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Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-
inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and
abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated
clones. We identified lysine-specific demethylase KDM4C as a selective genetic dependency that persists upon JAK-inhibitor
treatment. Genetic inactivation of KDM4C in human and murine JAK2-mutated cells resulted in loss of cell competition and reduced
proliferation. These findings led to reduced disease penetrance and improved survival in xenograft models of human JAK2-mutated
cells. KDMA4C deleted cells showed alterations in target histone residue methylation and target gene expression, resulting in
induction of cellular senescence. In summary, these data establish KDM4C as a specific dependency and therapeutic target in JAK2-
mutated cells that is essential for oncogenic signaling and prevents induction of senescence.
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INTRODUCTION

JAK2 is frequently mutated in the aging hematopoietic system
and in myeloid cancers [1], such as myeloproliferative neoplasms
(MPN). Various signaling pathways are constitutively activated by
mutated JAK2-kinase. JAK-inhibitors are well tolerated and highly
effective in reducing pro-inflammatory cytokine production and
inflammation-related symptoms. So far, their use has been
restricted to rather symptomatic approaches as meaningful
reduction of disease burden is rarely seen [2]. Of note, this
finding is in contrast with other small molecules, as tyrosine kinase
inhibitors typically induce regression of the mutated clone.
Persistence of JAK2-mutated cells under treatment with JAK-
inhibitors raises questions about the role of JAK2 as a
driver mutation and suggests selective dependencies that may
arise from aberrant cell signaling or gene expression. Genome-
wide CRISPR-Cas9-based genetic perturbation screens have
identified cell type specific dependencies in various cancers
in an unbiased manner [3]. Recently, efforts of the Broad Institute
have created databases of large-scale functional in vitro screens,
identifying genetic vulnerabilities in human cancer cell lines
(DepMap; https://depmap.org/; [4]). However, validation of these
targets under conditions of targeted therapies remains a
necessity.

MATERIAL AND METHODS

Cell lines and culture conditions

Cell lines were purchased from DSMZ (Braunschweig, Germany). Cells were
cultured according to standard protocols and tested negative for
mycoplasma. For proliferation assays, the number of cells was counted
following trypan blue exclusion. Apoptosis was measured by flow
cytometry using Annexin V/Sytox Blue staining.

Animal studies

Mice were housed under pathogen-free conditions in the Animal
Research Facility of the University Hospital Jena, Germany. All experi-
ments were conducted after approval by the Landesverwaltungsamt
Thiringen (02-030/2016). NOD-Prkdcscid-IL2rgTm1/Rj (NXG) mice
were obtained from Janvier Labs (Le Genest-Saint-Isle, France). HEL cells
were genetically modified and subsequently injected at equal distribu-
tion into recipient mice. Therefore, no randomization was necessary. Due
to the analysis in paired samples (cells transduced with either sgRNA
against KDM4C or non-targeting control (sgLuc)), no blinding was
necessary. Sample size and experimental schedule were calculated
assuming a relevant difference in means of survival. We used a one-sided
t-test at a=0.05 and a power of >80% with an expected difference
in means of 1.75SD (standard deviations) based on previous
experience with xenotransplantation of HEL cells. Equal numbers of
8-12 weeks-old male and female mice were used for experiments in all
groups.
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Primary patient samples

Primary MPN patient samples and healthy donor controls were obtained
after informed consent and according to the Helsinki declaration from the
Hematology Tumor Bank Jena and Greifswald, approved by the respective
local ethics committees (University Hospitals Jena 4753-04/16 or Greifs-
wald BB199/20).

Western blot
Western Blotting was performed according to standard protocols as
previously published [5, 6]. Cell lines and whole bone marrow cells were
lysed as described previously. All antibodies are indicated in
the Supplement.

Quantitative PCR (Q-PCR)

RNA-preparation, reverse transcription and Q-PCR measurement were
performed as described before [7, 8]. Q-PCR primers are provided in
the Supplement.

Staining and quantification of SA-B-Galactosidase Activity
Staining of SA-B-galactosidase (SA-B-gal) in cells was carried out in
triplicates using Histochemical Staining Kit (CS0030-1KT, Sigma-Aldrich)
according to manufacturer’s instructions. Quantitative analyses were
performed using an Axioskop 2 mot plus provided with a motorized stage
(Zeiss, Oberkochen, Germany) and a CX 9000 digital camera (MicroBright-
Field Europe, Magdeburg, Germany) and the Stereo Investigator 8.1 soft-
ware (MicroBrightField). Quantification was performed using the dissector
method [9]. Cells of different regions of each sample were selected
randomly for software supported counting.

Confocal laserscanning microscopy

Cells were fixed and stained as described before [10]. Anti-H3K36me3 mAB
(Abcam, # ab194677) was used at 1:800 dilution and a secondary AF488
conjugated anti-Rabbit mAB (ThermoFisher, #A27034) was applied 1:2000.
Microscopic evaluation was performed with the Laser Scanning Micro-
scope LSM 980 Airyscan 2 (Carl Zeiss, Jena, Germany) and ZEN 2009 soft-
ware (Carl Zeiss).

Virus production

Lentiviral particles containing the pooled sgRNA library (see below) or
sgRNAs against luciferase, RPA3 and KDM4C, respectively, were generated
and virus titer was assessed as described before [9].

Genome editing by CRISPR/Cas9

Genetic editing by CRISPR/Cas9 was performed as previously described
[11, 12] unless otherwise stated. Guide RNAs were designed using the Broad
GPP tool (Doench, Nat Biotechnology 2014). For cloning of sgRNA sequences,
the improved-scaffold-pU6-sgRNA-EF1Alpha-PURO-T2A-RFP (ipUSEPR) vector
system [13], with puromycin resistance and RFP selection marker was used.
Genetic inactivation by CRISPR/Cas9 was performed as published before [10].
sgRNA sequences are provided in the Supplementary Materials. For negative
selection competition assays, transduced cells were mixed with non-
transduced cells at 9:1 RFP/RFP+ ratio for applying selection pressure.
The percentage of RFP* was monitored by flow cytometry.

For the genome-scale CRISPR-Cas9 screen the human CRISPR Brunello
lentiviral pooled library (Addgene, #73178) cloned into the lentiGuide-Puro
vector backbone (Addgene, #52963) was used. The library includes 76,441
guide RNAs targeting against 19,114 genes and 1000 control guide RNAs.
Sequenced confirmed homogeneous representation with a GINI-index 0.011.
Cells were treated with 200 nM ruxolitinib (Selleckchem, Lot# S137813) and
DMSO in quadruplicate. Next generation sequencing was performed on an
lllumina NextSeg500 platform (75 bp, single reads) aiming for a minimum of
30Mio reads per sample. Alignment and statistical analysis of the data was
performed using MAGeCK (https://sourceforge.net/p/mageck/wiki’Home/)
[14], version v0.5.9.3: sgRNA counts were retrieved from raw data (fastq files)
via “mageck count”. Beta scores and p values were generated from the
counts via “mageck mle” using normalization against controls (control
sgRNAs) and CNV-normalization (copy number variations in HEL cells).

RNA sequencing
HEL-Cas9 cells were transduced with Luciferase sgRNA and KDM4C sgRNA
lentiviruses analogously to the proliferation assay. 48 h after transduction,
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selection was initiated by adding puromycin 1.5 pg/mL to each sample
and the cells were expanded for another 9 days. Transduced cells
were then treated with 200 nM ruxolitinib or DMSO as a control in
quadruplicates for 48 h. Total RNA was isolated from 2 x 10° cells using
innuPREP RNA Mini Kit (Analytik Jena AG, Jena, Germany) according to the
manufacturer’s instructions. Library preparation and next generation
sequencing were performed by GENEWIZ GmbH (Leipzig, Germany). For
guantitative analysis raw reads (fastq files, paired end, strand-specific)
were trimmed with trimmomatic (v0.39) (parameters: ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10, SLIDINGWINDOW:4:20) [15]. Trimmed reads were
aligned to the human genome (hg38) using STAR (v2.7.4a) (default
parameters) [16]. Counts were generated from bam.-files using Subread
featureCounts (v2.0.1) (parameters: -pB) [17]. We used DESeq2 (v1.26.0)
used to generate log2 fold changes and p values from the counts
[18]. Fgsea (v1.12.0) was used to perform gene set enrichment analysis,
using pathways from the GSEA website (https://www.gsea-msigdb.org/
gsea/index.jsp) [19, 20]. DESeq2 and fgsea were used in R (v3.6.0).

Statistics

Comparison of two groups was performed with the two-tailed t-test for
independent samples. The inter-individual variance was similar when
comparing two groups. To compare the means of more than two groups,
the one-way-ANOVA was used. The degree of a linear relationship between
two interval-scaled groups was determined using Pearson correlation.
Kaplan-Meyer curves were used for survival analysis and were plotted
using GraphPad Prism version 8.00 (GraphPad software, San Diego, CA,
USA) using the log-rank test (Mantel-Cox test). Statistical analysis was
performed using GraphPad software (Version 8.2.0). Sample size was
calculated for xenotransplantation experiments as indicated above. Global
CRISPR/Cas9 screen- and RNA-sequencing were performed in quadrupli-
cates to facilitate statistical analysis. In general, sample size of the
respective experiments (n-value) is reported in the respective figure and/or
figure legend. Data are presented as mean + standard deviation.

RESULTS

KDMA4C is highly expressed and a specific dependency in
JAK2-mutated cells

Most recently, we have used in depth phospho-proteome
profiling to define the global signaling landscape downstream
of mutated JAK2-kinase and its perturbation by stimulation with
its physiologic ligand erythropoietin or JAK-inhibitor treatment.
Using RNAi-screens to explore relevant JAK2-targets, we have
defined JAK2-selective vulnerabilities related to perturbation of
the splicing machinery through oncogenic cell signaling [10]. To
identify further vulnerabilities specifically related to mutated
JAK2-kinase, we analyzed DepMap CRISPR-Cas9 datasets and
identified genes that represent dependencies in JAK2-mutated
hematopoietic cell lines compared with non-JAK2-mutated cells
(Fig. 1A). We identified a total of 22 genes mainly related to cell
signaling, apoptosis and epigenetic regulation. Of note, only 4/
22 candidates had been identified as targets of mutated JAK2-
kinase in phospho-proteome analysis: BAK1, CNTLN, KDM4C
and UHRF2 (Fig. 1B). KDM4C was highly expressed in JAK2-
mutated cell lines and was a selective dependency as compared
to non-JAK2-mutated cell lines (Fig. 1C). In contrast, other
members of the KDM-family could not be identified as specific
vulnerabilities for JAK2-mutated cells (Fig. 1D). KDM4C (JMJD2C)
is a jumonji domain-containing protein and acts as a
trimethylation-specific demethylase that contributes to epige-
netic regulation of both oncogene and tumor suppressor genes
and is frequently overexpressed in human cancers [21, 22]. In
more detail, KDM4C specifically demethylates H3K9me3/me2,
H1.4K26me3, and H3K36me3/me2 via a 2-oxoglutarate-
dependent dioxygenase reaction. KDM4C activity is required
for development of acute myeloid leukemia [21, 22]. However,
while genetic inactivation of multiple KDM4 enzymes is
detrimental to normal HSCs, selective deletion of KDM4C
appears to be dispensable for HSC function [23], which indicates
a potential therapeutic window.
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Fig. 1 KDMAC is a specific dependency in JAK2-mutated cells. A Scatter plot showing the in vitro depletion scores of genes in JAK2-mutated

cells versus non-JAK2-mutated cell lines according to the DepMap Avana CRISPR-Cas9 (Q4/21) database. Data points represent the median
value of each sgRNA set. Scores of genes with dependencies (indicated by dependency scores < —0.5) in JAK2-mutated cells but no
dependency in non-JAK2-mutated cells (dependency score > —0.5) are highlighted in red. B Venn diagram showing the number of JAK2-
specific in vitro hits and the number of JAK2-V617F specific target genes as determined by phospho-proteome analyses [10]. Overlapping
genes with high expression in JAK2-mutated cell lines are indicated in red. C Expression and functional dependency of KDM4C in JAK2-
mutated versus non-JAK2-mutated cell lines. D Dependency scores of all KDM-gene-family members in myeloid cancer cell lines.
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Fig. 2 KDMAC is highly expressed in primary MPN patient cells.
A Quantification of KDM4C mRNA expression in peripheral blood
granulocytes derived from patients diagnosed with myeloprolifera-
tive neoplasms (MPN; n = 129) compared to healthy donor controls
(n=12). B KDM4C mRNA expression across different MPN subtypes
(PV =24, ET =29, MF =31, MPN-U = 6) and healthy donor controls
(n=12).

Regarding the high dependency of JAK2-mutated cells, we
sought to investigate the functional role of KDM4C in vitro and
in vivo. KDM4C was highly expressed in peripheral blood
granulocytes derived from MPN patients when compared to
age-matched healthy donor controls (Fig. 2A). Increased mRNA
expression was detectable across all phenotypic subtypes of MPN,
including polycythemia vera (PV), essential thrombocythemia (ET),
myelofibrosis (MF) or unclassifiable MPN (MPN-U) (Fig. 2B).

As indicated above, Janus kinase inhibitors are well tolerated
and highly effective in reducing pro-inflammatory cytokine
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production and inflammation-related clinical symptoms. However,
reduction of disease burden is rarely seen, which highlights the
necessity to identify targets that are accessible and effective in
combination with JAK-inhibitor treatment. In order to confirm the
functional dependency on KDM4C under treatment conditions
with the JAK-inhibitor ruxolitinib (RUX), we applied a genome-
wide CRISPR-Cas9 screen in the human JAK2-mutated cell line
HEL. This cell line was selected for its sensitivity to RUX and ability
to be transduced among the JAK2-mutated human cell lines. For
the screen, HEL cells were infected with the human CRISPR
Brunello lentiviral pooled library including 76,441 guide RNAs
targeting against 19,114 genes and 1000 control guide RNAs and
treated with 200nM RUX (or DMSO, as control) for 12 days
(Fig. 3A). Alignment and statistical analysis of the data was
performed using the MAGeCK and MAGeCK-Flute algorithms as
described before [24]. Specifically, MAGeCK was used to align
guide sequences from FASTQ files based on the guide-matrix.
Subsequently, the MAGeCK-MLE algorithm was used to statisti-
cally compare dropout and enrichment of guides between day 0
and day 12 separately for treated (RUX) versus untreated (DMSO)
conditions. Here, 749 genes were identified as functional
dependencies upon ruxolitinib treatment (dependency score <
—0.5). Of note, KDM4C was detected among the ruxolitinib
“persistent” dependencies (HEL dependency score —0.92) (Fig. 3B).
Taken together, KDM4C was identified as a selective vulnerability
of JAK2-mutated cells also under exposure to JAK-inhibitor
treatment.

Inactivation of KDMA4C results in impaired cellular function of
JAK2-mutated cells

To further assess the functional importance of KDM4C in JAK2-
mutated cells, we used a CRISPR-Cas9-mediated gene-editing and
negative-selection strategy (Fig. 4A, as described before [11]).
Genetic deletion was confirmed by Western blotting, and PCR.
Cells expressing different KDM4C single guide RNAs (sgRNAs)
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Fig. 4 Inactivation of KDMA4C results in loss of cell competition and reduced proliferation. A Schematic depicting negative-selection

competition assay. B Results of the negative-selection competition assay showing the relative percentage of RFP + sgRNA-+ cells over time
after transduction of JAK2-mutated HEL cells with indicated sgRNAs targeting luciferase control (sg-Luc), KDM4C (sg2-KDM4C; sg3-KDMA4C) or
RPA3 (positive control, sg-RPA3). n > 3. C Proliferation assayed by cell counting after trypan blue exclusion for Ba/F3-V617F-Cas9-Blast cells,
SET-2-Cas9-Blast cells and HEL-Cas9-Blast cells transduced with sgRNAs targeting KDM4C, RPA3, or a non-targeting control (sglLuc). n>3
independent experiments. D Schematic representation of the experimental procedure for CRISPR-Cas9 mediated knockout of KDMA4C in
human HEL cells followed by transplantation into xenograft mice at two different dilutions (30,000 cells; 60,000 cells). E Violin plot showing
spleen weight of recipient animals at the timepoint of analysis (n = 9; two-tailed t-test). F Kaplan-Meier survival curves of humanized NXG

recipient mice injected with two different dilutions of CRISPR-Cas9 edited human HEL cells.

were (partially) outcompeted by non-transduced cells in JAK2-
mutated cell lines (HEL, p =0.0017) compared to non-targeting
(sg-Luc) controls (Fig. 4B). Therefore, these in vitro results suggest
that KDM4C is relevant under conditions of cell competition in
JAK2-mutated cell lines. To confirm these results, we aimed to
investigate cell proliferation in different murine and human JAK2-
mutated cells following genetic inactivation of KDM4C in vitro
(Fig. 4Q). Here, loss of cell competition could be attributed to
impaired proliferative capacity of KDM4C deficient murine (Ba/F3-
JAK2VF; p = 0.0012) and human (HEL, p = 0.002; SET-2, p = 0.0081)
JAK2-mutated cells. To validate the functional impact of KDM4C
deletion in human JAK2-mutated cells in vivo, we performed
CRISPR-Cas9-mediated deletion of KDM4C in HEL cells and
assessed disease dynamics after transplantation into humanized
NXG mice at different dilutions (Fig. 4D). Inactivation of KDM4C
reduced disease activity as indicated by reduced spleen size of
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recipient mice (p =0.0188 and p =0.0227, respectively; Fig. 4E).
Moreover, deletion of KDM4C delayed disease progression at
different dilutions. When injecting 30,000 transduced cells, disease
penetrance was reduced in KDM4C depleted cells (gLuc: 40%;
KDM4Cg4: 20%; KDM4Cg5: 0%; Fig. 4F, upper panel). At higher
counts of 60,000 transduced HEL cells per animal, overall survival
was significantly improved (median survival of glLuc: 48 days;
sgKDMA4C: not reached; p = 0.0025) (Fig. 4F, lower panel).

Loss of KDMAC results in altered methylation of target
histones and induction of senescence

Genetic inactivation of the lysine-specific demethylase KDM4C
resulted in increased methylation of H3K36, which is the specific
residue targeted by KDMA4C. This effect was detected by Western
blotting (Fig. 5A) and immunofluorescence staining (Fig. 5B) in
murine (BaF3-VF) and human (SET-2, HEL) JAK-mutated cells.

Leukemia (2022) 36:1843 - 1849



H3K36me3 can mediate multiple transcriptional-related events,
such as the regulation of transcriptional activity, is associated with
both facultative and constitutive heterochromatin and has been
linked to cellular processes involved in senescence [25]. When
examining the transcriptome of KDM4C-depleted JAK2-mutated
HEL cells, we found increased expression of CDKN1A (p21),
IL1beta, BCL2, and downregulation of THSB1 or MTOR. Consis-
tently, gene set enrichment analysis (GSEA) revealed a strong
induction of gene sets related to cellular senescence (NES = 1.55;
p =0.0327; Fig. 5C, D). Furthermore, gene set enrichment analysis
(GSEA) demonstrated enrichment of PI3K/AKT/MTOR pathway and
NF-kB signaling, whereas genes encoding transcription initiation
and genotoxicity pathways appeared repressed.

For functional validation, genetic deletion of KDM4C by CRISPR-
Cas9 was induced and compared to daunorubicin treatment as a
positive control to induce cellular senescence. Here, we found
induction of H3K36me, H3K9me3 and p21 (data not shown) along
with significant increase in SA-BGal staining in JAK2-mutated HEL
cells in vitro (Fig. 5E, F). These findings indicate that inactivation of
KDMA4C reduces cell competition and proliferative capacity and
induces cellular senescence in JAK2-mutated cells.

DISCUSSION

In summary, we have identified lysine-specific demethylase
KDMA4C as a downstream effector of mutated and constitutively
active JAK2 kinase. KDM4C represents a functional vulnerability in
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JAK2-mutated cells and its inactivation remains detrimental upon
co-treatment with JAK1/2-inhibitors.

Most recently, KDM4C has been described as a regulator of
stemness [26-29], cancer cell resistance [30, 31] and cancer
progression [32, 33] in various cancer models and KDMA4C
germline variants may increase multi-cancer vulnerability through
dysregulation of target histone methylation [34]. In murine models
of acute myeloid leukemia (AML) driven by MLL-rearrangements,
genetic inactivation of all Kdm4 family members blunted leukemia
development while inactivation of Kdm4c alone showed minor
effects regarding proliferation of leukemic cells [21]. In contrast,
KDM4C was shown to regulate ALKBH5 expression in human AML
cells by increasing chromatin accessibility to MYC and Pol Il and to
maintain KDM4C-ALKBH5-AXL signaling [29]. Here, inactivation of
the KDMA4C-ALKBH5 axis resulted in reduced proliferation,
impaired colony formation and loss of leukemia stem cells. The
role of KDM4-family proteins has been also investigated in detail
in hematopoietic stem cells and models of acute myeloid
leukemia (AML). Deletion of Kdm4 family members (Kdm4a/b/c)
in murine hematopoietic stem cells resulted in accumulation of
H3K9me3 on transcription start sites, transcriptional silencing and
loss of stem cell self-renewal [23]. In contrast, inactivation of
Kdm4c alone did not reveal deleterious effects in normal HSCs,
indicating a potential therapeutic window for defining it as a
target in myeloid neoplasms. Our data provides first evidence that
JAK2-mutated cells may show an even greater dependency than
other myeloid leukemia cell lines. Moreover, this vulnerability is
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Fig. 5 Loss of KDM4C leads to differential methylation of target histones and induction of cellular senescence. A Western blot analysis in

BaF3/JAK2-V617F_Cas9_Blast, SET-2_Cas9_Blast and HEL_Cas9_Blast cells following CRISPR-Cas9 knockout using KDM4C specific sgRNAs
(KDM4C-sg2, -sg3) or non-targeting control (LUC). B Immunofluorescence analysis of H3K36me3 and Hoechst-staining in SET-2_Cas9_Blast
and HEL_Cas9_Blast cells following CRISPR-Cas9 knockout using KDM4C specific sgRNAs (KDM4C-sg2, -sg3) or non-targeting control (LUC).
C GSEA showing enrichment of genes related to senescence and autophagy in cancer. Plotted are normalized enrichment scores (NES). D Heat
map of differentially expressed genes in KDM4C deleted HEL cells versus non-targeting control (LUC); n = 4. Red zones represent higher gene
expression (upregulation), blue zones represent lower gene expression (downregulation). E Representative cytospins of SA-beta-Gal-staining
of KDM4C depleted HEL cells compared to non-targeting control (sgLUC). Cells exposed to daunorubicin (Dauno) serve as positive control for
SA-beta-Gal staining. F Bar graph depicting quantification of SA-bet-Gal staining as depicted in E. n = 3 independent replicates, two-tailed t-
test.
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uncoupled from JAK-inhibitor treatment, which is the standard-
therapy for relevant subgroups of JAK2-mutated cancers. Given
the fact that KDM4C was dispensable for normal hematopoietic
stem- and progenitor cells, targeting this enzyme may represent a
strategy to selectively target JAK2-mutated cells in myeloproli-
ferative neoplasms.

Induction of cellular senescence has been linked to epigenetic
modulator genes and specifically lysine-specific demethylases
such as LSD1 and KDMA4C. In melanoma cells, enforced expression
of KDM4C promoted melanomagenesis through altered methyla-
tion of relevant target histone residues [35]. Targeting relevant
demethylases such as LSD1 or KDM4C had deleterious effects on
melanoma growth by inducing senescence. In JAK2-mutated cells,
inactivation of KDM4C resulted in reduced proliferation in vitro,
increased methylation of target histone residues (H3K36, H3K9)
and induction of senescence. This is of major interest, as the
interplay between inflammation and induction of senescence in
MPN is so far not well understood. Aging of the microenvironment
through MPN induced chronic inflammation may foster induction
of senescence in normal, non-mutated HPSCs or niche cells such
as mesenchymal stroma cells (MSC). Conversely, senescent cells
may in turn contribute to the maintenance of chronic inflamma-
tion through the senescence-associated secretory phenotype
(SASP). Further studies exploring the long-term effects of
senescent JAK2-mutated cells in this therapeutic context are
clearly needed. Finally, development of specific pharmacologic
KDMA4C inhibitors will allow pre-clinical validation of demethylases
as relevant clinical targets in JAK2-mutated cancers.

DATA AVAILABILITY

RNA-seq data have been deposited in the Gene expression Omnibus database with
accession number GSE203060. CRISPR screen data has been deposited to the Gene
expression Omnibus database with the accession code GSE203059.
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