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Abstract 

Background  Functional traits are phenotypic traits that affect an organism’s performance and shape ecosystem-level 
processes. The main challenge when using functional traits to quantify biodiversity is to choose which ones to meas‑
ure since effort and money are limited. As one way of dealing with this, Hodgson et al. (Oikos 85:282, 1999) introduced 
the idea of two types of traits, with soft traits that are easy and quick to quantify, and hard traits that are directly linked 
to ecosystem functioning but difficult to measure. If a link exists between the two types of traits, then one could use 
soft traits as a proxy for hard traits for a quick but meaningful assessment of biodiversity. However, this framework is 
based on two assumptions: (1) hard and soft traits must be tightly connected to allow reliable prediction of one using 
the other; (2) the relationship between traits must be monotonic and linear to be detected by the most common 
statistical techniques (e.g. linear model, PCA).

Results  Here we addressed those two assumptions by focusing on six functional traits of the protist species Tetrahy-
mena thermophila, which vary both in their measurement difficulty and functional meaningfulness. They were classi‑
fied as: easy traits (morphological traits), intermediate traits (movement traits) and hard traits (oxygen consumption 
and population growth rate). We detected a high number (> 60%) of non-linear relations between the traits, which 
can explain the low number of significant relations found using linear models and PCA analysis. Overall, these analy‑
ses did not detect any relationship strong enough to predict one trait using another, but that does not imply there are 
none.

Conclusions  Our results highlighted the need to critically assess the relations among the functional traits used as 
proxies and those functional traits which they aim to reflect. A thorough assessment of whether such relations exist 
across species and communities is a necessary next step to evaluate whether it is possible to take a shortcut in quan‑
tifying functional diversity by collecting the data on easily measurable traits.
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Background
Biodiversity is declining at an alarming rate [1–5], requir-
ing more than ever to be carefully measured in different 
ecosystems. Traditionally the focus when measuring bio-
diversity was on taxonomical diversity, e.g. species rich-
ness or evenness. However, such an approach has been 
criticized for its inability to bring a mechanistic under-
standing of the effects that species composing the com-
munity have on ecosystem functioning [1, 6, 7]. As an 
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alternative, measuring functional diversity was suggested, 
whereby one measures the functional traits of organ-
isms, defined as characteristics of an organism’s pheno-
type that affect its performance at the individual level [8], 
on the one hand, and that contribute to ecosystem-level 
processes, on the other hand [9–12]. Originally studies 
measuring functional diversity focused on mean values of 
functional traits per species. However, with the increas-
ing recognition of the importance of intraspecific trait 
variation [13–15], functional traits are, over the last dec-
ades, increasingly measured at the level of the organism, 
i.e. they are measured on a sample of individuals instead 
of using species averages [16]. However, regardless of 
whether one measures functional diversity at the com-
munity or at a single species level, the challenges remain 
analogous.

The main challenge when measuring functional 
diversity within a species relates to the choice of which 
functional traits to measure. There are too many traits 
to measure them all, and efforts are limited, thus usu-
ally only a subset of possible traits are chosen [17, 18], 
often those that are rather easier to measure, like mor-
phological traits [19–21]. However, the measured traits 
must be good proxies for both the organism’s fitness 

and its effects on ecosystem functioning. As one way 
of dealing with this, Hodgson et  al. (1999) introduced 
the idea of soft and hard traits, where the former ones 
are relatively easy and quick to quantify, while the lat-
ter ones are more functionally meaningful but harder 
to measure. Ideally, we would measure hard traits (e.g. 
metabolic or physiological traits) when quantifying 
functional diversity, but since they are by definition 
difficult to measure, one could instead measure soft 
traits (e.g. leaf area) that are assumed to be linked to 
these hard traits. Such use of the soft traits as proxies 
for hard ones is promising but it is based on a strong 
assumption: hard and soft traits must be tightly con-
nected. The situation for many species is likely that rea-
sonable knowledge exists in the literature to make an 
informed selection of soft traits that could be proxies 
for hard traits, but exact relations between them are not 
yet established. Another implicit assumption lurking 
behind the most common statistical methods used to 
look for relations among variables (e.g. Pearson correla-
tion, PCA) is that the relation between them is mono-
tonic and linear (Fig.  1). However, these assumptions 
that a relation exists and is linear are rarely checked, 
and proxies are likely often taken for granted.

Fig. 1  Four scenarios illustrating a spectrum of possible relations between hard and soft traits: A This non-monotonic relationship allows prediction 
of the hard trait using the soft one, but not through a simple linear method. B An example of a monotonic relation, where the two traits are linearly 
related on a portion of their variation domain, only allowing accurate predictions of one trait by the other (either way) on this part. C The traits 
are here linearly related, but reliable predictions cannot be achieved because of the high standard error. D The ideal linear, strong and monotonic 
relationship needed for PCA and correlations. Thus, one can use a trait as a proxy for another one only if there is a well-known relationship that 
is correctly estimated, implying (1) the knowledge of the form of the relationship between the two traits, (2) a relationship where the values of 
one trait change with the values of the other (i.e. no constant values of one trait as the other one is changing) because such a relation prevents 
prediction on one of the traits and (3) a standard error on the model parameter small enough to give a reliable prediction
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Here we tested the use of the soft/hard framework, and 
its underlying assumptions, by focusing on Tetrahymena 
thermophila, a unicellular ciliate that has widely been 
studied as a model system in cellular and molecular biol-
ogy for more than 80 years and in ecology and evolution-
ary biology for over a decade [22–24]. Over these years, 
numerous studies provided a lot of information about T. 
thermophila metabolism [23, 25–28], reproduction [29–
31], movement [32, 33] and morphology [24], allowing us 
to formulate the predictions about the expected relations 
between the soft and hard traits. Besides, this study sys-
tem also allows us to carefully assess the existence of the 
expected relations as well as their linearity. Based on the 
knowledge synthesized from the literature and our own 
existing data, we have selected the following six traits 
of T. thermophila cells as functional: two morphological 
traits (cell size and shape), two movement traits (move-
ment speed and trajectory tortuosity), oxygen consump-
tion and population growth rate. In our experimental 
microcosm system, these traits vary in their functional 
meaningfulness and measurement difficulty: easy (mor-
phological traits), intermediate (movement traits) and 
hard (oxygen consumption and population growth rate).

The morphological traits are considered functional 
because they relate to the resource use of T. thermophilla. 
Indeed, an increase in cell size is often a consequence of 
resource accumulation [34]. These resources could then 
be mobilized if environmental conditions become harsh. 
For example, when oxygen is present, the cells will pro-
duce and accumulate glycogen using a part of this oxygen 
[27, 28, 35]; glycogen is here used as a storage for energy 
and can be used to produce ATP (i.e. energy needed for 
the cell survival) through fermentation when oxygen 
is lacking [25], allowing cells to survive for few hours 
without respiring. The shape of the cell is an indicator 
of wellness for T. thermophila [34]. When the environ-
ment is stressful, T. thermophila cells tend to adopt a 
rounder shape, possibly because they exhaust all their 
metabolites (e.g. glycogen) in reserves to survive until 
the environmental conditions become suitable again. We 
classify these two morphological traits as “easy” since 
they remained indirect proxies of glycogen accumulation 
or wellness, and their quantification in our system only 
requires a snapshot picture of cells.

The two movement traits play a major role in resource 
foraging, hence survival, reproduction, and dispersal 
strategy, as shown in the very close species T. pyriformis 
[36, 37]. Swimming fast gives the advantage of quickly 
exploring space, allowing the cells to potentially find a 
better environment, at the cost of the energy needed to 
move and the risk of exhausting themselves to death. 
The same reasoning applies to the trajectory linearity, 
since a tortuous trajectory could enhance local foraging 

by maximizing resources exploited in the neighborhood, 
while a straighter trajectory will allow access to distant 
patches with possible better resources and escaping 
harsh local conditions. We considered these two move-
ment traits as having an “intermediate” level both regard-
ing the measurement difficulty, since measuring them 
requires recording a video with trajectories of moving 
cells, but also functionally, since they directly impact the 
foraging abilities of T. thermophila cells.

Regarding the last group of traits, oxygen consumption 
is a direct proxy of the cell metabolic rate, and one of the 
major factors driving heterotrophic protist community 
structure [38]. Population growth rate is directly propor-
tional to the individual clonal cell reproduction rate and 
is the main driver of biomass production, which is often 
used as a proxy for ecosystem functioning or species 
wellness [39–44]. These two traits are the most difficult 
to measure in our microcosm system because they can-
not be measured from a snapshot data recording (picture 
or video), which is possible to acquire even in the field, 
but instead involve a time series of measurements using 
specialized equipment in the lab. However, they are also 
more directly connected to the ecological parameters of 
the population (i.e. metabolism and biomass production), 
making their estimation very desirable in functional 
diversity studies. Thus, according to the soft/hard frame-
work [45], if we detect a significant relationship between 
these hard traits and the intermediate/easy ones, it would 
allow for indirect estimation of these hard traits based on 
snapshot picture or video measurements, which are even 
possible in the field.

Based on the accumulated knowledge on the ecology 
of T. thermophila, we expect some of our chosen easy or 
intermediate traits to be linked with the hard traits. We 
expect that cell shape and cell size would have a nega-
tive relation with population growth rate, as the faster a 
strain reproduces, the less time its cells have to accumu-
late resources, to become longer and larger. The oxygen 
consumption rate is expected to have a positive relation 
with both movement traits and population growth rate 
since these processes require energy. However, the rela-
tion between movement traits and population growth 
rate might be variable, since movement is an energy-con-
suming process that is rewarded with obtained nutrients 
when the organism is foraging. We expect this relation 
to be positive in food-rich environments, and negative 
otherwise. Further, since bigger and waterdrop-shaped 
cells may be a sign of a higher metabolism, we also expect 
cell size and shape to be positively related to oxygen con-
sumption. A complex set of relations can therefore be 
predicted (Fig.  2), including sometimes contradictory 
predictions (e.g. cell size and shape are expected to be 
negatively related to growth rate, but positively to oxygen 
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consumption, itself expected to positively relate with 
growth rate). This is an illustration that despite consider-
able knowledge, predicting relations among traits is not 
an obvious task, reinforcing the interest in testing how 
assumed relations are indeed real.

We measured the above-described six functional traits 
on 40 genetically distinct T. thermophila strains (i.e. clon-
ally reproducing genotypes), that differ in geographic ori-
gin and time since extraction from the field [46]. These 
strains were previously shown to exhibit clear differences 
in several life-history characteristics such as growth 
rate, maximum density, and survival under starvation 
conditions [46–48]; which have been demonstrated to 
be reliable phenotypic traits at the strain level because 
of the high repeatability of their measures through 
time [47–50]. Such use of several strains covers part of 
the existing intraspecific variation in T. thermophila, 
allowing testing for relations among the six functional 
traits. To explore the relations among the traits, we first 
looked for general trends between all the traits through 

a Principal Component Analysis (PCA). Secondly, we 
used General Additive Models (GAM) to test if the pre-
dictions were improved by considering the possibility 
that relations between the traits are non-linear. Specifi-
cally, we assessed the form and standard deviation (see 
Fig.  1) of the best fit, for all possible pairwise relations 
between the six traits, regardless of the difficulty of tak-
ing measurements.

Results
Among the 15 pairwise relations between the six func-
tional traits, 8 were non-linear as evidenced by the 
higher deviance explained when the relation was per-
mitted to be non-linear through GAMs (Fig.  3). Thus, 
considering the non-linearity significantly improved the 
model fit in half of the cases. However, for the other 7 
relations, the simple linear model remained the best fit. 
Now, looking at the best model (linear or not) for the 
15 relations, only 3 showed a deviance explained above 
25%: both cell size (40.5%) and cell shape (36.3%) when 

Fig. 2  Overview of the relations between the selected functional traits of T. thermophila cells. Arrows indicate how each trait affects the other ones, 
with a black arrow indicating an expected positive relation, a grey arrow for a negative one, and a dotted grey arrow for relations that can vary 
based on the environment. Each trait is colored based on its measurement difficulty with (1) green for easy, (2) yellow for intermediate, and (3) black 
for hard
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predicting NGDR with a non-linear model, and NGDR 
itself predicting population growth rate (31.2%) with a 
linear model (Fig. 3). As the D14 strain seemed to have 
an important leverage on some relations (i.e. is a poten-
tial outlier), especially the ones involving cell speed, we 
also performed the analysis with that strain removed and 
still found 8 significant non-linear relations, and similar 
deviance explained across all 15 best-fitted models (See 
Additional file  1: Fig. S1). Overall, all models explained 
a limited proportion of the deviance, making the predic-
tions based on a single trait quite unreliable (Additional 
file  2, Additional file  3). We also fitted linear models to 
log-transformed data, since data transformations are typ-
ically used to deal with non-linear relations, but that did 
not result in a better model fit compared to GAMs (See 
Additional file 5: Fig. S3).

From the PCA analysis on the six traits, we chose to 
keep the first 3 dimensions (or Principal Components), 

because all their eigenvalues were greater than 1, and 
summed up to a total of 76.6% of the original data-
set inertia. According to the square cosine, the two 
hard traits were well represented by the first two PCA 
dimensions, capturing together 89% of the variation 
among strains in oxygen consumption and 77% in pop-
ulation growth rate (See Additional file  4: Table  S2). 
For both traits, dimension 3 did not provide additional 
representation. On the first two dimensions, the other 
traits were represented at: 78% for NGDR, 41% for 
speed, 62% for cell size and only 5% for cell shape. Due 
to the poor representation of cell speed and shape, we 
could not assess their relations with the two hard traits. 
These dimensions showed a weak correlation between 
cell size and oxygen consumption, and a strong cor-
relation between NGDR and population growth rate 
(Fig.  4A and B). Otherwise, the traits seemed rather 

Fig. 3  Pairwise relations among the six functional traits measured for the 40 T. thermophila strains. Each dot represents the average value of all 
replicates at the strain level, the blue line a linear model, and the red curve a GAM. Both are represented with their respective 95% confidence 
interval. Above every graph is displayed the deviance explained (D.exp) by each model. When displayed, the non-linear GAM is significantly better 
than the linear model (e.d.f. > 1). Otherwise, the non-linearity did not improve the model fit, both models remaining linear and identical (hence the 
same D.exp), and on the graph only the linear model is displayed
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independent from each other when plotted on the 
two first dimensions. To assess the relation between 
cell shape and speed, we plotted dimensions 1 and 3 
together to maximize their representation (See Addi-
tional file 4: Table S2). On this plot, only three variables 
reached a square cosine higher than 50% and thus can 
be confidently assessed: NGDR (64%), speed (63%) and 
cell shape (85%). Among those, none displayed strong 
relations with each other (Fig. 4C and D). In conclusion, 
the PCA did not show any significant relations between 
three or more traits. Furthermore, even if the data were 
summarized with only three dimensions, within that 
space each trait was showing little redundancy with the 
others, meaning that including more than one trait in 

the models aimed at predicting other traits would not 
improve the fit.

Discussion
Studies on functional diversity have encountered several 
challenges over the years [18, 51–53], such as measuring 
dozens of traits and choosing which traits to measure. In 
this study, we aimed to assess the relationship between 
several functional traits of a protozoan, T. thermophila, 
using a framework proposed by Hodgson et al. (1999) to 
deal with the challenge of measuring multiple traits, the 
soft/hard framework. Within this framework, one uses 
soft traits that are easy to measure (but not always the 
more meaningful in terms of ecological functionality) 
to predict hard traits that are functionally very desirable 

Fig. 4  PCA analysis performed on the six functional traits (averaged at the strain level) for the 40 T. thermophila strains. The left panels represent 
the distribution of the strains along dimensions 1 and 2 (A) and along dimensions 1 and 3 (C). The numbers in (A) and (C) stand for the labels of the 
strains. The right panels represent the associated correlation circles along the first and second dimensions (B) and the first and third dimensions (D). 
The arrows assess the representativity of the traits on the considered dimensions, with the closer the arrow is to the edge of the circle, the better 
the trait is represented. The functional traits are colored based on their measurement difficulty
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but difficult to obtain. The soft/hard framework assumes 
that the functional space can be reduced to a small num-
ber of traits, and so the presence of strong trade-offs or 
relations among traits. This is definitely an appealing 
framework that theoretically has the power to simplify 
the assessment of functional diversity, which might, in 
turn, be a key feature to understand the functioning of 
ecosystems. However, its utility clearly depends on how 
expected relations between traits are real and simple, 
because most of the statistical methods commonly used 
with this framework assume the relations between the 
traits to be monotonic and linear [54]. If this does not 
turn out to be true for many species, it might be the rea-
son for the mixed results of applying this framework as 
of today in functional ecology studies [55, 56]. Here we 
tested this with a study system, T. thermophila in micro-
cosms, for which knowledge is abundant enough to make 
informed predictions on correlations between a set of six 
functional traits, but also for which these predictions can 
be tested with good statistical power.

We detected several significant pairwise relations 
between the soft and hard traits, with over 60% of them 
being non-linear. Thus, the non-linearity in relations is 
a common phenomenon, which largely limited the abil-
ity to correctly conclude about the existence of relations 
between the traits using classical methods assuming sim-
ple linear relations, such as linear model and PCA. These 
results support the idea that, despite those methods being 
standard when it comes to detecting relations between 
variables, they should not be used without checking the 
linearity assumption first [54, 57, 58]. Still, even with a 
method that does not assume linearity (i.e. GAM), we 
could not find pairwise relations strong enough to allow 
reliable predictions of one trait using another. We sug-
gest two possible causes for such absence of “good” rela-
tions -i.e. which meet the requirements detailed above: 
(i) a form that allows prediction and (ii) sufficiently low 
standard deviation of parameters, both resulting in a high 
deviance explained by the model.

The first one is an absence of the expected relations 
between these functional traits in T. thermophila. In the-
ory, several phenomena can lead to a positive or negative 
relation between traits, like trade-off [59–61] (i.e. when 
one trait cannot increase without a decrease in another) 
or when traits are involved in the same function [62]. All 
of this limit the possibilities of trait association [63] and 
lead to a phenotype made of a whole suite of interrelated 
or coadapted traits, that one can define as the organism 
strategy [64]. At first sight, our data on T. thermophila 
fits this idea of strategy, with three dimensions repre-
senting more than 75% of the variability of six functional 
traits. However, a closer look at the PCA analysis does 
not show any clusters of more than two traits (Fig.  4A 

and C), with the link between those traits remaining 
weak, and the strains being scattered over the multi-
variate space (Fig.  4B and D). Even if the non-linearity 
sometimes improved the assessment of the link between 
traits, the GAM and the linear model both only displayed 
weak relations between traits, and again an absence of 
any cluster of more than two traits when we compared 
the models with each other. For example, the models 
using cell size, shape and speed as predictors explained 
between 20 and 40% of NGDR value; however, they were 
not good predictors of each other, despite all being linked 
to the same trait (i.e. NGDR). Thus, one could conclude 
that despite an important knowledge to express informed 
predictions about relations between traits, there is simply 
no straight and simple relations between the functional 
traits in our data. The fact that some of our informed pre-
dictions were already partly contradictory (Fig.  2) illus-
trates this complexity.

The second possible cause is the presence of factors 
that complexify the correct assessment of the relations 
between traits. In this paper, we focused on tackling the 
problem of the non-linearity between traits, since it is a 
basic assumption of statistical methods most often used 
to test for relations among variables [64–66]. We demon-
strated that taking into consideration this non-linearity 
can significantly improve the prediction of one trait from 
another (Fig. 3). However, other factors can also blur the 
relations between traits in the analysis, with for example 
the plasticity of the traits [62, 64], their phenology [64, 
67], the absence of a trait in the analysis [64], and the 
time scale considered [67]. Besides, these factors can also 
add up. Among those different examples, plasticity could 
have played a role in this study, since several traits of this 
species have been proven to be plastic [34, 46], even if we 
tried to control for it by standardizing the environment 
through the whole experimental process. In that case, the 
values of any functional trait could have varied among 
replicates, depending on (i) the trait considered, (ii) the 
magnitude of the differences in the experienced environ-
ment and (iii) the genetics of the strains. This variation 
of the trait values, induced by plasticity, might have loos-
ened the relation between traits, or introduced a delay for 
the change of value in one trait to catch up with the other 
plastic traits it is tied to. In that case, it would not mean 
that there are no relations between traits within the spe-
cies, but instead that they are blurred by some extra fac-
tors creating noise in our data.

Besides, this introduction of plasticity in the field of 
functional traits constitutes another reason for con-
sidering the non-linearity, since the relations between 
traits and environmental variables (i.e. reaction norms) 
are often non-linear (e.g. [34, 68]), and often follow a 
humped shape with an optimum, or a sigmoidal shape, 
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reflecting the existence of environmental thresholds 
beyond which the trait performance changes drastically 
[69]. These non-linear relations might be rather common 
in nature [54], as between environmental variables and 
demographic rates (e.g. emperor penguin adult survival 
and sea ice concentration [70], Eurasian Oystercatcher 
fecundity and resource availability [71], red kangaroo 
survival and rainfall [72]). It is likely that the non-linear 
relations among traits are also very frequent, and assess-
ing their prevalence across species is an avenue for future 
research. Importantly, should the commonness of non-
linear relations among traits and environmental vari-
ables be confirmed across a broader range of taxa and 
locations, this would imply that the use of non-linear 
statistical approaches instead of basic correlations and 
PCA are needed for reliable quantification of functional 
diversity. The tools to analyze such non-linear relations 
become recently available, for example the newly devel-
oped senlm R package [73].

Conclusions
Despite a set of informed predictions about expected 
relations between soft and hard life-history traits and a 
high statistical power resulting from a large number of 
T. thermophila strains and replicates, our study failed to 
reveal any relations between traits that would allow pre-
dicting one trait from another. However, this does not 
imply there is no relation between these traits in reality. 
It is possible that relations only appear or change in spe-
cific environmental conditions [55, 74] due to trait plas-
ticity and/or environmental impact on trade-offs [15]; for 
an effect of environmental conditions on trait relations 
in the species, see [34]. For example, if two traits rely on 
the same resources, which would be scarce in harsh con-
ditions, then investment choices have to be made by the 
organisms to invest in one trait at the expense of the other 
[63, 66], tightening the negative relation between traits. 
On the contrary, if there are enough resources available 
to invest in several traits (such as in our experiment with 
food ad  libitum), it might loosen the relation between 
those traits, making the use of the soft/hard framework 
more difficult. One should not assume that the relation-
ship between the traits will stay the same across the 
whole range of viable environmental conditions.

Our findings corroborate the idea that relying on soft 
traits that are simple and easy to measure as indirect 
proxies [75–77], may not always grasp correctly the hard 
traits which are directly linked to ecosystem function-
ing, if one does not know how soft and hard traits are 
related in first place. Considering the potential existence 
of non-linear relations may improve the ability to predict 
one trait by the other but also increases the complexity in 
calibrating the relation between the traits and precludes 

simple conclusions, such as “if the soft proxy increases, 
the hard trait should too”. Still, we believe that our study 
illustrates convincingly that one should not look for sim-
plicity at all costs [68], but more for a reasoned simplicity, 
which is backed up by the investigations of what short-
cuts could be taken to, for example, represent one func-
tional trait by the other as a proxy.

Methods
Culture conditions and experimental design
All strains were maintained, before and during the 
experiment, under standardized culture conditions that 
allow only clonal reproduction [78, 79]. This involved 
axenic liquid culture in a nutrient medium (consisting 
of 2% Proteose peptone and 0.2% yeast extract, diluted 
in ultrapure water), kept at constant 27  °C temperature 
under a 14:10 h light/dark cycle. The stability of culture 
conditions is an important requirement for both the 
experiment and the maintenance of the cultures since T. 
thermophila shows a high degree of plasticity when the 
environmental conditions change [23, 33, 34]. Culture 
stocks were renewed/transferred every seven days by 
inoculating a 2 mL sample of fresh medium with 20 μL 
of the old culture and maintained in 24-multiwell plates 
(ref: 662102, Greiner BioOne). All manipulations of 
axenic cultures were conducted under sterile conditions 
in a laminar flow hood (Ultrasafe 218 S, Faster).

The experimental design involved measuring the six 
traits of interest for the 40 strains with a number of rep-
licates that allowed reaching adequate statistical power 
for the analyses. The number of replicates was there-
fore a priori set to take into account the intrinsic error 
with which each trait can be measured in our micro-
cosm setup, different for each trait, and slightly boosted 
to compensate for the limited but existing risk of losing 
some replicates due to bacterial contamination of the 
culture or potential other technical problems: 18 for 
growth measurements (measured over 5  days); 10 for 
measuring both the morphology, movement (snapshot 
measures) and oxygen consumption (measured over 
2 h). For each strain, replicates each originated from dif-
ferent mother cultures, created from the stock culture 
three days before the experiment. This way of proceed-
ing ensured that the replicates reflected the natural vari-
ability within each strain. To detect bacterial and fungal 
contamination, which can put cells under stress and alter 
their traits, we ran contamination tests after each trait 
measurement. These contamination tests were done by 
inoculating a Petri Dish containing a nutrient medium 
(Bacto Tryptone 2.5 g, Yeast extract 1.25 g, Glucose 0.5 g, 
Bacto Agar 9  g) with a few drops of the experimental 
cultures; contamination was detected by the presence of 
some fungal or bacterial development after three days at 
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27  °C. Contaminated samples were discarded from the 
analyses. We first created mother cultures for each strain 
and replicate by putting 500 µL of the corresponding cul-
ture stock and 6 mL of fresh axenic medium in a 30 mL 
cell culture container (ref: 201170, Greiner BioOne). 
Then, each mother culture was placed horizontally to 
favor oxygen ingress into the medium, and thus popula-
tion growth. After a 3-day growth period, the measure of 
the six traits was performed on each replicate according 
to the protocols detailed below.

Trait measurement
Morphology and movement traits were measured from 
digital images and videos recorded under a dark field 
microscope [47, 80] by placing two 10 µL samples from 
each mother culture into individual chambers on count-
ing slides (ref: 630-2048, VWR). We took one picture 
for each chamber and one 20  s video of one of the two 
chambers, randomly chosen. For all identified cells from 
the two pictures, cell size (its area in µm2) and shape (i.e. 
aspect ratio: major/minor ratio of the two axes of a fit-
ted ellipse; minimum is 1 for round cells, > 1 for more 
elongated cells) were quantified [80]. From the video, we 
estimated cell speed (in μm/s) and trajectory tortuos-
ity (as net to gross displacement ratio, NGDR) using the 
BEMOVI R-package [81]. NGDR is computed as a ratio 
of the net displacement (i.e. straight line between the 
starting and the ending position) over the gross displace-
ment (i.e. the total traveled distance during the meas-
urement), meaning NGRD is 1 for a perfectly straight 
trajectory and < 1 for more tortuous ones.

Oxygen consumption was measured by quantifying the 
decay in dissolved oxygen concentration in a sealed high-
density culture. Cell abundance was quantified in each 
mother culture (i.e. one replicate of a given strain) using 
a two-step process. In a first step, by measuring opti-
cal density at 550  nm (Genesys 20 spectrophotometer, 
Thermo Fisher Scientific), we were able to estimate the 
absorbance of the culture. In a second step, we combined 
that absorbance along with other factors (e.g. cell size) 
obtained from the pictures taken previously to estimate 
the cell abundance in the culture [47, 80]. This allowed 
us to standardize the experimental cultures at 1.5 mL and 
200,000 cells/mL through dilution. Then, the experimen-
tal cultures were loaded into a 24-multiwell plate con-
taining an individual oxygen sensor in each well (Oxodish 
OD24, PreSens). This plate was placed on a reader device 
(SDR SensorDish Reader, PreSens), and its 24 wells were 
sealed by covering the plate (without its lid) with a sili-
cone mat and pressing the whole system (reader, plate 
and mat) between two plastic plates screwed together. As 
soon as the plate was sealed, the oxygen stopped flowing 
into the well, and we started recording the concentration 

of dissolved oxygen (in mg/L) within the experimental 
cultures every 2 min for 2 h. The measure of oxygen con-
centration using this technique is very sensitive to tem-
perature, so the temperature was kept at precisely 27 °C 
during all steps, from the mother cultures to the whole 
measurement phase, and the temperature was recorded 
together with each measurement of oxygen concen-
tration as a further check. After a short lag period, the 
recorded oxygen concentration started a linear decrease 
as the cells consumed oxygen, until reaching an asymp-
tote below 20% oxygen saturation when almost all of the 
oxygen was consumed. As the trait quantifying oxygen 
consumption, we used the slope (in mg/L*min) of the 
linear decrease estimated using linear regression in the R 
software v3.6.1 [82].

To measure population growth rate, we created 2  mL 
experimental cultures by diluting each mother culture 
(i.e. one replicate of a given strain) in its stationary phase 
by a factor of five, to allow exponential growth; experi-
mental cultures were placed in 24-multiwell plates (ref: 
662102, Greiner BioOne). Cell density was estimated 
every two hours over five days using optical density at 
550 nm (Synergy H1 microplate reader with robotic plate 
feeder, Biotek). The growth rate µ of each experimental 
culture was estimated as the slope of the optical density 
increase over time in its linear phase using the gcfit func-
tion (grofit R package [83]).

Statistical analyses
To explore relations between the six traits, we averaged 
all replicates at the strain level because we were interested 
in functional traits exhibited by the strains, considered as 
the biological unit of replication, without integrating the 
within-strain variation between the replicates. This also 
compensated for the unequal number of replicates for 
the six traits. We were left with 51 discarded out of 721 
replicates for growth and 18 discarded out of 400 repli-
cates for morphology/movement/oxygen consumption, 
with a minimum replicate per strain of 12 for the growth 
and 8 for the other traits. All statistical analyses were per-
formed on this set of 40 means at the strain level for each 
of the six traits. Morphology and movement traits, meas-
ured at the cell level, were in addition first averaged for 
every replicate to give the same weight to each replicate 
estimate irrespective of the number of cells identified on 
pictures and videos. Then, we performed two comple-
mentary analyses on our results.

In a first analysis, we explored the existence and lin-
earity of pairwise relations between functional traits, 
by comparing a linear model (glm function, Gaussian 
distribution and identity link [82]) with a GAM model 
(gam function in mgcv R package, smoother estima-
tion method: REML [84]). GAM are an extension of 
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linear models that add nonparametric smooth func-
tions to a model [85]. They are therefore used here as 
a test able to capture nonlinear patterns that a clas-
sic linear model would miss. Adding an extra bending 
point (or knot) in the GAM allows for a better fit (as 
adding an extra parameter in a linear model) but comes 
with a penalty, meaning that if the bending does not 
significantly improve the fit to the data (increasing the 
deviance explained), it will not be retained. The devi-
ance explained by a model can be used to assess how 
well the model fits the data. To assess whether the non-
linear relations fit the data better than the linear one we 
used the effective degree of freedom (e.d.f ) provided by 
the GAM. Any e.d.f value above 1 indicates a signifi-
cant non-linear relationship, and the higher the value, 
the more non-linear is the relation. We also explored 
whether fitting the linear model to prior transformed 
data would result in a better model fit. For this we have 
fitted linear models (Gaussian distribution and iden-
tity link) to log-transformed data, and compared the 
deviance explained by these models with the deviance 
explained by respective GAMs on non-transformed 
data.

In a second analysis, to examine the global dimen-
sionality and test if the predictions of the models could 
be improved by combining several traits together, we 
conducted a principal component analysis (PCA) on 
standardized data (FactoMineR [86] and factoextra [87] 
R packages). To assess the individual representativeness 
of our traits on the dimensions, we used the squared 
cosine [57]. A high squared cosine indicates a good rep-
resentation of the variable on the dimension under con-
sideration. If a variable is perfectly represented by just 
two dimensions, the sum of squared cosine on these two 
axes is equal to 1, thus if we plot these two dimensions, 
the variable will be positioned directly on the correla-
tion circle. Since our main goal was to study the relations 
between the hard and the soft traits, we used the square 
cosine to identify which dimensions to plot to best reflect 
the relations between our traits. However, unlike GAM, 
the main weakness of PCA here is that it needs simple 
linear relations between traits for the dimensionality 
reduction to be meaningful, hence the complementarity 
of the two approaches.
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Additional file 1. Supplementary Figure 1. Pairwise relationships 
among the six functional traits measured for the 39 T.thermophila strains, 
without the D14 which was suspected to be an outlier. Each dot repre‑
sents the average valueof all replicates at the strain level, the blue line a 
linear regression, and the red curve a GAM. Both are representedwith their 

respective 95% confident interval. Above every graph is displayed the 
deviance explained (D.exp) byeach model. When outlined, the non-linear 
GAM is significantly better than the linear model (e.d.f. > 1), otherwisethe 
non-linearity does not improve the model’s fit and the GAM is behaving 
exactly as the linear model, hence thesame D.exp.

Additional file 2. Supplementary Figure 2. PCA analysis performed on 
the six functional traits (averaged at the strain level) for39 T. thermophila 
strains, without the D14 which was suspected to be an outlier. The left 
panel represent thedistribution of the strains along dimensions 1 and 2 (A) 
and along dimensions 1 and 3 (C). The numbers stand forthe labels of the 
strains. The right panel represent the associated correlation circles along 
the first and seconddimensions (B) and the first and third dimensions (D). 
The functional traits are colored based on their measurementdifficulty.

Additional file 3. Supplementary Table 1. Output of the Generalized 
Additive Models (G.A.M.) performed on relationshipsbetween the different 
traits of T.thermophila. The below diagonal part of the figure with white 
boxes correspondsto GAMs performed on the values of all 40 strains, 
while the above diagonal part with grey boxes corresponds toGAMs per‑
formed on only 39 strains, thus considering the strain D14 as an outlier.

Additional file 4. Supplementary Table 2. The square cosine of the 
different traits on the first three dimensions of the PCA. Thesquare cosine 
indicates how well a variable is represented on a considered dimension, 
and goes from 0 (the variableis not represented at all on that dimension) 
to 1 (the variable is completely represented on that dimension).

Additional file 5. Supplementary Figure 3. On the bottom left panel are 
displayed pairwise relationships among the six functionaltraits measured 
for the 40 T. thermophila strains. Each dot represents the log of the average 
value of all replicatesat the strain level, on which we fitted a linear regres‑
sion, its predictions (together with 95% confidence interval)are shown in 
blue. Above every graph is displayed the deviance explained (D.exp) of 
the GLM on the logtransformeddata (in blue) and the GAM on the data 
before log transformation (in red) for comparison. The inseton the top 
right displays a boxplot of the deviance explained by those two methods, 
across all fitted pairwiserelationships, for comparison. On average, the 
GAM performed better.

Acknowledgements
Not applicable.

Author contributions
NAS, VR and NS conceived and designed research questions and the method‑
ology for the experiment; NAS collected the data, using protocols developed 
by NAS, VT and NS; NAS and VR analyzed the data with contributions from 
TM-J and NS; NAS led the writing on the manuscript, with substantial con‑
tributions from VR, TM-J and NS. All the authors contributed critically to the 
drafts and gave final approval for publication. All authors read and approved 
the final manuscript.

Funding
The equipment used in that study was supported by an equipment grant 
from F.R.S.-FNRS (U.N035.16). N.A.S was supported by a PhD grant from UCLou‑
vain (FSR) and by a PhD grant from FRIA. T.M.-J. was supported by a Move-In-
Louvain Marie Curie Action postdoctoral fellowship. V.T. was supported by a 
PhD grant from UCLouvain (ARC 10-15/31) and by a PhD grant from FRIA. N.S. 
is Senior Research Associate of the F.R.S.-FNRS; he also acknowledges financial 
support from UCLouvain (ARC 18-23/095: DIVERCE). This paper is contribution 
BRC 401 of the Biodiversity Research Centre at UCLouvain.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

https://doi.org/10.1186/s12862-022-02102-w
https://doi.org/10.1186/s12862-022-02102-w


Page 11 of 12Svendsen et al. BMC Ecology and Evolution            (2023) 23:1 	

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 9 June 2022   Accepted: 26 December 2022

References
	1.	 Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, 

et al. Biodiversity loss and its impact on humanity. Nature [Internet]. 
2012;486(7401):59–67. https://​doi.​org/​10.​1038/​natur​e11373.

	2.	 Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. 
Effects of biodiversity on ecosystem functioning: a consensus of current 
knowledge. Ecol Monogr [Internet]. 2005;75(1):3–35. https://​doi.​org/​10.​
1890/​04-​0922.

	3.	 Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, 
et al. Quantifying the evidence for biodiversity effects on ecosystem 
functioning and services. Ecol Lett [Internet]. 2006;9(10):1146–56. https://​
doi.​org/​10.​1111/j.​1461-​0248.​2006.​00963.x.

	4.	 Balvanera P, Siddique I, Dee L, Paquette A, Isbell F, Gonzalez A, et al. Link‑
ing biodiversity and ecosystem services: current uncertainties and the 
necessary next steps. Bioscience [Internet]. 2014;64(1):49–57. https://​doi.​
org/​10.​1093/​biosci/​bit003.

	5.	 Cardinale BJ, Srivastava DS, Emmett Duffy J, Wright JP, Downing AL, 
Sankaran M, et al. Effects of biodiversity on the functioning of trophic 
groups and ecosystems. Nature [Internet]. 2006;443(7114):989–92. 
https://​doi.​org/​10.​1038/​natur​e05202.

	6.	 Reiss J, Bridle JR, Montoya JM, Woodward G. Emerging horizons in biodi‑
versity and ecosystem functioning research. Trends Ecol Evol [Internet]. 
2009;24(9):505–14.

	7.	 Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional 
diversity and the maintenance of ecological processes and services. J 
Appl Ecol [Internet]. 2011;48(5):1079–87. https://​doi.​org/​10.​1111/j.​1365-​
2664.​2011.​02048.x.

	8.	 Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, et al. Let the 
concept of trait be functional! Oikos. 2007;116(5):882–92.

	9.	 Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, 
et al. Functional traits, the phylogeny of function, and ecosystem service 
vulnerability. Ecol Evol [Internet]. 2013;3(9):2958–75. https://​doi.​org/​10.​
1002/​ece3.​601.

	10.	 Luck GW, Lavorel S, Mcintyre S, Lumb K. Improving the application of 
vertebrate trait-based frameworks to the study of ecosystem services. J 
Anim Ecol. 2012;81(5):1065–76.

	11.	 Lavorel S, Storkey J, Bardgett RD, De Bello F, Berg MP, Le Roux X, et al. 
A novel framework for linking functional diversity of plants with other 
trophic levels for the quantification of ecosystem services. J Veg Sci. 
2013;24(5):942–8.

	12.	 Lavorel S, Grigulis K. How fundamental plant functional trait relation‑
ships scale-up to trade-offs and synergies in ecosystem services. J Ecol. 
2012;100(1):128–40.

	13.	 Bolnick DI, Amarasekare P, Araujo MS, Burger R, Levine JM, Novak M, et al. 
Why intraspecific trait variation matters in community ecology. Trends 
Ecol Evol. 2011;26(4):183–92.

	14.	 Stump SM, Song C, Saavedra S, Levine JM, Vasseur DA. Synthesizing 
the effects of individual-level variation on coexistence. Ecol Monogr. 
2022;92(1):1–25.

	15.	 Paine CET, Deasey A, Duthie AB. Towards the general mechanistic predic‑
tion of community dynamics. Funct Ecol. 2018;32(7):1681–92.

	16.	 Zheng Z, Zeng Y, Schneider FD, Zhao Y, Zhao D, Schmid B, et al. Mapping 
functional diversity using individual tree-based morphological and 
physiological traits in a subtropical forest. Remote Sens Environ [Internet]. 
2021;252:112170. https://​doi.​org/​10.​1016/j.​rse.​2020.​112170.

	17.	 McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecol‑
ogy from functional traits. Trends Ecol Evol. 2006;21(4):178–85.

	18.	 Nock CA, Vogt RJ, Beisner BE. Functional Traits. In: eLS [Internet]. Chich‑
ester, UK: John Wiley & Sons, Ltd; 2016. p. 1–8. https://​doi.​org/​10.​1002/​
97804​70015​902.​a0026​282.

	19.	 Weiher E, Werf A, Thompson K, Roderick M, Garnier E, Eriksson O. Chal‑
lenging Theophrastus: a common core list of plant traits for functional 
ecology. J Veg Sci [Internet]. 1999;10(5):609–20. https://​doi.​org/​10.​2307/​
32370​76.

	20.	 Bartomeus I, Gravel D, Tylianakis JM, Aizen MA, Dickie IA, Bernard-Verdier 
M. A common framework for identifying linkage rules across different 
types of interactions. Funct Ecol. 2016;30(12):1894–903.

	21.	 Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, 
et al. A handbook of protocols for standardised and easy measurement of 
plant functional traits worldwide. Aust J Bot [Internet]. 2003;51(4):335.

	22.	 Collins K, Gorovsky MA. Tetrahymena thermophila. Curr Biol [Internet]. 
2005;15(9):R317–8.

	23.	 Ormsbee RA. The normal growth and respiration of Tetrahymena geleii. 
Biol Bull [Internet]. 1942;82(3):423–37. https://​doi.​org/​10.​2307/​15379​88.

	24.	 Collins K. Tetrahymena thermophila. In: Collins K, editor. Methods. New 
York: Academic Press; 2012. p. 1–452.

	25.	 Manners DJ, Ryley JF. Studies on the metabolism of the Protozoa. 2. The 
glycogen of the ciliate Tetrahymena pyriformis (Glaucoma piriformis). 
Biochem J. 1952;52(3):480–2.

	26.	 Blum JJ. Metabolic pathways in Tetrahymena. Biol Chem. 
1972;247(16):5199–209.

	27.	 Blum JJ. Effect of AMP and related compounds on glycogen content 
ofTetrahymena. J Cell Physiol [Internet]. 1972;80(3):443–52.

	28.	 Levy MR, Scherbaum OH. Glyconeogenesis in Growing and Non-
growing Cultures of Tetrahymena pyriformis. J Gen Microbiol [Internet]. 
1965;38(2):221–30. https://​doi.​org/​10.​1099/​00221​287-​38-2-​221.

	29.	 Elliott AM, Hayes RE. Mating types in tetrahymena. Biol Bull [Internet]. 
1953;105(2):269–84.

	30.	 Doerder FP. Abandoning sex: multiple origins of asexuality in the ciliate 
Tetrahymena. BMC Evol Biol [Internet]. 2014;14(1):112.

	31.	 Cervantes MD, Hamilton EP, Xiong J, Lawson MJ, Yuan D, Hadjithomas 
M, et al. Selecting one of several mating types through gene segment 
joining and deletion in tetrahymena thermophila. PLoS Biol [Internet]. 
2013;11(3):e1001518. https://​doi.​org/​10.​1371/​journ​al.​pbio.​10015​18.

	32.	 Ferracci J, Ueno H, Numayama-Tsuruta K, Imai Y, Yamaguchi T, Ishikawa 
T. Entrapment of ciliates at the water-air interface. PLoS One [Internet]. 
2013;8(10):e75238. https://​doi.​org/​10.​1371/​journ​al.​pone.​00752​38.

	33.	 Ishikawa T. Swimming of ciliates under geometric constraints. J Appl 
Phys. 2019;125(20).

	34.	 Morel-Journel T, Thuillier V, Pennekamp F, Laurent E, Legrand D, Chaine 
AS, et al. A multidimensional approach to the expression of pheno‑
typic plasticity. Funct Ecol. 2020;34(11):2338–49.

	35.	 Raugi GJ, Liang T, Blum JJ. Effect of oxygen on the regulation of 
intermediate metabolism in Tetrahymena. J Biol Chem [Internet]. 
1975;250(2):445–60.

	36.	 Fronhofer EA, Altermatt F. Eco-evolutionary feedbacks during experi‑
mental range expansions. Nat Commun [Internet]. 2015;6(1):6844.

	37.	 Fronhofer EA, Gut S, Altermatt F. Evolution of density-dependent 
movement during experimental range expansions. J Evol Biol [Inter‑
net]. 2017;30(12):2165–76. https://​doi.​org/​10.​1111/​jeb.​13182.

	38.	 Fenchel T. Protozoa and oxygen. Acta Protozool. 2014;53(1):3–12.
	39.	 Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, et al. Biodi‑

versity effects on ecosystem functioning change along environmental 
stress gradients. Ecol Lett [Internet]. 2012;15(12):1397–405.

	40.	 Fischer FM, Wright AJ, Eisenhauer N, Ebeling A, Roscher C, Wagg C, 
et al. Plant species richness and functional traits affect community 
stability after a flood event. Philos Trans R Soc B Biol Sci [Internet]. 
2016;371(1694):20150276. https://​doi.​org/​10.​1098/​rstb.​2015.​0276.

	41.	 Shipley B, Vile D, Garnier E. From plant traits to plant communities: a 
statistical mechanistic approach to biodiversity. Science [Internet]. 
2006;314(5800):812–4. https://​doi.​org/​10.​1126/​scien​ce.​11325​95.

	42.	 Viaene KPJ, De Laender F, Van den Brink PJ, Janssen CR. Using additive 
modelling to quantify the effect of chemicals on phytoplankton diver‑
sity and biomass. Sci Total Environ [Internet]. 2013;2013(449):71–80. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2013.​01.​046.

	43.	 Kersting K, van den Brink PJ. Effects of the insecticide Dursban®4e 
(active ingredient chlorpyrifos) in outdoor experimental ditches: 

https://doi.org/10.1038/nature11373
https://doi.org/10.1890/04-0922
https://doi.org/10.1890/04-0922
https://doi.org/10.1111/j.1461-0248.2006.00963.x
https://doi.org/10.1111/j.1461-0248.2006.00963.x
https://doi.org/10.1093/biosci/bit003
https://doi.org/10.1093/biosci/bit003
https://doi.org/10.1038/nature05202
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1002/ece3.601
https://doi.org/10.1002/ece3.601
https://doi.org/10.1016/j.rse.2020.112170
https://doi.org/10.1002/9780470015902.a0026282
https://doi.org/10.1002/9780470015902.a0026282
https://doi.org/10.2307/3237076
https://doi.org/10.2307/3237076
https://doi.org/10.2307/1537988
https://doi.org/10.1099/00221287-38-2-221
https://doi.org/10.1371/journal.pbio.1001518
https://doi.org/10.1371/journal.pone.0075238
https://doi.org/10.1111/jeb.13182
https://doi.org/10.1098/rstb.2015.0276
https://doi.org/10.1126/science.1132595
https://doi.org/10.1016/j.scitotenv.2013.01.046


Page 12 of 12Svendsen et al. BMC Ecology and Evolution            (2023) 23:1 

responses of ecosystem metabolism. Environ Toxicol Chem [Internet]. 
1997;16(2):251–9. https://​doi.​org/​10.​1002/​etc.​56201​60222.

	44.	 Mcmahon TA, Halstead NT, Johnson S, Raffel TR, Romansic JM, Crum‑
rine PW, et al. Fungicide-induced declines of freshwater biodiversity 
modify ecosystem functions and services. Ecol Lett. 2012;15(7):714–22.

	45.	 Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K. Allocating C-S-R 
plant functional types: a soft approach to a hard problem. Oikos [Inter‑
net]. 1999;85(2):282.

	46.	 Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N. Dispersal propen‑
sity in tetrahymena thermophila ciliates-a reaction norm perspective. 
Evolution [Internet]. 2014. https://​doi.​org/​10.​1111/​evo.​12428.

	47.	 Pennekamp F. Swimming with ciliates—dispersal and movement ecol‑
ogy of Tetrahymena thermophila. Vol. PhD. 2014.

	48.	 Fjerdingstad EJ, Schtickzelle N, Manhes P, Gutierrez A, Clobert J. Evolu‑
tion of dispersal and life history strategies—tetrahymena ciliates. BMC 
Evol Biol [Internet]. 2007;7(1):133.

	49.	 Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J. Kin-based 
recognition and social aggregation in a ciliate. Evolution [Internet]. 
2009;64–5:1290–300. https://​doi.​org/​10.​1111/j.​1558-​5646.​2009.​00902.x.

	50.	 Schtickzelle N, Fjerdingstad EJ, Chaine A, Clobert J. Cooperative social 
clusters are not destroyed by dispersal in a ciliate. BMC Evol Biol [Inter‑
net]. 2009;9(1):251.

	51.	 Mlambo MC. Not all traits are ‘functional’: insights from taxonomy and 
biodiversity-ecosystem functioning research. Biodivers Conserv [Inter‑
net]. 2014;23(3):781–90. https://​doi.​org/​10.​1007/​s10531-​014-​0618-5.

	52.	 Mouillot D, Mason WHN, Dumay O, Wilson JB. Functional regular‑
ity: a neglected aspect of functional diversity. Oecologia [Internet]. 
2005;142(3):353–9. https://​doi.​org/​10.​1007/​s00442-​004-​1744-7.

	53.	 Petchey OL, Gaston KJ. Functional diversity: back to basics and looking 
forward. Ecol Lett [Internet]. 2006;9(6):741–58. https://​doi.​org/​10.​1111/j.​
1461-​0248.​2006.​00924.x.

	54.	 Arnold PA, Kruuk LEB, Nicotra AB. How to analyse plant phenotypic 
plasticity in response to a changing climate. New Phytol [Internet]. 
2019;222(3):1235–41.

	55.	 Yang J, Cao M, Swenson NG. Why functional traits do not predict tree 
demographic rates. Trends Ecol Evol [Internet]. 2018;33(5):326–36.

	56.	 Laughlin DC, Gremer JR, Adler PB, Mitchell RM, Moore MM. The 
net effect of functional traits on fitness. Trends Ecol Evol [Internet]. 
2020;35(11):1037–47.

	57.	 Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev 
Comput Stat. 2010;2(4):433–59.

	58.	 Onwuegbuzie AJ, Daniel LG. Uses and misuses of the correlation coef‑
ficient. Mid-South Educ Educ Res Assoc [Internet]. 1999;(7):58. 

	59.	 Alexander RM. The ideal and the feasible: physical constraints on evolu‑
tion. Biol J Linn Soc [Internet]. 1985;26(4):345–58. https://​doi.​org/​10.​
1111/j.​1095-​8312.​1985.​tb020​46.x.

	60.	 Bennett AF, Lenski RE. An experimental test of evolutionary trade-
offs during temperature adaptation. Proc Natl Acad Sci [Internet]. 
2007;104(Supplement 1):8649–54.

	61.	 Garland T. Trade-offs. Curr Biol [Internet]. 2014;24(2):R60–1. https://​doi.​
org/​10.​1016/j.​cub.​2013.​11.​036.

	62.	 Wieczynski DJ, Singla P, Doan A, Singleton A, Han Z-Y, Votzke S, et al. 
Linking species traits and demography to explain complex temperature 
responses across levels of organization. Proc Natl Acad Sci [Internet]. 
2021. https://​doi.​org/​10.​1073/​pnas.​21048​63118.

	63.	 Bennett AE, Bever JD. Trade-offs between arbuscular mycorrhizal fungal 
competitive ability and host growth promotion in Plantago lanceolata. 
Oecologia. 2009;160(4):807–16.

	64.	 Nylin S, Wiklund C, Wiklund P-O, Garcia-Barros E. Abscence of trade-off 
between sexual size dimorphism and early emergence in a buttefly. Ecol‑
ogy. 1993;74(5):1414–27.

	65.	 Brown GE, Smith RJF. Foraging trade-offs in fathead minnows (Pime‑
phales promelas, Osteichthyes, Cyprinidae): acquired predator 
recognition in the absence of an alarm response. Ethology [Internet]. 
1996;102(5):776–85. https://​doi.​org/​10.​1111/j.​1439-​0310.​1996.​tb011​66.x.

	66.	 Dorken ME, Van Drunen WE. Life-history trade-offs promote the evolution 
of dioecy. J Evol Biol. 2018;31(9):1405–12.

	67.	 Van Drunen WE, Dorken ME. Trade-offs between clonal and sexual repro‑
duction in sagittaria latifolia (alismataceae) scale up to affect the fitness 
of entire clones. New Phytol. 2012;196(2):606–16.

	68.	 Rocha FB, Klaczko LB. Connecting the dots of nonlinear reaction norms 
unravels the threads of genotype-environment interaction in drosophila. 
Evolution (N Y). 2012;66(11):3404–16.

	69.	 Saatkamp A, Römermann C, Dutoit T. Plant functional traits show non-
linear response to grazing. Folia Geobot [Internet]. 2010;45(3):239–52. 
https://​doi.​org/​10.​1007/​s12224-​010-​9069-2.

	70.	 Jenouvrier S, Holland M, Stroeve J, Barbraud C, Weimerskirch H, Serreze 
M, et al. Effects of climate change on an emperor penguin population: 
analysis of coupled demographic and climate models. Glob Chang Biol. 
2012;18(9):2756–70.

	71.	 Van De Pol M, Vindenes Y, Sæther BE, Engen S, Ens BJ, Oosterbeek K, et al. 
Effects of climate change and variability on population dynamics in a 
long-lived shorebird. Ecology. 2010;91(4):1192–204.

	72.	 Jonzén N, Pople T, Knape J, Sköld M. Stochastic demography and 
population dynamics in the red kangaroo Macropus rufus. J Anim Ecol. 
2010;79(1):109–16.

	73.	 Anderson MJ, Walsh DCI, Sweatman WL, Punnett AJ. Non-linear models 
of species’ responses to environmental and spatial gradients. Ecol Lett 
[Internet]. 2022;25(12):2739–52. https://​doi.​org/​10.​1111/​ele.​14121.

	74.	 Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó. Functional traits 
and phenotypic plasticity modulate species coexistence across contrast‑
ing climatic conditions. Nat Commun [Internet]. 2019;10(1):2555. https://​
doi.​org/​10.​1038/​s41467-​019-​10453-0.

	75.	 Boyer AG, Jetz W. Extinctions and the loss of ecological function in island 
bird communities. Glob Ecol Biogeogr [Internet]. 2014;23(6):679–88. 
https://​doi.​org/​10.​1111/​geb.​12147.

	76.	 Laughlin DC, Messier J. Fitness of multidimensional phenotypes in 
dynamic adaptive landscapes. Trends Ecol Evol [Internet]. 2015;30(8):487–
96. https://​doi.​org/​10.​1016/j.​tree.​2015.​06.​003.

	77.	 Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. 
Functional trait niches of North American lotic insects: traits-based 
ecological applications in light of phylogenetic relationships. J North Am 
Benthol Soc [Internet]. 2006;25(4):730–55. https://​doi.​org/​10.​1899/​0887-​
3593(2006)​025[0730:​FTNONA]​2.0.​CO;2.

	78.	 Bruns PJ, Brussard T. Pair formation in tetrahymena pyriformis, an induc‑
ible developmental system. J Exp Zool. 1974;188(3):337–44.

	79.	 Wellnitz WR, Bruns PJ. The pre-pairing events in Tetrahymena thermoph‑
ila. Exp Cell Res [Internet]. 1979;119(1):175–80.

	80.	 Pennekamp F, Schtickzelle N. Implementing image analysis in laboratory-
based experimental systems for ecology and evolution: a hands-on 
guide. Methods Ecol Evol [Internet]. 2013;4(5):483–92. https://​doi.​org/​10.​
1111/​2041-​210X.​12036.

	81.	 Pennekamp F, Schtickzelle N, Petchey OL. BEMOVI, software for extract‑
ing behavior and morphology from videos, illustrated with analyses of 
microbes. Ecol Evol [Internet]. 2015;5(13):2584–95. Available from: http://​
www.​scopus.​com/​inward/​record.​url?​eid=2-​s2.0-​84937​02358​5&​partn​
erID=​tZOtx​3y1.

	82.	 R Core Team. R: A Language and Environment for Statistical Computing. 
2021; Available from: https://​www.r-​proje​ct.​org/.

	83.	 Kahm M, Hasenbrink G, Lichtenberg-Fraté H, Ludwig J, Kschis‑
cho M. Grofit: fitting biological growth curves with R. J Stat Softw. 
2010;33(7):1–21.

	84.	 Wood S. Generalized additive models: an introduction with R. 2nd ed. 
Chapman and Hall/CRC; 2017.

	85.	 Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Things are not Always 
Linear; Additive Modelling. In 2009. p. 35–69. https://​doi.​org/​10.​1007/​
978-0-​387-​87458-6_3.

	86.	 Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. 
J Stat Softw. 2008;25(1):1–18.

	87.	 Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of 
Multivariate Data Analyses. 2020; Available from: https://​cran.r-​proje​ct.​
org/​packa​ge=​facto​extra.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1002/etc.5620160222
https://doi.org/10.1111/evo.12428
https://doi.org/10.1111/j.1558-5646.2009.00902.x
https://doi.org/10.1007/s10531-014-0618-5
https://doi.org/10.1007/s00442-004-1744-7
https://doi.org/10.1111/j.1461-0248.2006.00924.x
https://doi.org/10.1111/j.1461-0248.2006.00924.x
https://doi.org/10.1111/j.1095-8312.1985.tb02046.x
https://doi.org/10.1111/j.1095-8312.1985.tb02046.x
https://doi.org/10.1016/j.cub.2013.11.036
https://doi.org/10.1016/j.cub.2013.11.036
https://doi.org/10.1073/pnas.2104863118
https://doi.org/10.1111/j.1439-0310.1996.tb01166.x
https://doi.org/10.1007/s12224-010-9069-2
https://doi.org/10.1111/ele.14121
https://doi.org/10.1038/s41467-019-10453-0
https://doi.org/10.1038/s41467-019-10453-0
https://doi.org/10.1111/geb.12147
https://doi.org/10.1016/j.tree.2015.06.003
https://doi.org/10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
https://doi.org/10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
https://doi.org/10.1111/2041-210X.12036
https://doi.org/10.1111/2041-210X.12036
http://www.scopus.com/inward/record.url?eid=2-s2.0-84937023585&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84937023585&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84937023585&partnerID=tZOtx3y1
https://www.r-project.org/
https://doi.org/10.1007/978-0-387-87458-6_3
https://doi.org/10.1007/978-0-387-87458-6_3
https://cran.r-project.org/package=factoextra
https://cran.r-project.org/package=factoextra

	Complexity vs linearity: relations between functional traits in a heterotrophic protist
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Discussion
	Conclusions
	Methods
	Culture conditions and experimental design
	Trait measurement
	Statistical analyses

	Acknowledgements
	References


