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Abstract: Upon the sudden death of two captive roan antelopes (Hippotragus equinus) that had suffered
from clinical signs reminiscent of malignant catarrhal fever (MCF) in a German zoo, next generation
sequencing of organ samples provided evidence of the presence of a novel gammaherpesvirus species.
It shares 82.40% nucleotide identity with its so far closest relative Alcelaphine herpesvirus 1 (AlHV-1)
at the polymerase gene level. The main histopathological finding consisted of lympho-histiocytic
vasculitis of the pituitary rete mirabile. The MCF-like clinical presentation and pathology, combined
with the detection of a nucleotide sequence related to that of AlHV-1, indicates a spillover event of a
novel member of the genus Macavirus of the Gammaherpesvirinae, probably from a contact species
within the zoo. We propose the name Alcelaphine herpesvirus 3 (AlHV-3) for this newly identified virus.

Keywords: malignant catarrhal fever; Macavirus; virus discovery

1. Introduction

Malignant catarrhal fever (MCF) is an inevitably fatal generalized lymphoproliferative
disease, most frequently seen in ruminant livestock after infection with a gammaher-
pesvirus from another ruminant host species. These gammaherpesviruses are well adapted
to their natural hosts in which they usually cause a subclinical or asymptomatic persistent
infection. Interspecies transmission from their natural reservoir host into other susceptible
ungulate species may result in fatal disease, commonly known as malignant catarrhal
fever (MCF). Although several closely related ungulate gammaherpesviruses have been
identified as etiological agents of MCF [1], this disease is observed in cattle predominantly
in either of two forms, associated with the two best characterized members of the genus
Macavirus of the Gammaherpesvirinae within the family Herpesviridae, respectively [2].
The first, sheep-associated MCF (SA-MCF), is caused by ovine herpesvirus 2 (OvHV-2) and
occurs in cattle after contact with inapparently infected sheep [3]. The second, wildebeest-
associated MCF (WA-MCF), is seen sporadically in African livestock after infection with
Alcelaphine herpesvirus 1 (AlHV-1), which is adapted to wildebeest (Connochaetes taurinus) [4].
Not only cattle are at risk of contracting MCF, as the clinical disease is more widely observed
among ungulates of the family Artiodactyla that are infected with gammaherpesviruses
from the same order, including deer [5], buffalos [6], antelopes [7], and pigs [8].

Clinical signs of MCF can vary depending on the species and the virus involved, but
are usually dominated by progressive lethargy, salivation, nasal and ocular discharge, oral
ulcerations, and corneal opacity [9,10]. Histological manifestations can be present in all
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affected organs and are dominated by a generalized lymphoproliferation, lymphocyctic
vasculitis, and necrosis in perivascular areas, all indicative for an immune dysregulation
dominated pathogenesis [11–13].

Understanding epidemiological parameters, such as natural reservoirs, susceptibility
of contact species, and transmission routes both in natural habitats and in captivity, is not
only key for preventing economic losses in livestock but also for protecting endangered
species [14]. Especially in zoos and zoological collections, close proximity of species from
different geographical origins facilitates interspecies transmission, and may pose a threat
to whole herds [15].

2. Materials and Methods
2.1. Histopathology and Immunohistochemistry

In June 2020, a disease of unknown etiology affected a herd of captive roan antelopes
(Hippotragus equinus) from a zoo in Lower Saxony, Germany. At necropsy, tissue samples
were collected and prepared for a hematoxylin and eosin (HE) staining and light microscopy
(Supplementary Materials, Technical appendix). In addition, immunohistochemistry for
the phenotypical characterization of inflammatory cells was performed on formalin-fixed
and paraffin-embedded (FFPE) tissue of the rete mirabile surrounding the pituitary gland,
termed pituitary rete mirabile. Therefore, the following antibodies were used: an anti-
CD3 antibody to detect T lymphocytes, an anti-CD20 antibody for the visualization of B
lymphocytes, an anti-CD204 antibody, as well as an anti-Iba1 antibody for the detection
of macrophages (Supplementary Materials, Technical appendix, Table S1). Immunohis-
tochemical investigation of the pituitary rete mirabile was analyzed semi-quantitatively
(Supplementary Materials, Technical appendix).

2.2. Fluorescence in Situ Hybridization (FISH)

FISH for detection of gammaherpesvirus-specific nucleic acids was performed using
the ViewRNATM ISH Tissue Core Kit (Invitrogen by Thermo Fisher Scientific, Vienna,
Austria) as previously described and with minor variations [16,17]. The probe was designed
accordingly to the partial sequence of 1179 base pairs generated in this study (GenBank
Accession number OP113930) and commercially produced according to the manufacturer´s
protocol (ViewRNATM Type 1 probe set, Life Technologies GmbH, Darmstadt). FISH for
the detection of viral nucleic acids was performed on rete mirabile, cerebellum, brain stem,
liver, and spleen of animal 1 and the rete mirabile of animal 2. Furthermore, formalin-fixed
and paraffin-embedded (FFPE) sections of the central nervous system of a domesticated
ungulate that tested positive for OvHV-2 by PCR were included. An accurate experimental
procedure was conducted by testing a probe binding to an unrelated gene in a different
species. Samples without probe application, but with the application of Probe Set Diluent,
and roan antelopes tested negative for gammaherpesvirus by PCR were used as negative
controls. Sections were evaluated using a fluorescence microscope (Olympus IX70-S8F2).

2.3. Virus Detection and Sequencing

Tissue samples from kidney and liver material were homogenized, centrifuged for
5 min at 7000× g, and RNA extraction was performed with TRIzolTM Reagent (Thermo
Fisher Scientific, Waltham, MA, USA). In a first screening approach, the RNA was identified
as herpesvirus-positive by applying a Herpesviridae-specific degenerative primer set [18].
For next generation sequencing, the RNA was transcribed to cDNA using a SuperScript
IV Reverse Transcriptase Kit (Thermo Fisher Scientific) and with a modified sequence-
independent single-primer amplification (SISPA) protocol [19] with non-ribosomal hex-
amers [20]. Libraries were generated by applying a Nextera XT DNA Library Preparation
Kit (Illumina, San Diego, CA, USA) and sequenced on an Illumina NextSeq sequencing
platform with a NextSeq 500/550 High Output kit v2.5 150 cycles (paired-end reads, 75 bp).
Quality and adapter trimming, as well as assembling original reads to reference genomes,
was performed using CLC Genomics Workbench 21.0 (Qiagen GmbH, Hilden, Germany).
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Further downstream analysis was carried out utilizing Geneious Prime (Biomatters, Ltd.,
Auckland, New Zealand). Primers were designed for gap filling to complete the polymerase
sequence, based on the reads that matched a reference genome sequence (the primer list is
available in Supplemental Materials Table S1).

2.4. Evolutionary Analysis

The generated sequence was aligned to DNA polymerase catalytic subunit (ORF 9)
sequences of available gammaherpesvirus genomes by multiple sequence alignment using
the MAFFT software (version 7) [21]. Using MEGA X, a maximum likelihood tree with
1000 bootstraps was constructed, applying a General Time Reversible (+G, +I) model,
which was calculated as a best fit [22]. To compare the 174 base pairs (bp) long partial DNA
polymerase sequences of Hippotragine herpesvirus 1 (HiHV 1, also from a roan antilope;
GenBank accession number NC_043060.1) to corresponding genome sections of related
viruses, the Kimura 2-parameter (+I) model was utilized.

3. Results
3.1. Epidemiology and Clinical Signs

At the onset of clinical signs, the roan antelopes were kept in the same enclosure
and had been in direct contact with representatives of the Artiodactyla species Oryx leu-
coryx, Tragelaphus angasi, Kobus leche kafuensis, and Oryx dammah. Simultaneously, the zoo
was housing other antelopes, including wildebeest (Connochaetes taurinus) and blesbok
(Damaliscus pygargus phillipsi) in a neighboring enclosure. The roan antelope 1 (internal
identification number: S418/20) presented diarrhea, lameness of the right hind limb,
anorexia, and showed a poor general condition. A few days prior to euthanasia, the second
animal (internal identification number: S458/20) showed signs of poor general health,
unsteadiness in walking, an increased bleeding tendency after drug applications, as well as
mucosal hemorrhages.

3.2. Post-Mortem Examination–Pathology

Macroscopic examination of the first animal (S418/20) revealed a poor body condition,
abdominal effusion, moderate to severe diffuse enlargement of lymph nodes, and petechial
hemorrhages of the mucosa of the alimentary tract and of the urinary bladder. In addition,
endo- and epicard displayed multifocal hemorrhages. At necropsy, the second animal
(S458/20) showed pericardial and abdominal effusion and moderate enlargement of a
cranial sternal lymph node and a popliteal lymph node. The skin of the dorsal part of
the neck exhibited a focal alopecia with crusts. Furthermore, multifocal, subcutaneous,
petechial hemorrhages were observed in the subcutis of scapula, face, and thorax.

3.3. Histopathology

Main histopathological findings comprised lympho-histiocytic and plasmacellular
inflammation in various organs, and were located predominantly in perivascular areas but
also within vascular walls. In detail, inflammatory lesions of animal 1 (S418/20) included
a mild lympho-histiocytic inflammation of the pituitary rete mirabile, a mild lympho-
plasmacellular vasculitis of the lung, and a mild lympho-plasmacellular periarteritis and
vasculitis of the pancreas. Liver and kidney lesions were characterized by a multifocal,
lympho-histiocytic, partially plasmacellular inflammation. Furthermore, the mucosa of
the abomasum showed a focal necrosis. Inflammatory changes of animal 2 (S458/20)
included a mild to moderate multifocal lympho-histiocytic inflammation of the pituitary
rete mirabile (Figure 1), a moderate to severe multifocal lympho-histiocytic nephritis, a mild
to moderate multifocal, predominantly periportal, lympho-histiocytic and plasmacellular
hepatitis, as well as a multifocal, predominantly perivascular, lympho-histiocytic and
partially neutrophilic dermatitis of the dorsal part of the neck.
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(S418/20) were composed of scant to low numbers of CD204- and Iba1-positive macro-
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munopositive cells of animal 1 were found predominantly perivascularly. Immunohisto-
chemical investigation of the pituitary rete mirabile of animal 2 (S458/20) revealed mod-
erate numbers of CD3-positive T lymphocytes, predominantly perivascularly located 
(Figure 2A, asterisk). In addition, some vessels also exhibited CD3-positive cells within 
the vascular wall (Figure 2A, arrows). Furthermore, moderate numbers of CD204- and 
Iba1-positive macrophages were observed perivascularly as well as within the vascular 
wall (Figure 2B, arrows). In addition, few CD20-positive B lymphocytes were observed 
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ever, a positive signal was detected by the use of a probe detecting an unrelated gene in a 
different species. 

 

Figure 1. Inflammatory lesions of the pituitary rete mirabile, most prominent in animal 2, were
characterized by a perivascular lympho-histiocytic inflammation (asterisk). Occasionally, vasculitis
characterized by few (B) to moderate numbers (C) of mononuclear inflammatory cells (arrows),
resembling lymphocytes and macrophages, were found in the vascular wall. L: vascular lumen;
hematoxylin and eosin stain; scale bar (A): 100 µm; (B): 20 µm; (C): 50 µm.

3.4. Immunohistochemical Characterization and Fluorescence in Situ Hybridization (FISH)

Perivascular and mural inflammatory cells of the pituitary rete mirabile of animal 1
(S418/20) were composed of scant to low numbers of CD204- and Iba1-positive macrophages
as well as few CD3- and CD20-positive T and B lymphocytes, respectively. Immunopositive
cells of animal 1 were found predominantly perivascularly. Immunohistochemical investi-
gation of the pituitary rete mirabile of animal 2 (S458/20) revealed moderate numbers of
CD3-positive T lymphocytes, predominantly perivascularly located (Figure 2A, asterisk). In
addition, some vessels also exhibited CD3-positive cells within the vascular wall (Figure 2A,
arrows). Furthermore, moderate numbers of CD204- and Iba1-positive macrophages were
observed perivascularly as well as within the vascular wall (Figure 2B, arrows). In addition,
few CD20-positive B lymphocytes were observed adjacent to vessels.
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Figure 2. (A) Immunohistochemical characterization of inflammatory cells of the pituitary rete
mirabile of animal 2 revealed moderate numbers of CD3-immunopositive T lymphocytes perivascu-
larly (asterisk), and in the vascular wall (arrows). (B) Similarly, Iba1-positive macrophages were found
in the perivascular area and the vascular wall (arrows). L: vascular lumen; immunohistochemistry;
scale bar: 50 µm.

Detection of virus-specific nucleic acids by the use of FISH remained negative in
antelopes as well as in a domestic ungulate that tested positive for OvHV-2 by PCR.
However, a positive signal was detected by the use of a probe detecting an unrelated gene
in a different species.

3.5. Sequencing Results and Phylogenic Comparison with Other Gammaherpesviruses

In the initial Herpesviridae-specific PCR a short sequence of an unknown Macavirus was
detected. The following metagenomic sequencing revealed 156 reads that were assembled
to the AlHV-1 reference genome (NC_002531.1). Based on these reads, primers could be
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designed to fill the genomic gaps between the individual reads. With this technique, the
complete 3kb long polymerase sequence could be revealed by Sanger sequencing.

To gain further knowledge about the taxonomy of this apparent viral pathogen, the re-
lationship of the sequence identified to those of known gammaherpesviruses was analyzed
phylogenetically. Comparison of the sequence generated in this study (GenBank Accession
number OP113930) with corresponding gammaherpesvirus genome sequences provides
evidence for a new virus in the Macavirus genus. Based on this comparison, it shows closest
phylogenetic relationship to viruses that have Alcelaphinae species as their natural reservoirs
(Figure 3). Viruses with the highest nucleotide similarity in their polymerase genes are
AlHV-1 (with 82.40%) and AlHV-2 (with 77.53%). For this particular gene, AlHV-1 and
AlHV-2 share 82.73% of their nucleotides.
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Figure 3. Phylogenetic analysis based on the DNA polymerase gene (ORF 9, homologue to
NP_065512.1). The novel sequence from the roan antelopes, tentatively designated AlHV-3, is
compared to related viruses from the genus Macavirus. Numbers next to branches symbolize the
percentage of trees with identical taxa clusters. The scale bar indicates the number of substitutions
per site.

For some antelope gammaherpesviruses, only a 174 bp section of the DNA polymerase
gene is currently published. This includes an entity, designated Hippotragine herpesvirus
1 (HiHV 1; GenBank accession number NC_043060.1), which was isolated in 1991 from
another roan antelope without MCF-like signs [23] and had been sequenced in 2005 [1].
Analysis based on this gene section displays an 85.06% nucleotide identity between HiHV
and AlHV-1, and 83.91% of HiHV with the viral sequence identified in this study (Figure 4,
Table 1).
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Table 1. Analysis of nucleotide identity based on short 174 bp partial sequences of the DNA poly-
merase available for antelope gammaherpesviruses. Sequences include the novel virus identified in
this study, as well as the Hippotragine herpesvirus 1.

Novel
Alcelaphine

Herpesvirus 3
OP113930

Alcelaphine
Herpesvirus 1
NC_002531.1

Hippotragine
herpesvirus

1 NC_043060.1

Alcelaphine
Herpesvirus

2 NC_024382.1

Novel
Alcelaphine

Herpesvirus 3
OP113930

100% 86.78% 83.91% 74.14%

Alcelaphine
Herpesvirus 1
NC_002531.1

86.78% 100% 85.06% 81.03%

Hippotragine
herpesvirus

1 NC_043060.1
83.91% 85.06% 100% 74.71%

Alcelaphine
Herpesvirus

2 NC_024382.1
74.14% 81.03% 74.71% 100%

4. Discussion

When representatives of the genus Macavirus cross the species barrier from their
natural host into another ungulate species, they may cause lethal MCF. However, the
identification of the natural reservoir and range of potential dead-end hosts remains
challenging for many of these viruses. In the present study, we provided evidence for a
novel Macavirus, evolutionarily most closely related to Alcelaphine gammaherpesvirus 1, in
two captive roan antelopes that had succumbed with clinical signs and pathological lesions
indicative for MCF.
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Sequence analysis of the DNA polymerase gene showed 82.40% nucleotide identity
between this novel viral agent and the closest relative, AlHV-1. Due to the divergence in the
sequenced gene, which is comparable to the distance between AlHV-1 and AlHV-2 (81.03%),
we suggest the putative name Alcelaphine herpesvirus 3 (AlHV-3) for this apparently novel
virus species.

A hint about the epidemiological origin and natural reservoir of this newly identified
virus may be obtained by focusing on the apparently related phylogenetic taxa. The two
evolutionarily closest known viruses are AlHV-1 and AlHV-2, which are found in antelopes
of the subfamily Alcelaphinae. AlHV-1 is frequently found in blue wildebeest (Connochaetes
taurinus) and AlHV-2 is found in the common tsessebe (Damaliscus lunatus) and hartebeest
(Alcelaphus buselaphus) [24]. Among the animals housed in the same zoo, there were two
members of the subfamily Alcelaphinae, namely blue wildebeest (Connochaetes taurinus) and
blesbok (Damaliscus pygargus phillipsi), which were kept in the zoo at the same time and may
thus be suspected as the reservoir host. However, formally we have not proven whether this
virus is indeed the causative agent of the MCF-like disease or just a coincidental detection
of a well-adapted virus present in these animals. In 1991, another gammaherpesvirus
(HiHV) had already been isolated from roan antelopes without MCF-related signs [23]. The
presence of that virus in a roan antelope without clinical disease indicates that HiHV is
more adapted to roan antelopes as its natural host than putative AlHV-3. Our analysis has
demonstrated a closer relationship to AlHV-1 than to HiHV, making it less likely for the
newly discovered virus to be adapted to roan antelopes. The higher nucleotide similarity
to gammaherpesviruses identified in members of the subfamily Alcelaphinae than those of
Hippotraginae supports the hypothesis that the novel virus in the deceased roan antelopes
had spilled over from a subclinically infected member of the Alcelaphinae species, present
in the zoo. We therefore speculate that one of these contact species in the same zoo was the
natural reservoir for putative AlHV-3.

Most of the histopathological lesions resemble those described for an infection with
OvHV-2 or AlHV-1 causing MCF in domestic cattle, including vasculitis in various organs,
particularly the pituitary rete mirabile [11,25]. It has to be considered that clinical signs
and histopathological lesions can vary, depending on the affected species and the causative
MCF virus. The inflammatory lesions, such as the vasculitis in the lung and pancreas of
animal 1 and in the pituitary rete mirabile of animal 2, are therefore most likely associated
with the putative AlHV-3 infection. Since little is known about this newly identified virus,
it remains to be determined whether the additional inflammatory changes are caused or
triggered by the putative AlHV-3 infection.

Immunohistochemical analysis of the pituitary rete mirabile revealed that inflam-
matory cells infiltrating the perivascular space as well as the vascular wall were mainly
composed of moderate numbers of CD3-positive T lymphocytes and macrophages. Similar
findings have been observed in MCF cases in previous studies in other species [26]. MCF is
considered to represent a disease associated with the lymphoproliferation and dysregu-
lation of T lymphocytes. The predominance of an infiltration with T lymphocytes in the
presented cases is therefore concordant with findings in MCF [27].

In the present study, virus-specific nucleic acids could not be detected using FISH. In
a previous study, herpesvirus-specific nucleic acids were observed by the use of in situ
hybridization (ISH), but positive results could be demonstrated only in single infected
cells or were limited to a few organs [28]. Similar discrepancies between the detection of
MCF-associated herpesviruses by PCR and ISH have already been described by others [29].
Additionally, in contrast to ISH, PCR is supposed to be more likely positive in numerous
cells with low viral load compared to a few cells containing high virus loads [30]. It should
be considered that the observed lesions are possibly not directly induced by the putative
AlHV-3 infection. MCF is supposed to represent an immunopathological condition and
therefore a type III hypersensitivity reaction could represent the cause for the lesions [13].
Cytotoxic T lymphocytes or T-suppressor cells are assumed to initiate the lesions, but
fibroblasts are also considered to be involved in the pathogenesis of the vasculitis by
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inducing cytokines and therefore contributing directly to the inflammatory changes seen
in vessels [31]. Since the pathogenesis of MCF is still not fully understood, the inability to
detect virus-specific nucleic acids should probably be interpreted as the consequence of an
immune-mediated disease, triggered by a putative AlHV-3 infection [32].

Taken together, the present study has provided evidence for a novel gammaher-
pesvirus in two roan antelopes that had died with clinical signs and pathological lesions
indicative for MCF. Sequencing and phylogenetic analysis indicated the presence of a dis-
tinct virus species, putatively designated Alcelaphine herpesvirus 3. Even though the original
viral reservoir and the transmission route cannot be reconstructed, it is likely that this
virus was the causative or triggering agent of the MCF-like disease in the roan antelopes
investigated.
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