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Abstract. The fossil record of coccolithophores dates back
approximately 225 million years, and the production of their
calcite platelets (coccoliths) contributes to the global carbon
cycle over short and geological timescales. Variations in coc-
colithophore parameters (e.g. community composition, mor-
phology, size and coccolith mass) are a key factor for ocean
biogeochemical dynamics (e.g. biological carbon pump) and
have been used as a palaeoproxy to understand past oceano-
graphic conditions. Coccolith mass has been frequently esti-
mated with different methods with electron microscopy be-
ing the most applied. Here, we compared the electron mi-
croscopy (EM) method with the Coulter multisizer (CM)
(i.e. electric field disturbance) and bidirectional circular po-
larization (BCP) methods to estimate coccolith masses (pg
CaCQO3) in controlled laboratory experiments with two eco-
types of Emiliania huxleyi. Average coccolith mass estimates
were in good agreement with literature data. However, mass
estimates from the CM were slightly overestimated com-
pared to EM and BCP estimates, and a correction factor (cf =
0.8) is suggested to compensate for this discrepancy. The
relative change in coccolith mass triggered by morphotype-
specific structures and environmental parameters (i.e. seawa-
ter carbonate chemistry) was suitably captured by each of the
three techniques.

1 Introduction

The ocean constitutes a crucial part in the biogeochemical
cycling of the Earth’s elements and represents an important
interface between the atmosphere and lithosphere. Phyto-
plankton are integral to the biogeochemical cycling of the
ocean, as they convert inorganic carbon and nutrients into
organic compounds through photosynthesis, serving as the
foundation for the marine food web and facilitating the trans-
fer of carbon from the atmosphere to the ocean’s interior
(Litchman et al., 2015). Coccolithophores have been present
in Earth’s oceans for approximately 225 million years (Not
etal., 2012). These organisms produce calcite platelets called
coccoliths and sequester significant amounts of calcium car-
bonate (CaCO3) into sea-floor sediments, contributing to the
global cycle of carbon and other elements (Neukermans et
al., 2023). The geochemical composition of coccoliths can
provide valuable insights into the biogeochemical cycles of
divalent cations such as magnesium (Mg), strontium (Sr)
and barium (Ba) (Miiller et al., 2014; Bolton et al., 2016).
Changes in morphology, mass and geometry of the intra-
cellularly produced coccoliths has been used to understand
palaeoceanographic conditions and investigate the potential
influence of this phytoplankton group on climate dynamics
and CO; fluxes (Renaud and Klaas, 2001; Fielding et al.,
2009; Beaufort et al., 2011). Changes in environmental pa-
rameters (e.g. salinity, nutrient availability, temperature, car-
bonate chemistry) can affect the physiology and cell size of
coccolithophores and, consequently, has the potential to alter
the mass of coccoliths (Fielding et al., 2009; Jin et al., 2016;
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Horigome et al., 2014; D’ Amario et al., 2018). It has been
proposed that coccolith size changes occur proportionally to
coccosphere or cell size (Aloisi, 2015; Miiller et al., 2021),
but this “coccolithophore size rules” hypothesis has been re-
cently challenged and further refined (Suchéras-Marx et al.,
2022).

Coccoliths are categorized into holo- and heterococcoliths,
depending on life cycle phases and the associated extra- and
intracellular biomineralization processes, respectively (Row-
son et al., 1986; Young and Henriksen, 2003). Heterococcol-
ith formation occurs in a special cellular compartment within
the coccolithophore cell, and completely formed coccoliths
are extruded to the cell surface and arranged to compose the
coccosphere. The underlying physiological and biogeochem-
ical mechanisms of coccolith formation have been partly
revealed (e.g. Mackinder et al., 2011; Mejia et al., 2018),
and several hypotheses for the ecological/cellular function
of coccolithophore calcification and genesis have been pre-
sented (Monteiro et al., 2016; Miiller, 2019).

The coccolithophore species Emiliania huxleyi, more re-
cently based on genetic arguments also referred to as Gephy-
rocapsa huxleyi (Bendif et al., 2023; Wheeler et al., 2023),
is amongst the numerically most abundant and geographi-
cally distributed representatives of this functional group in
the modern ocean, being an important model species for
physiological and biomineralization studies (e.g. Henderiks
and Pagani, 2008; Triantaphyllou et al., 2010; Poulton et al.,
2011; Miiller et al., 2012; Hoffmann et al., 2015; Faucher et
al., 2020). In the Southern Ocean, the most dominant eco-
types of E. huxleyi are A and BC with distinct differences in
their cellular physiology and morphological coccolith struc-
ture. The distribution and physiological performance of these
ecotypes is determined by temperature, the Antarctic Polar
Front and seawater carbonate chemistry (Mohan et al., 2008;
Winter et al., 2014; Cubillos et al., 2007; Miiller et al., 2015;
Charalampopoulou et al., 2016).

The microscopic nature of coccoliths impedes a direct
measurement of their mass, and several methods have been
applied to indirectly estimate single coccolith masses. Elec-
tron microscopy is a powerful technique that uses a beam
of electrons to visualize and analyse particles at high reso-
lution. The utilization of electron microscopy has proven to
be a valuable technique for measuring the geometry (length,
width and thickness) and estimating the mass of coccoliths
with the application of geometric constants for specific coc-
colithophore species and coccolith structures (Young and
Ziveri, 2000). The detailed imaging capabilities of electron
microscopy reveal the intricate patterns, features and mor-
phology of coccoliths from sediment, ocean and laboratory
samples (e.g. Saruwatari et al., 2011). However, electron mi-
croscopy requires specialized equipment and experience to
differentiate between different coccolith species and to iden-
tify any variations in size and morphology, while at the same
time sample preparation can be time-consuming and com-
plex.
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Another geometric approach to estimate the coccolith
mass, especially in laboratory experiments, is the analysis of
coccoliths using the Coulter multisizer principle (Miiller et
al., 2012, 2021). This method is a commonly employed tech-
nique in particle measurement, utilizing electrical impedance
to ascertain the volume distribution of particles present in
a conductive liquid. The Coulter multisizer device is com-
prised of a small orifice with an applied electric field through
which the particle suspension (sample) is passed. As the par-
ticles flow through the orifice, they disrupt an electric cur-
rent that is applied across the orifice. The number, amplitude
and duration of disruptions (or pulses) are directly related to
the number and volume the analysed particles. The Coulter
multisizer principle provides a rapid method to count coc-
colithophore cells and coccoliths (e.g. Miiller et al., 2021),
as well as to estimate extracellular CaCO3 content (Fan et
al., 2022) from laboratory samples. Coulter multisizer sam-
ple material, however, requires liquid suspension and high
particle numbers for appropriate analysis, limiting a general-
ized application.

The optical properties of coccoliths (i.e. calcite) allow for
the application of polarizing or polarized light microscopy
for analysis. Utilizing polarized light is an advanced tech-
nique that enhances the contrast of images obtained from
birefringent materials, demonstrating a heightened level of
sensitivity and can be effectively adjusted for both quanti-
tative and qualitative studies. Applications of polarized light
microscopy facilitates the recognition and characterization of
diverse coccolithophore species (Gordon and Du, 2001; Boll-
mann, 2014). This method allows for the observation and
documentation of the shape, size and arrangement of coc-
coliths. As a result, it yields valuable taxonomic data and
coccolith mass estimations when appropriately calibrated
(Beaufort, 2005; Beaufort et al., 2014, 2021; Meier et al.,
2014). Certain limitations, however, have been reported for
polarized light microscopy and are associated with a particle
thickness above 2 um and with a vertical optical axis orienta-
tion of coccolith CaCO3 crystals (Beaufort et al., 2021).

All three described methods have been applied in coc-
colithophore studies, but no direct comparison has been re-
ported. Here, coccolith mass estimations derived from elec-
tron microscopy, Coulter multisizer and cross-polarized light
methodologies are compared using samples from controlled
laboratory experiments with two Southern Ocean coccol-
ithophore ecotypes of the species Emiliania huxleyi.

2 Material and methods

Four Southern Ocean strains of E. huxleyi (strains SO 5.14
and SO 5.30 of ecotype A and SO 5.11 and SO 8.15 of eco-
type BC, isolated in 2007 by Suellen S. Cook) were grown
under nutrient-replete batch-culture conditions at 14 °C in
0.2 um filtrated natural seawater with a salinity of 35 and
a continuous photon flux density of 100 to 115 umol pho-
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2 —1

tons m~~ s~ ', assuring desynchronization of the cellular di-
vision cycle and independence of sampling time and cellular
volume (Miiller et al., 2008, 2021). Detailed culture condi-
tions of the experiments (conducted in 2012/2013) are de-
scribed in Miiller et al. (2015). In summary, seawater carbon-
ate chemistry was manipulated for each strain in triplicate
treatments to generate a pCO; gradient ranging from 296—
1683 patm, corresponding to a pHcotal scale) gradient from
8.17 to 7.48. Samples for electron microscopy (EM) and
bidirectional circular polarization (BCP) microscopy were
pooled for each triplicate treatment and filtered onto poly-
carbonate filters (0.8 pm pore size) and then dried at 60 °C
pending analyses. Samples for coccolith volume were pro-
cessed directly using a Coulter multisizer 4 (Beckman Coul-
ter Life Sciences) equipped with a 30 um aperture, calibrated
with 5 um latex particles (NIST traceable standard) and fol-
lowing established protocols (Fan et al., 2022; Faucher et al.,
2017; Miiller et al., 2012, 2017, 2021).

2.1 Scanning electron microscopy

Sample filters were sputter-coated (gold—palladium) and ob-
served on a Hitachi SU-70 field emission scanning electron
microscope at the Central Science Laboratory of the Univer-
sity of Tasmania. Images were taken at 1500 x magnification
and analysed using the ImageJ software (Schneider et al.,
2012). ImageJ was calibrated using the size bars of the im-
ages. Only single coccoliths lying “face up” were analysed
for distal shield length (DSL), distal shield width (DSW),
central area length (CAL), central area width (CAW), distal
shield area (DSA) and the central area area (CAA) (Fig. 1).
DSA and the CAA were calculated assuming that both areas
are reassembled in a standard elliptical form. Average num-
bers of 100 and 80 coccoliths were analysed for each geo-
metric parameter of ecotype A and BC, respectively (see the
Supplement).

2.2 Polarizing microscopy

Sample filters were affixed using a UV optical mounting
medium (Norton Optical 74). Employing an automated opti-
cal microscope (Leica DM6000) equipped with a 100x lens
(aperture 1.45), each sample underwent scanning. A blue
monochromatic light (A =460 4 5nm) was utilized for il-
lumination. Imaging was conducted using a digital camera,
SpotFex (Diagnostic Instruments), capturing images of 20
fields of view (FOVs), each measuring 0.0156 mm?.

For every FOV, 14 images were acquired, spanning seven
focus levels with 700 nm increments. Two polarizing config-
urations were applied: (1) right circular polarization (RCP)
and (2) left circular polarization (LCP), enabling the im-
plementation of the bidirectional circular polarization (BCP)
method (Beaufort et al., 2021). The combination of RCP and
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Figure 1. Coccospheres of Emiliania huxleyi. (a) Schematic illus-
tration of a coccosphere, showcasing the evaluated geometric mea-
surements using scanning electron microscopy (DSL represents dis-
tal shield length, DSW represents distal shield width, DSA repre-
sents distal shield area, CAL represents central area length, CAW
represents central area width, CAA represents central area area).
Representative EM images of Southern Ocean E. huxleyi ecotype
(b) A and (¢) BC (Miiller et al., 2015).

LCP at each focus level was determined by Eq. (1):

A I
d= arctan | | =R ), (D
T An Vs

where d is the thickness, X is the wavelength (460 nm), An
is the birefringence of calcite (0.172), and I} r and I |, repre-
sent grey values measured with right and left circular polar-
izers, respectively.

After scaling the pixel values of the resulting images by
multiplying them by 256 and dividing by 1.34, representing
the maximum thickness measured at this wavelength, an 8-
bit image was generated, ensuring compatibility with any im-
age analysis program. To enhance focus for each small image
segment, the seven images from each FOV were integrated
using Helicon Focus software. This calibration process en-
sured that the light intensity in the resulting FOV image
was fully adjusted for 3D imaging, guaranteeing sharp focus
across all areas, achieving an accuracy of 0.005 pm for thick-
ness and 0.032 pg um ™2 for mass (Beaufort et al., 2021). Sub-
sequently, the images underwent segmentation and analysis
using an Al package called SYRACO (SYsteme de Recon-
naissance Automatique de COccolithes), which combines
morphometry and neural-network-based pattern recognition
(Beaufort et al., 2022). SYRACO demonstrated its capabil-
ity by providing accurate mass and length measurements for
Emiliania huxleyi coccoliths and coccospheres identified in
the scans of the samples.
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1604

2.3 Coccolith mass estimations

Three methods were used to estimate individual coccolith
mass, expressed in pg CaCOs: (1) based on EM, (2) CM
and (3) BCP analyses. Coccolith mass from EM analysis was
estimated according to the equation: mass=2.7 x ks x [,
where 2.7 is the density of calcite (in gcm_3), ks is a con-
stant dependent on the shape of the coccolith and 1 is the dis-
tal shield length (Young and Ziveri, 2000). Shape constants
were applied after Poulton et al. (2011) with ks = 0.02 and
0.015 for ecotype A and BC, respectively. Average numbers
of 100 and 80 coccoliths were analysed for ecotype A and
BC, respectively. Average coccolith volumes obtained with
the CM method were extracted from Miiller et al. (2017) and
transformed into the mass of coccolith by multiplying with
the density of calcite. On average, approx. 6 x 10° coccoliths
were measured per CM sample. Coccolith mass estimates de-
rived from polarizing microscopy (bidirectional circular po-
larization) analyses followed protocols described in Beaufort
et al. (2014, 2021). An average number of 671 coccoliths
were analysed per sample to estimate coccolith mass (see the
Supplement).

2.4 Data and statistical analysis

Possible differences between the two studied strains of each
ecotype were analysed by comparing the geometric param-
eters (derived from electron microscopy analysis) and their
linear regressions in regard to seawater pH; between the two
individual strains of each ecotype using ANCOVA (analy-
sis of covariance; p<0.05). No significant differences were
detected (the Supplement Table S1), and, consequently, the
results of the individual strains of each ecotype were pooled
and analysed as one data set for each ecotype. Variations of
coccolith geometric parameters and mass in regard to seawa-
ter pH were analysed by means of linear regression analy-
sis, and significant differences amongst the regression slopes
were tested with the “statcalc” software (Soper, 2023). A sig-
nificance level of 5 % was applied for all statistical analyses.

3 Results

All coccolith geometric parameters, derived from electron
microscopy (Fig. 1), of both ecotypes were significantly cor-
related with seawater pH; (Fig. 2 and the Supplement Ta-
ble S2). Increased coccolith size parameters (DSL, DSW,
DSA, CAL, CAW and CAA) were associated with lower sea-
water pH; values. The data sets of ecotype A and BC were
significantly different from each other for all measured geo-
metric parameters (ANCOVA: p<0.05). On the other hand,
linear regression slopes of the relations between geometric
parameters and pH; were not significantly different between
ecotype A and BC with the exception of CAL (F =5.60,
p =0.029; Fig. 2e).
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Figure 2. Correlations of coccolith size parameters, derived from
electron microscopy, to seawater carbonate chemistry, represented
by pHtotal scale) (£ SD). (a) Distal shield length, (b) central area
width, (c¢) distal shield width, (d) distal shield area, (e) central area
length and (f) central area area with corresponding standard errors
(SE). Solid lines indicate significant linear regressions (p<0.05)
with 95 % prediction intervals (dashed lines).

Ecotype A coccolith mass estimations derived from EM,
CM and BCP ranged from 1.83 to 2.37, 2.34 to 2.91, and
1.87 to 2.18 pg CaCOs, respectively, and from 1.59 to 1.85,
2.08 to 2.36, and 1.31 to 2.25 pg CaCOs3, respectively, for
ecotype BC. Changes in coccolith mass were significantly
correlated to seawater pHorary With the exception of coccol-
ith mass estimations of ecotype BC derived from CM and
BCP measurements (Fig. 3; the Supplement Table S3). For
ecotype A, the slopes of the linear regression lines of the CM
and BCP methods were not significantly different from the
slope of the EM method (p>0.05).

Average coccolith masses over the applied pH gradient
were significantly different between the two ecotypes inde-
pendent of the applied method (Table 1). Average coccolith
mass over the applied pH gradient from the CM method was
significantly higher than the average values from the other
two methods, while no significant differences between the
average values of the EM and BCP methods were detected
(Table 1).

4 Discussion

The results derived from EM indicate a clear influence of sea-
water carbonate chemistry on coccolith geometry and mass

https://doi.org/10.5194/bg-21-1601-2024
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Figure 3. Correlations of seawater carbonate chemistry, represented by pHy, to average coccolith mass (£ SE) of ecotype A (a) and BC (b).
Solid lines indicate significant linear regressions with 95 % prediction intervals (dashed lines).

Table 1. Average coccolith mass (£ 1SD) of ecotype A and BC over the applied pH gradient. Significant difference between average
coccolith mass values of each ecotype and differences amongst the applied method were detected by means of one-way ANOVA.

Coccolith mass (pg CaCO3) ANOVA!

Ecotype A Ecotype BC p/F

EM 2094018 (n=12) 1.714£0.10(n =10) <0.001/36.7

CM 2584022 =12) 220+0.11 (n=6) 0.001/15.6

BCP 2024010 (n=12) 1.8240.31 (n = 10) 0.042/4.7
ANOVA2 p/F  <0.001/37.843 <0.001/10.963

EM represents electron microscopy, CM represents Coulter multisizer, BCP represents bidirectional
circular polarization. | ANOVA testing significant difference between ecotypes. 2 ANOVA testing
significant differences amongst applied methods. 3 Mean coccolith mass value from CM analysis was
significantly different from EM and BCP analyses, while the difference between EM and BCP was
non-significant (post-hoc Tukey honestly significant difference (HSD) test).

estimates (Figs. 2 and 3). The observation of higher coccolith
mass in response to lower seawater pH may appear contra-
dictory at first glance as frequently malformed coccoliths are
associated with ocean acidification scenarios (e.g. Riebesell
et al., 2000). However, this can be rationalized by consider-
ing that reduced calcification rates, induced by ocean acid-
ification or reduced seawater pH, are independent of coc-
colith size (e.g. Miiller et al., 2017). The detailed influence
of seawater carbonate chemistry on coccolithophore physiol-
ogy, calcification rates and coccolith geometry has been pre-
viously described (Bach et al., 2015; Meyer and Riebesell,
2015; Hermoso and Minoletti, 2018). Instead, this study is
focused on the application of three different methods for es-
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timating coccolith mass and the implications for future anal-
yses.

The presented data include results from two ecotypes of
E. huxleyi (i.e. A and BC) from the Southern Ocean. Eco-
type BC has been described to produce relatively delicate
coccoliths and demonstrates a high physiological sensitivity
when exposed to changing environmental conditions com-
pared to the more tolerant ecotype A (Cubillos et al., 2007;
Cook et al., 2011, 2013). This is hypothesized to be related
to the relatively constant ecological niche of type BC (i.e.
the open Southern Ocean) and the evolutionary developed
interplay of the underlying genetic and physiological frame-
work (Schluter, 2009; Chevin et al., 2014; Stotz, 2017). The
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high sensitivity to low seawater pH of ecotype BC resulted
in diminished coccolith production and insufficient sample
material for CM analysis at pH <7.75 (Fig. 3b).

Three methods (i.e. EM, CM and BCP) were applied to
estimate the coccolith mass. All these methods have been
previously utilized to estimate coccolith masses from field
and laboratory studies, and the individual application pro-
cedures are well established and widely reported (see refer-
ences in Table 2). The average coccolith masses (estimates
from the three methods) ranged from 1.59 to 2.91 pg CaCOs,
which is in good agreement with previously published val-
ues from laboratory and field studies, regarding ecotype A
and BC (0.9 to 8.2 and 0.6 to 5.1 pg CaCO3, respectively; Ta-
ble 2). Estimates > 6 pg are generally associated with sample
material from laboratory experiments, presumably reflecting
artificial culture conditions, leading to the formation of un-
usually large coccoliths (e.g. Miiller et al., 2012).

Coccoliths of ecotype BC have a more delicate structure
than coccoliths of ecotype A and this is reflected in the lower
coccolith mass estimates compared to ecotype A (Fig. 3a and
b). This difference was detected to be significant (p<0.05),
independent of the applied method (Table 1), indicating com-
parable method sensitivities for different coccolith shapes of
E. huxleyi. The non-significant differences between the lin-
ear regression slopes of ecotype A (Fig. 3a) further indi-
cates the comparable sensitivity of the three methods to de-
tect changes in coccolith mass induced by seawater carbonate
chemistry variations. However, the influence of seawater car-
bonate chemistry on the coccolith mass of ecotype BC was
solely detected with the EM method, which might be related
to the coccolith sample size, orientation and morphological
quality.

The ecotypes A and BC of E. huxleyi produce coccoliths
that exhibit gaps lacking calcified structures. The size and
number of these gaps are likely an interfering factor for the
correct estimation of coccolith mass or CaCOs3 content. The
shape constant (ks, applied in the EM method) accounts for
the general calcified structure of E. huxleyi coccoliths, and it
has been estimated to vary between 0.016 and 0.021 for E.
huxleyi ecotype A (Young and Ziveri, 2000). The shape con-
stants for other E. huxleyi ecotypes are given as 0.015 (for
ecotype BC; Poulton et al., 2011) and 0.04 for the overcal-
cified form of ecotype A (Young and Ziveri, 2000), where
in the latter the central area (i.e. CAA) is completely cal-
cified. Applying different shape constants to the linear re-
gression models of Fig. 3 generates a comparative overview
of the influence of the coccolith shape and degree of calci-
fication on the coccolith mass estimates from electron mi-
croscopy (Fig. 4). Interestingly, the coccolith mass estimates
(ecotype A) from the CM method are lower than estimates
using the shape constant for the overcalcified coccolith struc-
ture (ks = 0.04). This indicates that the CM method partly
accounts for the structure of the coccoliths of ecotype A and
BC, and that possible occlusion (Plaats and Herps, 1984) of
the analytical fluid (i.e. seawater) might be responsible for

Biogeosciences, 21, 1601-1611, 2024

the observed mass overestimation in comparison to the EM
and BCP methods. A correction factor of 0.808 was calcu-
lated to fit the estimates derived from EM and BCP by fitting
the linear regression of the CM estimates (Fig. 3a) to inter-
sect the linear regression of the EM estimates at pH; of 7.8.
Here, a simplified/rounded correction factor (cf) of 0.8 is pro-
posed to be applied to CM coccolith mass estimates (Fig. 4).

Cross-polarized light microscopy can provide information
about the crystal orientation and structure of particles (Caa-
maifio et al., 2010). It is relatively simple to use and does
not require extensive sample preparation but may have lim-
itations in terms of resolution and sensitivity compared to
electron microscopy. The resolution of cross-polarized light
is constrained by the wavelength of applied light source (typ-
ically within the visible range). Consequently, accurately de-
termining the size and shape of particles, particularly smaller
ones or those with intricate morphologies (e.g. coccoliths),
can be challenging and requires appropriate calibration due
to the influence of sample thickness, orientation and particle
quality (Copuroglu, 2016). The calibration issues of polariz-
ing microscopy have been overcome by the recently devel-
oped BCP method (Beaufort et al., 2021) and underlines the
valuable application of polarizing microscopy for coccolith
analysis, especially in the field of palacoceanography, where
it allows for the examination of crystal orientation and struc-
ture of coccoliths extracted from sediments. It is notewor-
thy that one should be cognizant of each method’s limita-
tions and consider employing complementary techniques for
a more comprehensive and comparative coccolith analysis to
introduce a possible correction factor for the diverse array
of coccolithophore morphology and possible refractive prop-
erties. Instrumental costs and specific expertise required can
differ substantially amongst the applied methods with BCP
and EM relying on expensive equipment set-ups and on in-
tense training and expertise compared to the CM method. In
laboratory culture studies, however, the CM method offers a
fast and cost-effective estimation of coccolith mass from E.
huxleyi.

In summary, the here-presented results demonstrate that
the methods utilized in this study are comparable in terms
of their ability to detect alterations in coccolith mass caused
by variations in ecotype-specific structure and seawater car-
bonate chemistry. It should be noted, however, that the Coul-
ter multisizer estimates were slightly overestimated. In order
to account for this discrepancy, a unitless correction factor
(ct = 0.8) has been proposed. The correction factor is appli-
cable for both tested ecotypes of E. huxleyi. This adjustment
allows for a high level of comparability between coccolith
mass estimates obtained from the three methods and facili-
tates a future comparison and consolidation of mass changes
observed from sediment, oceanographic and laboratory sam-
ples.
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Figure 4. Linear regression models or data points of coccolith mass estimates derived from the Coulter multisizer (blue) and cross-polarized
light (red) compared to regression models from electron microscopy (black) with different coccolith shape constants (kg) for ecotype
A (a) and BC (b). Dashed blue line and open blue dots represent the corrected Coulter multisizer estimates using the ¢y of 0.8 (see text

for details).

Table 2. Average estimates of E. huxleyi coccolith mass from laboratory, seawater and sediment samples. The method category PL (Polarized
light) includes different approaches to estimate the coccolith mass using polarizing light microscopy (please refer to each reference for a de-
tailed description). EM represents electron microscopy, CM represents Coulter multisizer, BCP represents bidirectional circular polarization,
SYRACO represents SYstéme de Reconnaissance Automatique de COccolithes (Beaufort and Dollfus, 2004).

Ecotype and/or origin* Sample Mass Method Reference
material (pg CaCO3)
Drake Passage Sediment 1.6t024 EM Vollmar et al. (2022)
Ecotype A/Patagonian Shelf Seawater 1.2t02.6 EM Poulton et al. (2011)
Ecotype A/Southern Ocean Laboratory 1.8t024 EM This study
Ecotype BC/Patagonian Shelf Seawater 09t01.9 EM Poulton et al. (2011)
Ecotype BC/Southern Ocean Laboratory 1.6t0 1.9 EM This study
Ecotype BC/Southern Ocean Seawater 0.6t01.5 EM Charalampopoulou et al. (2016)
Ecotype A/Norway Laboratory 14t07.8 CM Miiller et al. (2012)
Ecotype A/Southern Ocean Laboratory 23029 CM This study
Ecotype BC/Southern Ocean Laboratory 21024 CM This study
Canary Islands Seawater 1.7t029 PL Linge Johnsen and Bollmann (2020)
Subantarctic Zone Sediment trap 1.8t043 PL Rigual-Herndndez et al. (2020a)
South of Tasmania Sediment 22t03.3 PL Rigual-Hernandez et al. (2020b)
Ecotype A/Southern Ocean Laboratory 19t02.2 BCP This study
Ecotype BC/Southern Ocean Laboratory 1.3t02.2 BCP This study
South Atlantic and Indian oceans  Sediment 1.7t04.9 SYRACO Horigome et al. (2014)
Mediterranean Sea Seawater 22t059 SYRACO D’Amario et al. (2018)
Mediterranean Sea Sediment trap 2.8t05.7 SYRACO Meieretal. (2014)
Ecotype A/Norway Laboratory 09t08.2 SYRACO Bachetal. (2012)
Ecotype BC/Atlantic Ocean Laboratory 1.5t05.1 SYRACO Beuvier et al. (2019)

* Where no ecotype is specified, it is assumed that assemblages of E. huxleyi populations were reported containing a mixture of multiple ecotypes.
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5 Conclusions

Three methods (electron microscopy, Coulter multisizer and
bidirectional circular polarization) were applied to estimate
the coccolith mass of two laboratory-cultured populations
of the coccolithophore Emiliania huxleyi. Average coccolith
mass estimates are in good agreement with previous studies.
However, coccolith mass estimates from the Coulter multi-
sizer were slightly overestimated, and a correction factor has
been introduced to compensate for this discrepancy. The rel-
ative change in coccolith mass triggered by ecotype-specific
structures and seawater carbonate chemistry are suitably cap-
tured by each of the three techniques and are comparable. In
estimating the absolute values for coccolith mass, it is im-
perative to exercise prudence when employing the coccolith
shape constants and refractory indices, with due considera-
tion for the specific coccolithophore species and their corre-
sponding morphological attributes.
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