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Exosomes, nano-sized extracellular vesicles, are produced via the endosomal

pathway and released in the extracellular space upon fusion of multivesicular

bodies with the plasma membrane. Recent evidence shows that these extracel-

lular vesicles play a key role in cell-to-cell communication. Exosomes trans-

port bioactive proteins, mRNAs, and microRNA (miRNAs) in an active form

to adjacent cells or to distant organs. In this review, we focus on the role of

exosomes in peripheral nerve maintenance and repair, as well as peripheral

nerve/organ crosstalk, and discuss the potential benefits of exploiting exo-

somes for treating PNS injuries. In addition, we will highlight the emerging

role of exosomes as new important vehicles for physiological systemic cross-

talk failures, which could lead to organ dysfunction during neuroinflammation

or aging.

Keywords: exosome; homeostasis; intercellular communication; PNS;

regeneration

The evolution of mammalian organisms has seen them

develop an astonishing degree of complexity, involving

hundreds of highly specialized cell types working in

synergy [1–3]. On both the organism scale and at the

level of individual organs or tissues, interplay between

different cells is required for development, mainte-

nance, and repair [4–7]. To this end, cells must com-

municate and exchange information with each other in

order to coordinate a myriad of possible cellular pro-

cesses [6–8].

Cell-to-cell communication involves a variety of

mechanisms, ranging from the secretion of individual

molecules to the release of membrane-coated vesicles

[9,10]. While orderly intercellular transfer of informa-

tion is fundamental to a functioning organ and organ-

ism, erroneous communication between cells might be

implicated in or, in some cases, even be causative of

pathological conditions and diseases [4].

In the past ten years, exosomes have been identified

as key players in intercellular and long-distance com-

munication of cells and their environment through the

transfer of information [11,12]. Since their discovery in

the 1970s by Rose Johnstone, there has been an expo-

nential gain in knowledge of exosomes and their func-

tion in physiological and pathological conditions [13].

Perhaps most prominently, exosomes have been stud-

ied for their involvement in various aspects of cancer

biology [14].

Compared to an average-sized cell, exosomes may

appear miniscule. However, compared to other mole-

cules and compounds that undergo secretion by cells

(e.g., hormones and cytokines), their cell type-specific

and diverse content, which consists of proteins,

mRNA, miRNA, and DNA, emphasizes their poten-

tial involvement in a multitude of biological functions

[12]. By virtue of their nano-scale size and biologically
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versatile cargoes, exosomes are capable of reprogram-

ming and/or modulating cellular processes in recipient

cells in an organism-wide manner [15,16].

Our review aims to summarize existing data on exo-

somes in the peripheral nervous system (PNS) and

their functional significance in intercellular and inter-

organ communication in health and disease.

General aspects of exosome biology

Exosomes are nano-sized vesicles that are secreted by

virtually all cell types into the extracellular space,

under both steady-state and pathological conditions.

As such, they belong to a greater entity of extracellular

vesicles which includes apoptotic bodies and microvesi-

cles. These extracellular vesicles can be differentiated

and categorized by their size, cargo, and cellular

origin [17,18]. However, nomenclature in the literature

is inconsistent as it is difficult to separate the different

types of extracellular vesicles under experimental con-

ditions [19,20]. The International Society for Extracel-

lular Vesicles have published guidelines to make

extracellular vesicle research comparable and repro-

ducible proposing experimental conditions or controls

[21]. In this review, we will use the term exosome even

if the endosomal origin was not proven experimentally.

Exosomes derive from the endosomal pathway of

cells and display a diameter of 30–100 nm [22–24].

Enclosed by a lipid bilayer membrane, they convey

complex cellular signals from their parent to their

recipient cells. Following secretion from their parental

cells, exosomes are detectable in all bodily fluids

including plasma, saliva, urine, pleural ascites, amni-

otic fluid, cerebrospinal fluid, colostrum, breast milk,

semen, and lymphatic fluid [25]. With regard to their

biological stability, a wide range of half-lives has been

reported for exosomes, ranging from a few minutes

[26] up to several hours [27], until they are taken up

by target cells.

Exactly how exosomes exert their function mecha-

nistically on target cells is not yet fully understood;

however, an array of stimulatory and inhibitory

functional outcomes have been shown to be induced

by exosomes. These include cell proliferation, angio-

genesis, apoptosis, cytokine production, modulation

of immune reaction, preparation of a metastasis-

supporting microenvironment, and even the determi-

nation of organ specificity in metastasis [28]. Exo-

somes are believed to act on their recipient cells not

only upon internalization through fusion, receptor-

mediated endocytosis, macropinocytosis, or phagocy-

tosis but also by cleavage of surface-bound compo-

nents of exosomes, or binding of exosome surface-

associated molecules to receptors on the target

cell [25].

Under pathological conditions, the abundance and

content of exosomes may vary extensively in compar-

ison to healthy cells under steady-state conditions

[22,24]. Perhaps most impressively, cancer cells secrete

up to 1000-times more exosomes than noncancer cells

[29]. Functionally, exosomes released from cancer cells

have been shown to support cancer progression at

multiple steps. In line with this concept, the number of

circulating exosomes in the blood plasma of human

colorectal cancer patients correlates with poor progno-

sis and shorter survival [30].

Exosome biogenesis and composition

Exosomes serve as molecular cargoes for intercellular

communication and may therefore contain a wide vari-

ety of biomolecules on top of and inside their lipid bi-

layer membrane. Containing proteins, miRNAs,

mRNA, DNA, and cytokines [31,32], over 4500 pro-

teins, 1600 mRNAs, and 760 miRNAs have been

detected in association with exosomes [33].

Exosomes originate from the endosomal pathway of

cells. They emerge during the process of endocytosis

and can further morph into intraluminal vesicles (ILV)

via inward budding of the endosomal membrane. The

resultant multivesicular bodies (MVBs) can either fuse

with lysosomes, leading to degradation of their con-

tent, or merge with the plasma membrane to release

exosomes [23]. Each individual step involves a complex

molecular machinery and is subjected to tight regulation.

Given their cellular origin, exosomes carry some

endosome-associated proteins that allow for their iden-

tification, such as the tetraspanin proteins CD63, CD9,

and CD81, the heat shock proteins 70 (Hsp70), tumor

susceptibility gene 101 (Tsg101), and ALIX

[34,35,34,35. However, none are exosome-specific as

they are also found on other extracellular vesicles [17]

and it might be impossible to completely separate the

different subtypes experimentally [36].

Precisely how their content is sorted into exosomes

is not fully understood. Originally, exosomes were

thought to remove waste products from cells. Recent

experimental work further revealed a major role of the

syntenin/syndecan pathway in the formation of ILVs.

Here, syntenin binds directly to ALIX, which is a

link to the endosomal-sorting complex required for

transport (ESCRT) machinery [37,38]. MVBs contain

proteins and RNA from the cytoplasm, but other pro-

teins from the Golgi or endoplasmic reticulum (ER)

are also sorted into MVBs [25]. While endosomal sort-

ing is usually mediated by the ESCRT machinery,
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ESCRT-independent pathways have also been

described, such as a ceramide/tetraspanin-dependent

pathway [23,25,38]. RNAs can also be sorted into exo-

somes by several mechanisms, which can be mediated

by KRAS-MEK and Argonaut 2 (Ago2) [39] or other

RNA-binding proteins such as annexin A2 or major

vault protein (MVP) that recognize specific RNA

sequences or structures [40]. In addition, nonselective

loading of RNA into exosomes occurs passively due to

local RNA concentrations in the cytosplams [40,41].

Intercellular trafficking of MVBs and fusion with the

plasma membrane involves various protein complexes,

such as Rab-related proteins (Rabs) for trafficking and

Sec1 proteins and SNAREs for fusion [42,43].

The role of exosomes during
peripheral nerve homeostasis

The peripheral nervous system (PNS) refers to all

nerve fibers and structures outside the central nervous

system (CNS), that is, the brain and the spinal cord

(Box 1). On a cellular level, the former comprises a

variety of different cell types working in synergy.

Peripheral nerves consist primarily of axons—special-

ized extensions of neuronal cells—as well as Schwann

cells—the main glial cell type of the PNS [44]. Sch-

wann cells not only ensheath the axons but also pro-

vide trophic and metabolic support [45].

As their interaction is crucial to the functional and

structural integrity of nerves throughout lifetime, the

communication between glial cells and neurons is

essential in both physiological and pathological condi-

tions [46,47]. Bidirectional signaling between axons

and Schwann cells involves different mechanisms.

Paracrine signaling for small molecules such as ATP

and activation of the appropriate receptors have been

reported [48], as well as physical coupling, for exam-

ple, via gap junctions or adhesion molecules present at

the paranodal region of myelinated axons [49]. Recent

years have seen communication via exosomes come

into focus. Schwann cells secrete exosomes that can be

taken up by axons in vivo and in vitro [50]. Exosomes

released from Schwann cells are involved in the regula-

tion of Schwann cell migration,those from differentiated

Schwann cells exhibit an altered miRNA signature

within the exosomes, compared to undifferentiated

Box 1. Peripheral nervous system

The peripheral nervous system fulfills a variety of different functions. The peripheral nerve structure is summarized

here including different cell types. The figure was created with BioRender.com.
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Schwann cells and inhibited the migration of Schwann

cells in vitro [51]. There is also evidence that Schwann

cells provide ribosomes to the axons via exosomes, as

ribosomal proteins have been detected in Schwann cell-

derived exosomes [52].

In addition to these two main cell types in the

peripheral nerve, resident and infiltrating immune cells,

endothelial cells forming blood vessels, and fibroblasts

also contribute to the structural integrity and function-

ality of the PNS [44]. However, studies have focused

on their role during regeneration or disease, which we

discuss in the following.

The role of exosomes during
peripheral nerve regeneration

Peripheral nerves are key structures for transmission

of signals between organs or tissues and the central

nervous system (CNS) and remain relatively stable

throughout life. In contrast to the CNS, they possess

high regenerative capacity after injury to recover sen-

sory and motor functions [53]. In the process of Walle-

rian degeneration, the axon and myelin sheath distal

to the injury site become fragmented, while Schwann

cells and macrophages proliferate and phagocytose the

degraded material. Schwann cells then form bands of

B€ungner to guide the axonal sprouting and enable

reconnection with the target organ, followed by

remyelination of the axon [54]. Schwann cells play a

major role during this regenerative process. There are

two types of Schwann cells: Myelinating Schwann cells

are the main cell type within the peripheral nerves

(~ 50%) that myelinate large axons, whereas non-

myelinating Schwann cells (~ 20%) bundle together

smaller axons (Remak bundles) [55,56].

Following injury, the high plasticity of Schwann

cells is integral to efficient regeneration. They can

switch into a proliferative, reactive cell that fosters, for

example, the guidance of axons [57] and remodeling of

the nerve environment [58]. Following axonal reinner-

vation of the target, the dedifferentiated Schwann cells

redifferentiate into myelinating Schwann cells to myeli-

nate the newly formed axon and maintain homeostasis

[59,60]. In addition to Schwann cells, all other cell

types of the peripheral nerves (macrophages, fibrob-

lasts, endothelial cells, pericytes) respond to injury

with proliferation and contribute to an efficient regen-

eration [60,61]. In the following, we discuss how exo-

somes contribute to an efficient regeneration between

these different cell types of the peripheral nerves.

As the major cell type within the peripheral nerves,

Schwann cells are known to secrete exosomes that

are important for axonal regeneration. Schwann cell-

derived exosomes have been shown to increase neurite

outgrowth in vitro [50]. The authors confirmed these

results in a crush injury model wherein Schwann cell-

derived labeled exosomes enhanced axonal regrowth

(2-times longer neurites) and improved nerve function,

indicated by a pinch test. They further indicated speci-

ficity of the exosomal communication, since fibroblast-

derived exosomes had no effect on axonal regeneration

and RhoA GTPase activation (which inhibits axonal

elongation [62] was only decreased in the Schwann

cell-derived exosome-treated group. Furthermore, it

was observed that Schwann cells formed a vesicle-like

structure containing labeled ribosomes that were bud-

ding from the Schwann cell toward the axon after an

injury [63]. They anticipate that these ribosomes are

important for an immediate regeneration response [63]

as axons depend on local translation of proteins from

mRNA essential for regeneration such as many

cytoskeletal proteins [64,65]. As the axonal transport

of proteins is slow [66], the support of the axons with

ribosomes from Schwann cells via extracellular vesicles

could support the local protein synthesis after an

injury [63].

After nerve injury, miRNA expression levels are

changed within Schwann cells [67,68]. Several miRNAs

are shown to be important to regulation of cell debris

removal after injury, as well as Schwann cell prolifera-

tion or homeostasis [69,70]. Specifically, miR-340 posi-

tively regulated cell debris removal at the injury site

and axon growth in vivo [70]. Furthermore, the miR-

221/222 cluster was significantly changed at the injury

site and shown to affect Schwann cell proliferation

and migration in vitro [69]. The transition of Schwann

cells firstly to a reactive and then back to a myelinat-

ing type is crucial for efficient regeneration. Here,

miRNAs seem to be involved. A lack of miRNAs in

Schwann cells prompts myelination deficits in vivo due

to reduction of Krox20—a promyelination factor—
and increase in myelination inhibitors such as SOX2,

Notch1, and Hes1 [71,72]. However, the underlying

mechanisms of such communication are not yet under-

stood including whether miRNAs could be transported

to other cells via exosomes. Nonetheless, it is reason-

able to assume that exosomes and their miRNA cargo

are important modulators during peripheral nerve

regeneration. A recent publication demonstrated that

changes in the miRNA cargo of Schwann cell-derived

exosomes can influence neurite growth [73]. The

authors demonstrated that exosomes derived from

repair Schwann cells enhanced neurite outgrowth, but

not exosomes from differentiated Schwann cells

in vitro. They further demonstrated involvement of the

miRNA cargo of the exosomes,specifically, miR-21
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was strongly upregulated in exosomes derived from

repair Schwann cells compared to differentiated Sch-

wann cells. These modulate the progrowth effect in

neurites by downregulating PTEN and activation of

PI3K in the neurons. Several other miRNAs have also

been shown to be changed within repair Schwann cell-

derived exosomes. However, their functions have not

yet been investigated nor the effect on other cell types

within the nerve.

Other cell types also communicate via exosomes

during peripheral nerve regeneration. In the case of

dorsal root ganglia (DRG) sensory neurons, exosomes

have been demonstrated to contribute to communica-

tion between sensory neurons and macrophages after

damage to the peripheral nerve by microRNA upregu-

lation [74]. Here, the authors found that macrophages

phagocytose sensory neuron-derived exosomes and the

increase in miR-21-5p expression supports a shift

toward a pro-inflammatory phenotype. These pro-

inflammatory macrophages are especially important

for clearing cellular debris after a nerve injury and

provide a suitable microenvironment for tissue repair

[75]. Furthermore, it has been shown that macro-

phages release exosomes that mediate ROS signaling

during nerve regeneration [76]. The authors showed

that after nerve injury macrophages secrete exosomes

containing active NADPH oxidase 2 (NOX2) com-

plexes which can be taken up DRGs via endocytosis

and were required for the neurite outgrowth. They

propose a model where NOX2 inactivates PTEN via

oxidation and therefore stimulation of PI3K-Akt sig-

naling to promote axonal regeneration.

Taken together, exosomes are important modulators

during peripheral nerve repair, which allow communi-

cation between different cell types and provide a suit-

able microenvironment for regeneration.

Exosomes in inter-organ crosstalk
from and to peripheral nerves and
their potential therapeutic benefits

Exosomes not only modulate homeostasis and response

to injury at the site of injury but can also be transported

systemically throughout the body.

Stem cells of different types represent an interesting

source of exosomes that can promote neuronal growth

or survival in several studies, which would be benefi-

cial for nerve repair or homeostasis. Mesenchymal

stem cells (MSCs) from bone marrow and sources such

as umbilical cord, menstrual stem cells, and chorion

stem cells have been shown to secrete exosomes that

promote neurite outgrowth in primary neuronal cul-

tures (DRG or cortical culture) [77]. Reminiscent of

the CNS, adipose-derived MSC exosomes have been

shown to increase neurite outgrowth and sciatic nerve

regeneration after injury [78]. This research showed

that the exosomes were taken up by Schwann cells and

enhanced their proliferation in vitro. In vivo, exosomes

were internalized by axons and were beneficial for axo-

nal regeneration and functionality. Bucan et al. further

demonstrated that the adipose-derived MSC exosomes

carry neurotrophic factors that seem to contribute to

the improved peripheral nerve regeneration. Similarly,

gingiva-derived MSC exosomes promoted axonal

recovery in a sciatic nerve crush injury model [79].

Here, exosomes promoted proliferation and migration

of Schwann cells by upregulation of characteristic

genes of repair Schwann cells such as c-Jun, Notch1,

Sox2, and GFAP.

MSC-derived exosomes are also shown to play a

role during neuroinflammation [80]. These exosomes

were involved in the regulation of macrophage plastic-

ity [81] and polarization of microglia (immune cells in

the CNS) toward an anti-inflammatory phenotype [82]

to mediate neuroinflammation.

It is also possible to use MSCs to differentiate them

into a Schwann cell-like phenotype [83]. Their exo-

somes promoted neurite outgrowth in vitro. The use of

differentiated MSCs instead of Schwann cells means

avoiding the sacrifice of healthy nerve tissue for poten-

tial therapy.

Although most studies investigated the CNS, it is

reasonable to assume that the use of MSC exosomes

could also be useful for treatment of peripheral nerve

injuries. However, whether MSC-derived exosomes

also contribute to nerve homeostasis under physiologi-

cal conditions remains unknown.

Lessons from the CNS—Speculations
about exosome-mediated PNS inter-
organ crosstalk, regeneration, disease
involvement, and aging

There is very little known about the communication

from and to the peripheral nerves via exosomes.

Therefore, we will try to link research from the CNS

and speculate about potential exosomal functions in

the PNS.

With regard to motor function, the transmission of

information from synaptic endplates of motor neu-

rons to the neuromuscular junction (NMJ) of mus-

cles, exosomes can transfer membrane proteins from

neurons to NMJ in Drosophila [84]. Furthermore, cir-

culating immune cells release exosomes that are bene-

ficial for CNS myelination in vitro [85]. Evidence also

exists that Schwann cells communicate with the CNS
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via exosomes [86]. Specifically, proteomic analysis of

Schwann cell-derived exosomes revealed the presence

of several proteins associated with CNS repair,

including axon regeneration and inhibition of inflam-

mation. These findings could be useful in developing

novel therapeutic approaches for CNS and PNS

injuries.

Exosomes also contribute to angiogenesis during

regeneration. Indeed, several studies indicate that exo-

somes and their miRNA cargo improve angiogenesis

and neurogenesis in the brain [87,88]. Mesenchymal

stem cell-derived exosomes promoted angiogenesis in

the brain [87], and neurons have been shown to secrete

exosomes containing miR-132 to endothelial cells,

which is important for vascular integrity [88]. Whether

exosomes also promote angiogenesis in the peripheral

nerve remains to be determined.

While exosomes are found to be communication

tools between different organ systems, little is known

of their physiological role, particularly within the

peripheral nervous system, as most studies address

pathological conditions.

Disease involvement and aging

The functional significance of exosomes for proper

communication of PNS cells with other cells outside

or within the PNS is highlighted by mounting evidence

of altered exosome biology in various diseases.

In Guillain–Barr�e syndrome (GBS), the most com-

mon and severe acute paralytic neuropathy, immune-

mediated processes lead to the damage of peripheral

nerves. In an animal model for GBS in rats, experi-

mental autoimmune neuritis (EAN), exosomes released

by M1-type macrophages have been shown to aggra-

vate disease pathology by enhancing Th1 and Th17

response, in comparison to M2-type macrophage-

derived exosomes [89].

In amyotrophic lateral sclerosis (ALS), a fatal neu-

rodegenerative disease, the degeneration of the upper

(CNS) and lower (PNS) motor neurons causes progres-

sive paralysis [90]. Beyond the exclusive damage of

neuronal cells, a more complex pathomechanism has

emerged. For example, prion-like propagation of mis-

folded proteins between cells has been linked to the

development or spread of ALS or other neurodegener-

ative diseases [91]. In roughly 20% of inherited cases

SOD1 mutations contribute to the development of

ALS. Here, it has been shown that the misfolded pro-

tein can also be spread by exosomes [92]. Furthermore,

ALS muscle cells exhibit changes in exosome quality

and quantity and the exosomes have been shown to be

toxic to motor neurons, [93]. These findings suggest

that exosomes from the skeletal muscle contribute to

the spread of ALS and neuronal toxicity.

During aging, the risk of developing neurodegenera-

tive diseases increases. There is evidence that exosomes

are involved in neurodegenerative processes; they are

important vehicles in cell-to-cell communication and

can influence the gene expression patterns of their tar-

get cells [94] and contribute to inflamm-aging [95].

However, our understanding of the physiological and

pathological roles of exosomes is in its infancy.

Whether exosomes are neurodegenerative or neuropro-

tective is not yet understood and debated in the litera-

ture. On the one hand, it has been shown that

exosomes can carry disease-associated factors, toxic

molecules, or pro-inflammatory cytokines that are

implicated in aging or neurodegenerative diseases

[96,97]. The disease could be triggered by a dysregula-

tion in cell-to-cell communication between neurons

and glia cells via exosomes, for example. On the other

hand, exosomes can also distribute neuroprotective

factors to their target cells [98]. Certainly, exosomes

are important mediators in cellular communication

during aging and disease development. However,

understanding the mechanisms of exosome regulation

and their systemic effects will be part of future studies.

Conclusions and perspectives

Exosomes have become the focus of much research in

recent times, with increasing numbers of publications

on the role of exosomes during pathogenesis and a

burgeoning interest in the identification of exosome

biomarkers. This would help clinicians in making diag-

noses, patient stratification, decisions on treatment

options, or in monitoring regenerative processes for

PNS and other pathologies. Furthermore, understand-

ing the mechanisms of exosome release and targeted

uptake might enable modulation of exosome release in

the future to treat diseases. Furthermore, cell-free ther-

apy with MSC-derived exosomes that exhibit a regen-

erative potential in several tissues might be possible

[99]. In the meantime, it remains necessary to achieve

a better understanding of the local and systemic roles

of cell type-specific exosomes, which in turn would

afford an understanding of which cell types communi-

cate with each other and under which conditions.

Currently, biomarker identification is based on a

mixture of exosomes from different cells (e.g., the

blood or cell culture experiments) that might not com-

pletely cover the in vivo situation. Therefore, it would

be necessary to label exosomes cell type-specifically so

as to monitor them under physiological and pathologi-

cal conditions and compare their cargoes. Robust
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standardized isolation methods for the isolation of

small amounts of exosome, making identification of

biomarkers more comparable, would be a welcome

advantage. Understanding the role of exosomes as

important players in cellular communication under

physiological and pathological conditions may help to

develop therapies for tissue regeneration and age-

associated diseases.
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