent, e.g., a backup script from flooding shournal’s database, the
maximum filesize and the number of archived scripts, as well as the maximum number of file events per com-
mand, is configurable.

To make use of the collected data, shournal provides flexible and fast (typically less than a second) queries
on the command line. For instance, for a given file, the exact shell commands that created it or used it can be
retrieved (Fig. 1c). Archived scripts or configuration files are restorable, enabling a re-execution of commands,
even if the original files have long been modified or deleted. File checksums of previous invocations allow for a
comparison to the current state, so, in case a command execution suddenly yields different results, it can quickly
be determined which input files or scripts changed. Other options include queries for files modified during a
given period, the command history of a project directory, or commands executed during a specific shell session.
Such queries may be useful for virtually all scientists working on the shell, especially when applications with
various input options are used. An example from the field of computational chemistry is OpenChem16, a deep
learning framework based on PyTorch17. Parameters of the deep learning models, like the number of epochs or
the used optimizer, are defined in configuration files whose values are partly overridable via the command line.
shournal can track and restore both in conjunction, simplifying the re-execution of the experiment at a later time.
Similar applies, e.g., to the Ensembl Variant Effect Predictor18, a tool used in bioinformatics.

In addition to the console output, shournal generates an interactive graphical map of commands for user-
specified files, directories, or dates (Fig. 1b). The map displays each shell session in an individual row, allowing
one to identify specific chains of subsequently executed commands better. Clicking on a command displayed in
the interactive map gives Supplementary Information on the exact execution time, archived scripts, or checksums.

The collected data can be shared with other programs using the JSON format. Due to the low-level nature of
the data, it can be used as a basis for higher-level systems such as workflow managers. For instance, rule tem-
plates for the Snakemake workflow engine3 can be generated from an observed series of shell commands using
the software at https://​github.​com/​snake​make/​shour​nal-​to-​snake​make. The input- and output section of a rule
is generated from the captured file events.

Thereby, shournal allows one to comprehensively record, search and visualize the work carried out on the
shell with configurable low runtime- and storage overhead. It alleviates the reproducibility of scientific analyses
by permitting the reconstruction, summary, and resumption of projects quickly. With the shournal-to-snakemake
converter, we demonstrate that the collected data may be used as a basis for the creation of workflows. shournal
does not require a self-compiled kernel and is easy to install (Debian packages and other binaries are provided
along with the source code at https://​github.​com/​Hoffm​ann-​Lab/​shour​nal). Observation of all the shell sessions
of a user can be started by adding two lines of code to the shell’s rc (e.g. .bashrc).

Discussion
To our knowledge, shournal is currently the only readily available tool to track all the user’s shell commands
and their used files with low overhead, irrespective of the underlying filesystem. Two backends, using either
fanotify or ftrace, are provided to cater to different administrative needs. By storing the data at the granularity

https://github.com/snakemake/shournal-to-snakemake
https://github.com/Hoffmann-Lab/shournal

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports/

Figure 1.   Shournal records shell commands and used files. (a) Schematic illustration of a shell session
observed by shournal. The whole process tree of the command cat foo tee bar is monitored for file-
close system calls. When foo is closed, the event is traced in kernel space within process context, while the
asynchronous provenance collection runs in another thread. Finally metadata and checksums of the used files
are stored alongside the corresponding shell command within shournal’s database. (b) Visualization of the
shell command history. shournal can export the command history into an interactive Html-plot. Commands,
which were executed within a given shell session, are marked with the same color. Parallel shell sessions are
vertically stacked. (c) An example shell session observed by shournal. The executed script demo.sh creates
a file out.log. Next, shournal’s database is queried for commands which created or modified out.log
using its –wfile option. shournal reports the command, file checksums and the archived script. (d) The impact
of tracing on runtime performance in various scenarios, given as the ratio of a monitored process over an
unmonitored process. Boxes for both shournal-backends, kernel module (KMOD) and fanotify, are displayed.
For comparison, our measured tracing overhead of Burrito, SPADE and strace is shown as well.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports/

of individual commands and their used files, shournal supports the creation of pipelines and toolchains without
requiring the user to make any specific provisions. This may be relevant in all situations where the assembly of
a pipeline was not initially intended. Also, it helps all users not yet familiar with the use of sophisticated work-
flow engines to keep track of their work and still be able to create a proper workflow later on. Our shournal-
to-snakemake converter, generating basic Snakemake rule templates from the user records, demonstrates how
shournal may help to facilitate some of this work. Additionally, if a version control system is not in use, shournal
may enhance the reproducibility of workflow executions by restoring scripts or other input files from previous
runs. By closing the critical gap between ad-hoc work on the shell, its manual documentation, and the creation
of workflows, also those researchers already using workflow solutions and tools such as CDE, CARE, or ReproZip
can benefit. In this way, shournal supports good scientific practice.

In its current implementation (version 3.1), shournal still lacks some desirable features. Specifically, when
calculations are distributed over multiple machines, the file-event history may have some gaps. While provenance
is recorded on all devices where shournal is installed, reconstructing the history is more challenging in this case.
Files opened read-writable are currently handled as write-only files. Although, in practice, many workflows
separate input- and output files, there are certainly exceptions. Both features shall be appropriately addressed
in upcoming versions of shournal. Additional detailed requirements and limitations are discussed in the
Supplementary Material.

As of shournal version 3.1, only Linux is supported natively. However, users of Microsoft Windows can use
the fanotify edition via the Windows Subsystem for Linux (WSL). Future versions shall also add native support
for other operating systems, e.g., Microsoft Windows or MacOS.

Finally, while shournal supports users by tracking how they did their work, it does not relieve them from
carefully documenting the rationale for a particular solution or their reasoning about it.

Methods
Tracing
Shournal implements its design goal to associate shell commands and their used files through kernel space
tracing. Specifically, shournal installs a global hook within the Linux kernel, which runs whenever any process on
the system closes the last instance of a file descriptor. Within that hook, it is determined if the executing process
is part of an observed shell command, whereupon a raw reference on the file path (a kernel object, not a string)
is taken and buffered. This allows the monitored process to resume quickly while further processing steps run
asynchronously in another thread. Shournal provides two backends to trace file close events of specific processes:
its own kernel module shournalk and another, fanotify-based backend.

Shournalk is based on tracepoints and the ftrace framework, allowing to run custom code at specific execution
paths without kernel recompilation15. Only three events are traced. In addition to tracing the closing of files, the
exit of processes and fork events are kept track of. Tracing of the latter allows us to maintain a list of shell processes
and their descendants. A process can initially be marked for observation using shournalk’s sysfs-interface19.

The fanotify-based backend employs the kernel-native fanotify filesystem API to register for file close-events
and does not involve a kernel modification. However, while fanotify allows event subscriptions for whole mount
points20, it provides no direct way to monitor only file events of specific processes. To remedy this shortcoming,
for each shell command, shournal creates a unique unshared mount namespace21 and ensures that file operations
of the shell and its child processes refer to it.

The fanotify-based backend provides a shared library, hooked into the shell’s process, and a setuid (suid)
program22 performing the privileged actions of unsharing and joining mount namespaces as well as marking
mount points with fanotify. Specifically, the shared library masks the library calls open and execve. The former
ensures that files within the parent shell and its subshells are opened relative to the new mount namespace, while
the latter redirects to shournal’s suid binary, which performs the privileged setns syscall to join the new mount
namespace, executing the original program afterward. The mount-namespace is, by default, inherited during
fork, notable exceptions being, e.g., container solutions like Docker. As a result, applications unsharing the mount
namespace themselves cannot be traced from an outer layer. However, shournal provides a dedicated Docker
edition which does allow a shell running within Docker to be observed.

While shournalk is faster (see section “Performance”), has fewer limitations, and alters the user-space
environment to a lesser extent, the fanotify backend may be of particular interest to institutions where the
installation of foreign kernel modules is discouraged.

Provenance collection
An asynchronous provenance collection thread consumes the file close events, which were buffered for observed
shell processes and their children. It filters files according to the user’s preferences, e.g., by archiving only scripts
ending with .sh or ignoring events from the system’s temporary directory. To ensure the identity of a given file,
beyond metadata like name, size, and modification time, a checksum of the file content is calculated using xxHash
https://​github.​com/​Cyan4​973/​xxHash. As hashing large files in their entirety could introduce a considerable
slowdown, only N chunks of length b bytes of a file are digested at regular offsets calculated from the file size
s. Starting from the beginning of a file, the seek-step p is p = ⌊ s

N ⌋ bytes. Small files, where p ≤ b , are hashed
completely. Three chunks of 256 file bytes are digested by default, keeping the overhead low. On the downside,
files of equal size with the same content in the hashed regions but different content in others are falsely reported
as equal. While we did not encounter such an error in practice, shournal’s hash settings remain configurable to
digest more file parts, if appropriate. Obtaining the correct checksum of a file’s “final” version is guaranteed to
be free from race conditions as long as all writers are part of the observed process tree: at some point, the last
writer closes the file, after which the final hashing is performed. Size, checksum, and optionally modification time

https://github.com/Cyan4973/xxHash

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports/

allow for later file provenance queries with high accuracy independent of the filename. Thus, shournal abstains
from tracing rename operations.

In the first instance, to be fast and lightweight, metadata and archived scripts are stored in a binary, partially
compressed file and later, without time pressure, finally stored in an SQLite database by a low-priority background
daemon. The maximum number of archived scripts and file events per command is configurable, so, by default, a
backup script cannot flood shournal’s database. To further reduce disk usage, files are archived in a deduplicated
manner.

Performance
To analyze shournal’s performance, we designed a benchmark reflecting scenarios with intensive file access.
During kernel copy, for instance, more than 120,000 files were read and written within a few seconds. In addition,
we benchmarked a git checkout of the Linux kernel source code and the compilation of elfutils with make. For
each command, the time of a “cold cache” run was measured at least 100 times, while between each run, the file
cache of the Operating system (OS), as well as the disk cache, was cleared.

We find that the median runtime overhead is less than 0.5% for the kernel module backend and less than 6.3%
for the fanotify backend in all examined cases (Fig. 1d). These results demonstrate the applicability of our tool.

For comparison with Burrito, we benchmarked its SystemTap-script11. The runtime overhead of partially
exceeding 20% already occurs due to plain tracing and event logging. No further processing or file-versioning
using the NILFS filesystem was involved, so we consider this the lower bound of the performance penalty one
has to expect when using this tool.

For comparison with SPADE, we installed and configured its auditd reporter (add reporter Audit).
The runtime overhead of partially exceeding 100% already occurs due to plain tracing and event processing
(without disk logging), so we conclude that the runtime overhead might be even higher in practice. Note that we
did not measure SPADE’s camflow backend due to our initial requirement of not depending on a self-compiled
kernel.

Finally, as a representative for ptrace-based tools, we measured runtimes under the tool strace23 and found
large overheads of partially exceeding 140%.

The storage overhead of shournal’s database critically depends on the user configuration. Using default
settings, the cp-benchmark yields a disk usage of 174 bytes per file event. Thus, 1 GiB of disk space is sufficient
for recording approx. 6 million events. For a regular shell user, we estimate a storage requirement of less than
100 MiB per month. Furthermore, shournal provides a rich command line interface to delete unneeded entries,
for example, by age (e.g., older than 2 years) or by project directory.

Hardware: All tests were run on an Intel(R) Xeon(R) CPU E-2146G CPU with six cores, 31 GiB RAM, and
a 1 TB PC601 NVMe SK hynix SSD.

Software and settings: OS was openSUSE Leap 15.1 with non-default kernel 4.12.14-lp151.28.91. The old
kernel version was used for comparison with Burrito, whose systemtap-script from 2012 does not run on more
recent kernel versions. The benchmark used a dedicated disk to reduce the impact of OS activity on the results.
For the same reason, multi-queue disk access24 was enabled. Native command queuing (NCQ) was disabled
due to potentially large, don-deterministic delays and vendor-specific implementation25. To make benchmark
executions comparable and stable, they were executed at the highest non-turbo CPU-frequency with Hyper-
threading disabled. As modern processors often control the frequency themselves, rather than following user
requests, cores were kept near their maximum frequency using the idle=poll kernel parameter. The CPU
scaling driver intel_pstate was disabled in favor of the older acpi-cpufreq driver to reduce noise, as
reported by26. Each benchmark iteration started with a “cold” cache: disk cache was cleared by reading 1.5 GB
of unrelated data from the benchmark drive, and the OS page cache27 was evicted by re-mounting the respective
partitions after each run. The full Grub command line was: idle=poll intel_pstate=disable
intel_idle.max_cstate=0 processor.max_cstate=1 scsi_mod.use_blk_mq=1
libata.force=noncq,noncqtrim systemd.unified_cgroup_hierarchy=0.

The tracing tools were used in the following versions: shournal (v2.9), Burrito (commit 6630cb2), SPADE
(commit 3437fcd), strace (v4.20). For the kernel copy the Linux source code v4.19.132 was copied with the cp
command. During git checkout, the Linux git tree, hard-reset to v4.19, was checked out to v3.10. Finally, make
was executed on elfutils v0.176 using configure && make -j$(nproc).

Due to the relatively small overhead of the kernel module backend, 300 repetitions were performed for each
command. All other backends (including fanotify) were configured for 100 repetitions. In all cases, runtimes
were recorded after seven “warmups”. To compensate for potential long-lasting cache effects, traced and untraced
runs were carried out alternating, while, for each execution pair, it was randomly sampled which to run first.

Shournal was configured to impose no limit on the number of logged read and written files, to store at
most ten read scripts ending with the suffix .sh, and not exceeding a size of 0.5 MiB and to calculate partial file
checksums with the default of at most 3 × 256 bytes. As described previously, events are logged to an intermediate
binary file during tracing, while the final storing to the sqlite database happens later. Therefore, that final data
transfer was not part of the runtime measurements. We consider this benchmark design reasonable since, after
the time-critical recording phase, the collected provenance can be held indefinitely long and is permanently
stored using a low-priority background thread.

Event logging was performed on the same disk where the respective files of the benchmark resided,
constituting a worst-case.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports/

Data availability
shournal’s code and binaries are freely available at https://​github.​com/​Hoffm​ann-​Lab/​shour​nal under the GNU
General Public License v3.0 or later and other open-source licenses. Archived for this publication, version v3.1
can also be obtained from https://​doi.​org/​10.​5281/​zenodo.​10473​782.

Received: 1 November 2023; Accepted: 5 February 2024

References
	 1.	 Ruiz, C., Richard, O. & Emeras, J. Reproducible Software Appliances for Experimentation. In Testbeds and Research Infra-

structure: Development of Networks and Communities (eds Leung, V. C. et al.) 33–42 (Springer, 2014). https://​doi.​org/​10.​1007/​
978-3-​319-​13326-3_4.

	 2.	 Ivie, P. & Thain, D. Reproducibility in scientific computing. ACM Comput. Surv.https://​doi.​org/​10.​1145/​31862​66 (2018).
	 3.	 Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522. https://​doi.​org/​

10.​1093/​bioin​forma​tics/​bts480 (2012).
	 4.	 Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319. https://​doi.​org/​10.​

1038/​nbt.​3820 (2017).
	 5.	 Guo, P. CDE: A tool for creating portable experimental software packages. Comput. Sci. Eng. 14, 32–35 (2012).
	 6.	 Janin, Y., Vincent, C. & Duraffort, R. CARE, the comprehensive archiver for reproducible execution. In Proceedings of the 1st ACM

SIGPLAN Workshop on Reproducible Research Methodologies and New Publication Models in Computer Engineering, TRUST ’14,
1–7. https://​doi.​org/​10.​1145/​26181​37.​26181​38 (Association for Computing Machinery, 2014).

	 7.	 Chirigati, F., Rampin, R., Shasha, D. & Freire, J. ReproZip: Computational reproducibility with ease. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, 2085–2088. https://​doi.​org/​10.​1145/​28829​03.​28994​01 (Association
for Computing Machinery, 2016).

	 8.	 Devecsery, D., Chow, M., Dou, X., Flinn, J. & Chen, P. M. Eidetic systems. OSDI 14, 525–540 (2014).
	 9.	 O’Callahan, R. et al. Engineering Record And Replay For Deployability: Extended Technical Report (2017).
	10.	 Gehani, A. & Tariq, D. SPADE: Support for provenance auditing in distributed environments. In Middleware 2012 (eds Narasimhan,

P. & Triantafillou, P.) 101–120 (Springer, 2012). https://​doi.​org/​10.​1007/​978-3-​642-​35170-9_6.
	11.	 Guo, P. & Seltzer, M. BURRITO: Wrapping Your Lab Notebook in Computational Infrastructure. In 4th USENIX Workshop on the

Theory and Practice of Provenance (TaPP 12) (USENIX Association, 2012).
	12.	 SystemTap. https://​sourc​eware.​org/​syste​mtap.
	13.	 Konishi, R. et al. The Linux implementation of a log-structured file system. ACM SIGOPS Oper. Syst. Rev. 40, 102–107. https://​doi.​

org/​10.​1145/​11513​74.​11513​75 (2006).
	14.	 Carata, L. et al. A primer on provenance. Commun. ACM 57, 52–60. https://​doi.​org/​10.​1145/​25966​28 (2014).
	15.	 Gebai, M. & Dagenais, M. Survey and analysis of kernel and userspace tracers on Linux: Design, implementation, and overhead.

ACM Comput. Surv. 51, 1–33. https://​doi.​org/​10.​1145/​31586​44 (2018).
	16.	 Korshunova, M., Ginsburg, B., Tropsha, A. & Isayev, O. OpenChem: A deep learning toolkit for computational chemistry and drug

design. J. Chem. Inf. Model. 61, 7–13. https://​doi.​org/​10.​1021/​acs.​jcim.​0c009​71 (2021).
	17.	 Paszke, A. et al. Automatic differentiation in PyTorch (2017).
	18.	 McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122. https://​doi.​org/​10.​1186/​s13059-​016-​0974-4 (2016).
	19.	 Kerrisk, M. The Linux Programming Interface 252–253 (No Starch Press, 2010).
	20.	 Kerrisk, M. The Linux Programming Interface 261–262 (No Starch Press, 2010).
	21.	 Kerrisk, M. The Linux Programming Interface Vol. 607 (No Starch Press, 2010).
	22.	 Kerrisk, M. The Linux Programming Interface 168–170 (No Starch Press, 2010).
	23.	 Kerrisk, M. The Linux Programming Interface 1401–1403 (No Starch Press, 2010).
	24.	 Bjørling, M., Axboe, J., Nellans, D. & Bonnet, P. Linux block IO: Introducing multi-queue SSD access on multi-core systems. In

Proceedings of the 6th International Systems and Storage Conference on—SYSTOR ’13, 1. https://​doi.​org/​10.​1145/​24857​32.​24857​40
(ACM Press, 2013).

	25.	 Jose, S., Mason, C. & Bottomley, J. LSF-08: 2008 Linux Storage & Filesystem Workshop. Vol. 33, 7 (2008).
	26.	 Dorn, J., Lacomis, J., Weimer, W. & Forrest, S. Automatically exploring tradeoffs between software output fidelity and energy costs.

IEEE Trans. Softw. Eng. 45, 219–236. https://​doi.​org/​10.​1109/​TSE.​2017.​27756​34 (2019).
	27.	 Love, R. Linux Kernel Development 3rd edn, 323–335 (Developer’s Library, 2010).

Author contributions
S.H, T.K. and K.R. designed the tool shournal, the benchmark and study. T.K. performed the implementation and
analyses. S.H, T.K. and K.R. tested the software and wrote the manuscript. All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work has been supported by the BMBF
project de.STAIR (031L0106D).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​53811-9.

Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://github.com/Hoffmann-Lab/shournal
https://doi.org/10.5281/zenodo.10473782
https://doi.org/10.1007/978-3-319-13326-3_4
https://doi.org/10.1007/978-3-319-13326-3_4
https://doi.org/10.1145/3186266
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1145/2618137.2618138
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1007/978-3-642-35170-9_6
https://sourceware.org/systemtap
https://doi.org/10.1145/1151374.1151375
https://doi.org/10.1145/1151374.1151375
https://doi.org/10.1145/2596628
https://doi.org/10.1145/3158644
https://doi.org/10.1021/acs.jcim.0c00971
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1145/2485732.2485740
https://doi.org/10.1109/TSE.2017.2775634
https://doi.org/10.1038/s41598-024-53811-9
https://doi.org/10.1038/s41598-024-53811-9
www.nature.com/reprints

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:4872 | https://doi.org/10.1038/s41598-024-53811-9

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Bashing irreproducibility with shournal
	Results
	Discussion
	Methods
	Tracing
	Provenance collection
	Performance

	References

