
FAIR Data Publishing with Apache Maven

Claus Stadler1,2[0000−0001−9948−6458], Simon Bin1, and
Lorenz Bühmann1[0000−0002−1023−9993]

1 Institute for Applied Informatics, Gördelerring 9, Leipzig, Germany, D-04109
2 Leipzig University, Leipzig, Germany, D-04109

cstadler@informatik.uni-leipzig.de

Abstract. Design and management of a large number of data processing
pipelines is a challenging task. Analogous to DevOps, the term DataOps
was coined to capture all the practices, processes and technologies related
to the management of the life cycle of data artifacts, including the tracking
of provenance. The solution space has been constantly increasing with
novel approaches and tools becoming available, however with – for instance
– more than 100 workflow engines available it is by far no longer feasible to
assess them all. Semantic Web technology features many aspects relevant
to DataOps, such as interlinkability of resources, DCAT for building
decentral data catalogs, PROV-O for provenance descriptions, VoID for
describing statistics about the used classes and properties. Yet, there are
only few approaches that establish a coherent and holistic connection
between these elements. In this work, we perform an in-depth analysis
of the Apache Maven build system and its surrounding ecosystem for
how they can be leveraged for automated data processing, publishing and
RDF metadata generation with provenance tracking. We present three
novel Maven plugins for SPARQL and RML execution, the creation of an
RDF database file, and uploading artifacts to a CKAN instance. Finally,
we present a prototype architecture where a Maven deployment of a
geographic RDF dataset results in the automated generation of DCAT,
PROV-O and VoID metadata such that datasets can be browsed on a
map and filtered e.g. by the used classes and properties. All our resources
are freely available as Open Source.

Keywords: FAIR · DataOps · Data Management · Semantic Web ·
Apache Maven · Reproducible

1 Introduction

The vision of the Semantic Web is to establish a uniform machine readable
infrastructure for data. Key technologies include: RDF3 as a uniform data model to
represent information about any domain, RDFS4 and OWL5 for schema definition

3 https://www.w3.org/TR/rdf11-concepts/
4 https://www.w3.org/TR/rdf11-schema/
5 https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-schema/
https://www.w3.org/TR/owl2-overview/


2 Stadler et al. (2024) FAIR Data Publishing with Apache Maven

and reasoning, SHACL6 and ShEx7 for validation, and SPARQL8 for querying.
Foundational RDF vocabularies include: VoID9 for statistical information about
dataset content, DCAT10 for decentral data (and service) catalogs, P-Plan11 for
describing execution plans, PROV-O12 for provenance.

The FAIR principles [11] provide a conceptual framework for designing data
publishing processes in a comprehensible way that makes the involved artifacts
findable, accessible, interoperable and reusable. As an example, while mapping
non-RDF data with RML13 (and variants such as YARRML14) is common, the
tracking of which input CSV artifact was converted by which RML mapping to
which output RDF file is not. One possible approach to address this problem
is the Common Workflow Language (CWL)[3]. One motivation for the creation
of CWL is that by now there are dozens of workflow engines15 and hundreds of
data analysis pipeline systems16 with hardly any interoperability, so there is a
strong need for a unifying language. However, despite the availability of all these
solutions for particular problems, approaches for publishing data in an automated
way not only according to the FAIR principles but also in reproducible ways are
still uncommon.

Apache Maven17 excels at the following aspects w.r.t. the management of
artifacts: (1) findability of artifacts through repository managers, especially
Maven Central18, (2) easy accessibility of artifacts via plain HTTP(S) downloads,
(3) interoperability on the repository level with various tools (such as Gradle,
Ivy, SBT) and (4) reusability of artifacts via dependency management. Further
aspects are stable versioning of build outputs and the high extensibility of builds
via plugins. We identify a gap between data catalog systems and repository
managers and with this work we propose a prototype architecture to bridge it.

Our contributions are as follows: (1) We perform an in-depth analysis for
whether and how the Apache Maven build system can be adopted for several
DataOps aspects and assess the technical feasibility. (2) As a resource, we set
up a website Maven4Data19 which documents technical details and collects
additional examples. (3) As software, we provide one Maven plugin for SPARQL
and RML processing, and another for uploading artifacts to the Comprehensive

6 https://www.w3.org/TR/shacl/
7 http://shex.io/shex-semantics/
8 https://www.w3.org/TR/sparql11-query/
9 https://www.w3.org/TR/void/

10 https://www.w3.org/TR/vocab-dcat-3/
11 http://purl.org/net/p-plan
12 https://www.w3.org/TR/prov-o/
13 https://rml.io/specs/rml/
14 https://rml.io/yarrrml/spec/
15 https://github.com/meirwah/awesome-workflow-engines/blob/master/README.md
16 https://s.apache.org/existing-workflow-systems
17 https://maven.apache.org/
18 https://central.sonatype.com
19 https://scaseco.github.io/maven4data

https://www.w3.org/TR/shacl/
http://shex.io/shex-semantics/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-dcat-3/
http://purl.org/net/p-plan
https://www.w3.org/TR/prov-o/
https://rml.io/specs/rml/
https://rml.io/yarrrml/spec/
https://github.com/meirwah/awesome-workflow-engines/blob/master/README.md
https://s.apache.org/existing-workflow-systems
https://maven.apache.org/
https://central.sonatype.com
https://scaseco.github.io/maven4data


DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI:10.4126/FRL01-006474023 3

Knowledge Archive Network (CKAN). (4) We provide mvn-rdf-sync20 as an
additional software prototype. It is a Docker Compose setup for reacting to
changes in a Maven repository in order to auto-generate DCAT metadata as well
as publishing that DCAT in a triple store. (5) A basic benchmark framework
for assessing the performance impact of mvn-rdf-sync on a repository system is
provided.

The remainder of this work is structured as follows. In Section 2 we present
related work for processing, packaging and FAIR publishing of data artifacts
based on Semantic Web technology. An introduction to the Maven build system
is given in Section 3. Applying the Maven system to RDF data management
is elaborated in Section 4. Synchronization of DCAT metadata from a Maven
repository with a triple store is presented in Section 5. A brief performance
evaluation for triggering metadata generation upon data deployment is presented
in Section 6. Finally, we conclude this work in Section 7.

2 Related Work

OntoMaven [8] provides a set of Maven plugins for working specifically with
ontologies (rather than RDF in general). Plugin goals exist to perform inferencing,
testing, and the generation of HTML documentation with graph visualizations
(somewhat similar to Javadoc). The focus of OntoMaven is to assist with agile
ontology development process models such as RapidOWL[1] and the Corporate
Ontology Lifecycle Methodology (COLM)[7].

DBpedia Databus is a data asset release management platform inspired by
paradigms and techniques successfully applied in software release management[4].
The Databus project explicitly borrows concepts from Apache Maven and also
features a set of maven plugins. However, the project features its own platform
with its own APIs. The crucial difference between the Databus project and this
work is, that here we investigate how data processing processes can be performed
natively with Apache Maven and deployment idiomatically with the (WebDav)
API support by conventional artifact repository management systems. Plugins
such as those of the Databus can be used in addition.

Common Workflow Language (CWL) is an attempt to establish a common
language for workflows. The reference implementation cwltool also aims to leverage
Semantic Web technology as a means for data generation adhering to the FAIR
principles. Whereas versioning of artifacts is an intrinsic concept in Maven, the
architecture around CWL relies on external services such as WorkflowHub21 [5].
Due to the relevance of CWL, we assembled a feature comparison with Maven
in Table 1 in order to provide more insights into their similarities and differences.

20 https://github.com/Scaseco/mvn-rdf-sync
21 https://workflowhub.eu/

https://github.com/Scaseco/mvn-rdf-sync
https://workflowhub.eu/


4 Stadler et al. (2024) FAIR Data Publishing with Apache Maven

Research Object Crates (RO-Crate)[9]22 is a specification for annotating the
content of a directory (or archive) with semantic descriptions. It seems feasible
that such descriptions could be generated as part of a Maven build.

In [6], a system for data version control on the RDF graph level is discussed.
This is an implementation that works only on the triple level of RDF data and
has no regard to sources or transformations.

Data Version Control 23 is a system/suggestion to use a Git-like approach and
decentralised repositories to control different versions of personal datasets. Using
their registry requires a commercial subscription.

The Semantic Web components of our suggested approach are implemented
using the Apache Jena24 Semantic Web framework.

3 Introduction to Apache Maven

Although Maven25 is a build tool mainly used for Java development, its underlying
concepts are more general in nature.

Maven is based on the concept of a project object model (POM). The POM
is the fundamental configuration file that contains information about the project,
tasks, and dependencies. Maven uses this file to do everything that is needed
to build a project. Applied to data management, this POM can be used to
describe how to download, convert, and process data as well as the software
and data dependencies required for a specific dataset. The POM also contains
several metadata fields that can be used to further link the project to source
code repositories, applicable license information, author information and so on,
which can be easily mapped to RDF. Maven has built-in support for properties,
together with substitution of placeholders in strings (aka interpolation) and
files (aka resource filtering). This mechanism can be exploited for generating
RDF with additional metadata. Furthermore, Maven is capable of publishing the
processed and generated data as artifacts to repository systems, and to download
existing artifacts from there. Maven build workflows are based on invoking Maven
plugins. Maven plugins are written in the Java programming language and can
be deployed as artifacts to such repositories. For a Java software project, Maven
would typically call the maven-compiler-plugin to process the source code.

Maven introduces the notion of life cycles for carrying out tasks on a software
project in a certain order. A life cycle has a name and defines a sequence of
phases. The phases generate-resources and process-resources are specifi-
cally dedicated to generating and packaging resources – such as data. The POM
follows a single inheritance model such that common configuration options can be
placed into a “parent” POM. A typical use case for a parent POM is to configure
22 https://www.researchobject.org/
23 https://dvc.org
24 https://jena.apache.org
25 https://maven.apache.org/

https://www.researchobject.org/
https://dvc.org
https://jena.apache.org
https://maven.apache.org/


DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI:10.4126/FRL01-006474023 5

Feature CWL Maven

Versioning build
outputs

CWL itself does not manage ver-
sioning of build outputs.

Intrinsic support, using its coor-
dinate system (groupId, artifac-
tId, version).

Versioning work-
flow plans

No intrinsic versioning system.
Relies on external version con-
trol systems like Git.

Versioning is intrinsic to the
POM file, allowing versioning of
the project definition itself along-
side the codebase.

Dependency man-
agement

CWL specifies dependencies in
terms of software containers and
scripts required to run a work-
flow but relies on external tools
for managing these dependen-
cies.

Declaration and automatic
downloading (and caching) of
dependencies from central and
custom repositories.

Deployment of
build outputs

No instrinic support. Requires
scripting or external tools.

Built-in support for deploying
artifacts to repositories through
its deployment lifecycle phases
and plugins.

Containerization
support (Docker)

Natively support for defining
steps to be executed in Docker
containers, making it straightfor-
ward to ensure environment con-
sistency across executions.

Support via plugins but not as
seamlessly integrated as CWL’s
native support.

Signing build out-
put

CWL does not have built-in sup-
port for signing outputs. Any
signing would need to be han-
dled by external tools or steps
defined within the workflow.

Maven supports signing artifacts
via plugins (e.g., GPG Plugin) as
part of its build process, ensur-
ing the integrity and origin of
build outputs.

Deployment to al-
ternative reposito-
ries

Deployment to alternative repos-
itories would require integration
with other tools.

Highly extensible, with a wide
range of plugins available for de-
ploying to various types of repos-
itories.

Execution model DAG-based Linear (Life-cycle based). Phases
are executed in order - paral-
lelism possible within phases.

Execution moni-
toring

In addition to logging, third-
party tools or workflow engines
that support CWL can provide
insights into each step’s execu-
tion status and resource usage.
Live-graph visualization possible
such as using Apache Airflow.

Due to the linear processing na-
ture typically only console log-
ging and reporting.

Table 1. Comparison between CWL and Maven



6 Stadler et al. (2024) FAIR Data Publishing with Apache Maven

the repositories to use for dependency resolution and artifact deployment as well
as which versions of certain plugins to use. Traditionally, POM files are written in
XML and tool-chains typically operate on the XML model. However, nowadays
is also possible to write POMs in other popular languages (such as YAML) using
the polyglot-translate-plugin26.

Each Maven project is described by a groupId, an artifactId and a version
(GAV). The groupId is typically a reverse domain name such as org.myorganiza
tion.mydepartment.myproject and can thus be used to link an artifact to an
organization in a Web-compatible way. By using domains that are under ones
own control, unique global identifiers that are nevertheless human-readable are
ensured. Artifact naming can also be leveraged for access control: For example,
when publishing artifacts to Maven Central, permission is only granted to upload
artifacts whose groupIds start with a specific prefix such as org.myorgan
ization. Maven repositories can be configured to enforce that each version is
only published exactly once, thereby ensuring that the exact state of a published
dataset is not changed.

To each project GAV, any number of files can be attached. Files are differ-
entiated by the type, such as jar, zip, ttl or nt.bz2, and a classifier, which can
be any custom value. For example, in this work we use the classifier dcat to tag
the RDF metadata datasets to load into the triple store. One way to see a GAV
is as a URN for a folder (or archive) which contains files with different names
and types. Publishing a Maven project usually also attaches the POM file itself.
POMs can be designed in a self-contained way such that the creation of artifacts
becomes reproducible from the POM itself.

As for repository systems, Maven by default resolves dependencies against the
central repository. The plugins we developed as part of this work are published
there and can thus be readily reused in Maven builds. In order to not misuse
the central repository as a data dump, we set up our own organization-wide
repository system instance.

4 Adapting Maven for Data Generation and Deployment

In this section, we present a concrete selection of relevant tasks related to dataset
management, representative of similar ones. We then provide a brief overview of
the Maven plugins used to solve them.

Figure 1 shows different setups with POM files that make use of different
Maven plugins for the creation of artifacts by means of (a) downloading from the
Climatetrace27 website, (b) dockerized execution of a Python script that creates
RDF based on data from the GDACS28 and ReliefWeb29 Web services, and (c)
RML mapping execution based on data and mapping files present in the artifact
repository. Each POM can be executed with mvn deploy which produces the
26 https://github.com/takari/polyglot-maven
27 https://climatetrace.org/data
28 https://www.gdacs.org/
29 https://reliefweb.int/

https://github.com/takari/polyglot-maven
https://climatetrace.org/data
https://www.gdacs.org/
https://reliefweb.int/


DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI:10.4126/FRL01-006474023 7

Artifact Repository
(Code and data)

Climatetrace Website

POM

download-maven-plugin

GDACS Reliefweb

POM

docker-maven-plugin

POM

tdb2-maven-plugin

gtfs.rml.ttl

rml-maven-plugin

POM

rdfize-events.py

Fuseki
SPARQL
Server

CKAN Zenodo, ...

gtfs.zip

data-1.0.0.tdb2.tar.gz

mvn deploy

dependency

Fig. 1. Architecture with different POM files for unified data processing.

artifacts and uploads them both to a conventional Maven repository as well as
to a CKAN instance. Additional plugins could be created for uploading artifacts
also to e.g. Zenodo30 or Huggingface31. Furthermore, the tdb2-maven-plugin32

is capable of creating a TDB2 database file that can be served using a Fuseki
SPARQL server.

Marking Files for Inclusion in a Project Distribution

Files need to be attached to a Maven project in order for them to be part of
the file set that gets installed locally or deployed remotely. Many plugins that
generate files, such as the Javadoc one, directly support controlling whether to
attach the generated files. The build-helper-maven-plugin is the conventional
way for attaching arbitrary files to a maven project using the attach-artifact
goal. The GAV is predetermined by the POM, so attached files can only differ in
their classifier and type values.

Docker-based Data Generation

The docker-maven-plugin33 enables the use of Docker containers from within
Maven builds. It supports copying files in and out of containers and requires a
running Docker daemon. For a complete example that runs a Python script to
fetch information about disaster events and output them as RDF we refer to our
supplemental web page34.
30 https://zenodo.org/
31 https://huggingface.co/
32 https://github.com/Scaseco/tdb2-maven-plugin
33 https://dmp.fabric8.io/
34 https://scaseco.github.io/maven4data/how-tos/build-anything-with-docker.html

https://zenodo.org/
https://huggingface.co/
https://github.com/Scaseco/tdb2-maven-plugin
https://dmp.fabric8.io/
https://scaseco.github.io/maven4data/how-tos/build-anything-with-docker.html


8 Stadler et al. (2024) FAIR Data Publishing with Apache Maven

RML Conversion

In [2] we presented a system based on our RML Toolkit [10] (rmltk) that rewrites
RML mappings to a sequence of extended SPARQL queries. Likewise, we wrapped
this system as a Maven plugin. To use the system, two dependencies have been
specified in the POM: one to an artifact containing the CSV source data, and one
containing the RML mapping rules. Then, the rml-maven-plugin is specified in
the plugin section, together with an rmltk-specific configuration (also detailed
inside the POM). When Maven is called with process-resources, the dependencies
and the plugins will be downloaded (unless they are already cached) and the
mapping will execute. A complete example is available on GitHub35.

RDF generation with SPARQL Queries

We also created the sparql-maven-plugin to enable running SPARQL state-
ments against an embedded triple store. This enables loading of datasets as well
as producing RDF with SPARQL CONSTRUCT queries as part of the build
process. The configuration is similar to that of the rml-maven-plugin except
that SPARQL queries can be provided as string and files. This plugin can be
used to produce VoID, DCAT and PROV metadata. A crucial aspect is that
Maven coordinate URNs of the POM can be used as the dataset identifier.

Deploying to CKAN

CKAN36 is a popular open-source open data portal software for the storage and
distribution of data. It has an API for uploading data and metadata. We created
the ckan-maven-plugin which enables uploading files to CKAN. Several fields
for the POM are directly mapped to fields in CKAN, such as: name, description
and license. The plugin can be used in addition to any other plugins that carry
out deployments. Typically, all deployments are executed in the deploy phase.
In general, a Maven build can be designed such that properties and profiles are
provided to control which (sub)sets of plugins to execute. These mechanisms
can be leveraged to carry out only specific deployments. The plugin supports
reading (possibly encrypted) CKAN API keys from Maven’s settings.xml file,
which is Maven’s default place for user-level passwords. Note, that whether and
how conventional dependencies can be (reasonably) resolved against a CKAN
instance is future work. More details about the configuration of the CKAN plugin
is available on GitHub37.

Loading a Triple Store from Dependencies

We have created the tdb2-maven-plugin, that uses Apache Jena to convert
RDF data into a TDB2 database suitable for use with Apache Jena. To use it,
35 https://github.com/Scaseco/resource-gtfs-bench-rml/
36 https://ckan.org/
37 https://github.com/Scaseco/ckan-maven-plugin

https://github.com/Scaseco/resource-gtfs-bench-rml/
https://ckan.org/
https://github.com/Scaseco/ckan-maven-plugin


DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI:10.4126/FRL01-006474023 9

the RDF datasets are specified as dependencies in the Maven POM, and the
tdb2-maven-plugin is referenced in the build plugins section. A limitation is, that
Maven does not natively support the automatic build of missing artifacts based
on a reference to a POM that could build those. It may be possible to create
further plugins that carry out such tasks by analyzing the dependency tree but
but this is open to future work.

5 Synchronization of Metadata

Fig. 2. Architecture of our Maven-RDF-Sync approach.

In the previous sections, we looked at how to build a Maven project that can
deploy data. In this section, we present mvn-rdf-sync, an approach that after
deployment of RDF data automatically generates and deploys metadata. The
process is depicted in Figure 2. The steps are:

1. A trigger on a Maven repository’s file system detects changes and publishes
appropriate events.



10 Stadler et al. (2024) FAIR Data Publishing with Apache Maven

2. An event consumer examines the event type. If it is an RDF data artifact,
then one or more Maven projects for metadata generation are created. This
step essentially creates an instance from a Maven template project38, using
parameters from the changed artifact’s POM. By convention, we use the
classifier dcat to indicate artifacts with DCAT metadata. In principle, a
future version of the setup could support attached RO-Crate files.

3. The metadata project is then deployed as usual using mvn deploy.
4. The change to the file system is detected and another event is sent.
5. This time the event consumer sees the RDF file with the dcat classifier and

can choose the flow for publishing metadata. In order to prevent arbitrary
metadata to end up being published, metadata artifacts can be filtered by
trusted groupIds.

6. A sequence of pre-publish rules, essentially SPARQL update queries, is used
to transform the raw metadata into the final one. These rules are used to
convert Maven URNs to resolvable download URLs and to run queries that
for fixing any issues with previously published metadata.

7. Finally, the data ends up in the triple store for access. The metadata is loaded
into a graph that matches the metadata artifact.

8. The data is now (publicly) accessible via SPARQL. Tools, such as Yasgui39,
can be used to query and visualize the content.

A screenshot of our online demo40 is shown in Figure 3. It shows how the
DCAT metadata in the triple store synchronized with the Maven repository can
be queried with SPARQL and plotted on a map with Yasgui. As the mvn-rdf-sync
process also generates VoID metadata, it is also possible to e.g. filter datasets by
the used classes and properties. The datasets are identified by urn:mvn: URNs,
such that a transfer of the repository to a different URL does not invalidate any
dataset identifiers.

It is a design decision whether to use a single Maven template project to
capture multiple metadata aspects, such as VoID, DCAT and PROV-O, or
whether to maintain individual Maven templates for each of them. For the
prototype we went with the former approach, but as the system grows it is likely
that we will switch to the latter due to better modularity. The metadata project
includes generation of the provenance triples that state that the original artifact
was generated by an activity whose plan is the URN of the original artifact’s
POM. If that POM was designed to be self-contained then downloading the POM
and running mvn package will re-run the build. If the POM was designed for
reproducible builds then the output artifacts will match the deployed ones. For
non-reproducible builds, such as those that consume live data from APIs, one
should typically adjust the groupId and version appropriately before creating
custom builds.

38 https://github.com/Scaseco/mvn-rdf-sync/blob/main/v3/dcat-generator/pom.xml
39 https://yasgui.triply.cc/
40 https://scaseco.github.io/maven4data/online-demo.html

https://github.com/Scaseco/mvn-rdf-sync/blob/main/v3/dcat-generator/pom.xml
https://yasgui.triply.cc/
https://scaseco.github.io/maven4data/online-demo.html


DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI:10.4126/FRL01-006474023 11

Fig. 3. Visualization of data catalog content on a map via SPARQL.

6 Resources and Evaluation

We have set up the Maven4Data website with guides and examples that we have
shown in this paper, demonstrating the effectiveness of the approach.

A relevant question is to what extent our mvn-rdf-sync approach degrades
the performance of a filesystem-based repository due to overhead of file system
watches. For this purpose we devised the “repo-bench”41 benchmark: We use a
python script to generate a Maven project with n = 500 sub modules, where each
sub module has a corresponding RDF dataset. The triple count for the i − th
project is i× 1000 triples, with 1 ≤ i ≤ n, amounting to n

2 × (n+ 1)× 1000 =
125.250.000 triples in total with a size of 14.2G of data.

We measure the time it takes to install the poms with and without the
file system watch active. The experiment was carried out on a Dell XPS 9720
notebook with the following specs: CPU: Intel i9-12900HK CPU, SSD: NVMe
PC801 NVMe SK hynix 2TB, RAM: 64GB. We use the following basic watch to
check for changes to the file system:
41 https://github.com/Scaseco/mvn-rdf-sync/tree/main/benchmark

https://github.com/Scaseco/mvn-rdf-sync/tree/main/benchmark


12 Stadler et al. (2024) FAIR Data Publishing with Apache Maven

inotifywait "$HOME/.m2/repository" --recursive --monitor --format '%e %w%f' \
--event CLOSE_WRITE --event DELETE | xargs -n 1 -P 0 bash -c 'echo "$@"; sleep 1' _ {}

The flag -P 0 indicates to spawn a fresh process for each line emitted by
inotifywait, such that maximum parallelism is utilized. The finding is that
regardless whether the following watch is active or not, running mvn install
takes ≈20 seconds, which indicates that the watch itself does not impact the
performance significantly. However, more extensive analysis is needed for how
real-world workloads affect overall system performance.

7 Conclusions and Future Work

This work is motivated by the multitude of solutions in the field of data manage-
ment and the pursuit of a “minimal” one that is open source, can run locally, is
extensible, and interoperable with Semantic Web technology. In pursuit of such
a solution, we took a deep dive in the Apache Maven ecosystem. We presented
a selection of use cases where the life cycle of data artifacts can be mapped to
a Maven build process. A set of Maven plugins was devised for streamlining
the generation of RDF and for the deployment of artifacts to CKAN instances.
We showed that Maven’s build specifications can be designed in a way that
makes them self-contained w.r.t. versioning, data processing and deployment.
The fact that upon deployment the POM is archived as well makes the process
self-documenting and can be leveraged for reproducibility. Based on our findings,
we devised the mvn-rdf-sync system, which listens to changes to Maven repository
and triggers RDF metadata generation (via generated Maven projects) when
RDF datasets are uploaded. We assembled at the Website Maven4Data where
we provide additional information and examples. We also compared Maven to
CWL and found that these systems are complementary: Maven’s scope is more
narrow than that of general workflow engines, yet it provides several features
that are highly useful for versioning, packaging and deploying artifacts.

Future work is along the following lines: (1) Investigation of creating Research
Object Crates from Maven. (2) Analysing the feasibility of Maven plugins that
can deploy to further popular public archives. For (2), it needs to be investigated
to what extent Maven’s coordinate system can be bridged with the artifact
naming system provided by those archives. For example, Zenodo provides APIs
for custom tags which could be exploited for that purpose.

Acknowledgments

The authors acknowledge the financial support by the German Federal Ministry
for Economic Affairs and Climate Action in the project Coypu (project number
01MK21007A) and by the German Federal Ministry for Digital and Transport in
the Project Moby Dex (project number 19F2266A).



DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI:10.4126/FRL01-006474023 13

References

1. Auer, S.: The rapidowl methodology–towards agile knowledge engineering. In:
15th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE’06). pp. 352–357. IEEE (2006)

2. Bin, S., Stadler, C., Bühmann, L.: KGCW2023 challenge report RDFProcessing-
Toolkit / sansa. In: 4th International Workshop on Knowledge Graph Construction
@ ESWC 2023. No. 3471 in CEUR workshop proceedings, Hersonissos, Greece
(2023)

3. Crusoe, M.R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., Tijanić, N., Ménager,
H., Soiland-Reyes, S., Gavrilović, B., Goble, C., et al.: Methods included: standard-
izing computational reuse and portability with the common workflow language.
Communications of the ACM 65(6), 54–63 (2022)

4. Frey, J., Götz, F., Hofer, M., Hellmann, S.: Managing and compiling data de-
pendencies for semantic applications using databus client. In: Garoufallou, E.,
Ovalle-Perandones, M.A., Vlachidis, A. (eds.) Metadata and Semantic Research -
15th International Conference, MTSR 2021, Virtual Event, November 29 - December
3, 2021, Revised Selected Papers. Communications in Computer and Information
Science, vol. 1537, pp. 114–125. Springer (2021)

5. Goble, C., Soiland-Reyes, S., Bacall, F., Owen, S., Williams, A., Eguinoa, I.,
Droesbeke, B., Leo, S., Pireddu, L., Rodríguez-Navas, L., et al.: Implementing fair
digital objects in the eosc-life workflow collaboratory. Zenodo (2021)

6. Hauptmann, C., Brocco, M., Wörndl, W.: Scalable semantic version control for
linked data management. In: LDQ@ ESWC. p. 27 (2015)

7. Luczak-Rösch, M., Heese, R.: Managing ontology lifecycles in corporate settings.
In: Networked Knowledge-Networked Media: Integrating Knowledge Management,
New Media Technologies and Semantic Systems, pp. 235–248. Springer (2009)

8. Paschke, A., Schäfermeier, R.: Ontomaven-maven-based ontology development and
management of distributed ontology repositories. Synergies Between Knowledge
Engineering and Software Engineering pp. 251–273 (2018)

9. Soiland-Reyes, S., Sefton, P., Crosas, M., Castro, L.J., Coppens, F., Fernández,
J.M., Garijo, D., Grüning, B., La Rosa, M., Leo, S., et al.: Packaging research
artefacts with ro-crate. Data Science 5(2), 97–138 (2022)

10. Stadler, C., Bühmann, L., Meyer, L.P., Martin, M.: Scaling rml and sparql-based
knowledge graph construction with apache spark. In: 4th International Workshop
on Knowledge Graph Construction @ ESWC 2023. CEUR workshop proceedings,
vol. 3471. Hersonissos, Greece (2023)

11. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak,
A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.: The fair
guiding principles for scientific data management and stewardship. Scientific data
3(1), 1–9 (2016)


	FAIR Data Publishing with Apache Maven

