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Abstract. Tipping points characterize the situation when a system experiences abrupt, rapid, and sometimes
irreversible changes in response to only a gradual change in environmental conditions. Given that such events
are in most cases undesirable, numerous approaches have been proposed to identify if a system is approaching a
tipping point. Such approaches have been termed early warning signals and represent a set of methods for iden-
tifying statistical changes in the underlying behaviour of a system across time or space that would be indicative
of an approaching tipping point. Although the idea of early warnings for a class of tipping points is not new, in
the last 2 decades, the topic has generated an enormous amount of interest, mainly theoretical. At the same time,
the unprecedented amount of data originating from remote sensing systems, field measurements, surveys, and
simulated data, coupled with innovative models and cutting-edge computing, has made possible the development
of a multitude of tools and approaches for detecting tipping points in a variety of scientific fields. However, we
miss a complete picture of where, how, and which early warnings have been used so far in real-world case stud-
ies. Here we review the literature of the last 20 years to show how the use of these indicators has spread from
ecology and climate to many other disciplines. We document what metrics have been used; their success; and
the field, system, and tipping points involved. We find that, despite acknowledged limitations and challenges, in
the majority of the case studies we reviewed, the performance of most early warnings was positive in detecting
tipping points. Overall, the generality of the approaches employed – the fact that most early warnings can in
theory be observed in many dynamical systems – explains the continuous multitude and diversification in their
application across scientific domains.
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1 Introduction

Tipping points characterize a situation when a system ex-
periences abrupt, rapid, and sometimes irreversible changes.
Such shifts occur when a threshold is crossed and the system
transitions from its current state to a contrasting one (van Nes
et al., 2016). Given that tipping points are associated with
abrupt, rapid, and sometimes irreversible changes, numerous
approaches have been proposed to identify if a system is get-
ting closer to such a point. These approaches are often re-
ferred to as early warning signals (EWSs), and they represent
a powerful generic tool for anticipating tipping points in a va-
riety of systems (Scheffer et al., 2009). The general mecha-
nism behind EWSs is that, as a dynamical system approaches
a tipping point, it becomes slower at recovering from small
perturbations (Wissel, 1984), and this critical slowing down
(CSD) of the system leaves signatures in the temporal and
spatial dynamics of the system (Drake et al., 2020). EWSs
rely on identifying exactly such changes in the underlying
behaviour of a system across time or space prior to a tipping
point.

Early, after their introduction in the literature, it became
clear that EWSs did not allow the anticipation of all types
of tipping points in advance (Hastings and Wysham, 2010)
and that they are not unique to tipping point responses but
also occur when systems are undergoing smoother transi-
tions (Kéfi et al., 2013). These realizations imply that some
shifts (typically referred to as abrupt shifts or regime shifts)
may require alternative or additional signals (Boettiger et al.,
2013; Dakos et al., 2015). Thus, a rich research programme
has been triggered in the theory behind tipping point antici-
pation and the development of tools (Table 1) for quantify-
ing changes in dynamical patterns of system behaviours that
could be used as early warnings preceding tipping points and
abrupt shifts in general. Different terms have been used to de-
scribe the great variety of metrics proposed in the literature,
like “early warning systems” (Lenton, 2013b), “observation-
based early warning signals” (Boers, 2021), “statistical sta-
bility indicators” (Bathiany et al., 2016), “critical slowing
down (CSD) indicators” (Tang et al., 2022), “leading in-
dicators” (Carpenter et al., 2008), “resilience indicators”
(Dakos et al., 2015), “generic indicators” (Scheffer et al.,
2015), “dynamical indicators of resilience” (DiOR) (Scheffer
et al., 2018), “indicators of transitions” (Clements and Ozgul,
2018), and “universal early warning signals” (Dylewsky
et al., 2023). In the rest of the paper, we will use the term
“early warnings” to refer to this whole family of indicators.

Whatever the term used, while early warnings are well
grounded in theory, the challenge remains to apply them to
real-world systems. A number of review and synthesis pa-
pers have summarized the theoretical aspects of early warn-
ings and provided partial accounts of their empirical applica-
tions (Alberto et al., 2021; Bestelmeyer et al., 2011; Dakos

and Kéfi, 2022; Lenton, 2011, 2013b; Litzow and Hunsicker,
2016; Nijp et al., 2019; Scheffer et al., 2012a, 2015). How-
ever, although the utility of early warnings has led to early
warnings proliferating beyond ecology and climate and be-
ing applied across a variety of scientific domains, we miss a
complete picture of where, how, and which early warnings
have been used so far in real-world case studies.

Here, after summarizing the basics of the theory underly-
ing early warnings and giving an overview of their taxonomy,
we review the literature for the use of early warnings in em-
pirical studies across all scientific fields. We document what
metrics have been used; their success; and the field, system,
and tipping points involved. We then classify this informa-
tion in order to provide an overview of the progress, limita-
tions, and opportunities in the empirical application of early
warnings after 15 years of research on the topic.

2 The basics of early warnings

The theory behind tipping point anticipation is mostly based
on destabilizing stable fixed equilibrium points. In such
cases, there are three ways that a tipping point may theo-
retically occur (Lenton, 2013a). A system may undergo a bi-
furcation when a parameter (or multiple parameters) in the
system changes beyond a critical threshold and the stabil-
ity of the state the system occupies is lost, thus causing the
system to shift to an alternative state (bifurcation tipping or
B-tipping). Noise-induced tipping can occur when a system
is shifted outside its stable basin of attraction by some form
of stochastic forcing (N-tipping). A third class, known as
rate-induced tipping (R-tipping), occurs when a parameter
rapidly changes and the system is no longer able to track its
stable state (Ashwin et al., 2011). Tipping points also oc-
cur through phase transitions, a long-studied set of emergent
phenomena in physics which resemble the characteristics of
the B-tipping described above (Hagstrom and Levin, 2021;
Sole et al., 1996).

The majority of the early warnings discussed below are
primarily developed to detect cases where there is a grad-
ual approach towards a bifurcation-tipping event causing a
loss of system state stability. Rate-induced tipping could
also show early warning (Ritchie and Sieber, 2016). Noise-
induced tipping is likely to occur unpredictably; therefore
early warnings are less expected. In a realistic scenario with
constant stochasticity and conditions gradually changing, tip-
ping is commonly a combination of a movement towards bi-
furcation and noise pushing the system before the bifurca-
tion actually occurs. In such cases, noise-induced tipping be-
comes more likely, as it is easier for the system to leave its
current basin of attraction when it is closer to the bifurcation,
and this increase in the probability of tipping can be identi-
fied through particular early warnings (Sect. 2.2).
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Table 1. Available software tools for the estimation of early warnings with temporal and spatial datasets.

Name Software Description Reference

earlywarnings R package One of the earliest R packages to calculate model-
and metric-based early warnings

Dakos et al. (2012)
http://github.com/
earlywarningtoolbox
(last access: 14 August 2024)

earlywarning R package format Fits a normal form model with and without a saddle-node
bifurcation based on a likelihood approach

Boettiger and Hastings (2012b)
http://github.com/cboettig/
earlywarning (last access:
14 August 2024)

Generic_ews MATLAB MATLAB translation from the early warning signals toolbox
in R

http://git.wur.nl/sparcs/
generic_ews-for-matlab/-/
tree/master (last access:
14 August 2024)

spatialwarnings R package Estimates spatial warning signals based on spatial statistics
and spatial pattern formation

Génin et al. (2018)

ewstools Python package Python translation of the earlywarnings toolbox, with the
addition of deep learning classifiers

Bury (2023)

EWSmethods R package Toolbox inspired by earlywarnings that omits model-based
EWS but includes multivariate indicators

O’Brien et al. (2023)

Although most of the theory behind early warning signals
is related to saddle-node (or fold) bifurcations, other types
of bifurcations have also been considered, like transcritical,
pitchfork, or Hopf bifurcations (more general codimension-1
bifurcations; Kuznetsov, 1995). Such bifurcations are smooth
(also called continuous) in contrast to the abrupt (i.e. discon-
tinuous) fold bifurcations associated with tipping points, yet
it has been shown that similar early warning signals can be
applied for them (Boettiger et al., 2013; Kéfi et al., 2013). A
full list of bifurcation types (discontinuous and continuous)
and their relationship to CSD can be found in Thompson and
Sieber (2011). In this paper, the early warnings considered
are mostly developed in the context of the discontinuous fold
bifurcation.

We hereafter present a representative (but not complete)
overview of the early warnings mostly used, both theoreti-
cally and empirically. These signals can be classified in dif-
ferent ways depending, for instance, on the type of mech-
anism or tipping point (e.g. CSD-based, non-CSD-based),
the type of data used (e.g. temporal, spatial, trait, abundance
data), and the approach employed (e.g. analysing patterns,
fitting models, network methods). In Table 2, we suggest a
taxonomy of early warnings based on the mechanism and
the approach used. We then present their basics without go-
ing into the details. A full description and the methods to
estimate them can be found elsewhere (Clements and Ozgul,
2018; Dakos et al., 2012; Génin et al., 2018; Kéfi et al., 2014;
Lenton, 2011; Scheffer et al., 2015) and in dedicated soft-
ware packages (Table 1).

2.1 Early warnings based on critical slowing down
(CSD-based)

The early warnings most used are based on searching for ev-
idence of “critical slowing down” (CSD) in the system. Es-
sentially, as the system is forced towards a tipping point, the
state it currently occupies starts to lose its stability, and the
restoring feedbacks that “pull” the system back to that state
after it is perturbed start to degrade. This causes the system
to respond more sluggishly to these perturbations and thus
slow down (Wissel, 1984). Figure 1 shows this concept vi-
sually using the “ball in the well” analogy. When the system
is more stable, represented by the well with steeper sides,
the recovery is faster as the ball (representing the state of the
system) returns faster. A system close to tipping, represented
by a shallower well, has a slower recovery as the ball takes
longer to return. Eventually, the restoring feedbacks of the
system may become so weak that the stability of the current
state may be lost, and the system may transition to a new sta-
ble state. Mathematically, CSD occurs as the leading eigen-
value of the system approaches 0 from below. However, in
reality, we do not have the equations that govern the system’s
dynamics, and, as such, we have to estimate the occurrence
of CSD with methods that aim to infer CSD mostly from the
patterns of the system dynamics or by fitting very simple and
generic process-based models (Table 2).

Return rate, autocorrelation, and variance

Using statistical techniques makes it possible to detect CSD
based on the dynamical patterns a system is generating. The
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Table 2. A taxonomy of early warnings depending on whether or not the warning is based on critical slowing down (CSD). CSD-based
early warnings are mostly associated with bifurcation tipping (B-tipping), while non-CSD-based ones are associated both with B-tipping and
noise-induced tipping (N-tipping; see also Sect. 2.1). A second dichotomy is based on whether the warning is a statistical metric based on
the dynamical patterns of the system or whether it is based on a process model that is as simple as possible. In parentheses is the type of data
(temporal and/or spatial) used to estimate the early warning.

CSD-based
(∼B-tipping)

Non-CSD-based
(∼B-tipping and/or N-tipping)

Pattern-based Variance (temporal and/or spatial)
Autocorrelation (temporal and/or spatial)
Return rate and/or time (temporal)
Detrended fluctuation analysis (temporal)
Spectral reddening (temporal)
Variance–covariance eigenvalue (temporal)
Dynamic eigenvalue (temporal)
Machine learning approach (temporal) recovery
length (spatial)
Speed of travelling waves (spatial)
repair time (spatial)
Discrete Fourier Transform (spatial)

Skewness (temporal and/or spatial)
Conditional heteroscedasticity (temporal and/or spatial)
Potential analysis (temporal)
Kurtosis (temporal)
Quickest detection method (temporal)
Fisher information (temporal)
Mean exit time Fokker–Planck (temporal)
Nonlinearity (temporal)
Trait statistical changes (temporal)
Machine learning approach (temporal)
Average flux (temporal)
Hurst exponent (spatial and/or temporal)
Turing patterns (spatial)
Patch size distributions (spatial)
Kolmogorov complexity (spatial)
Network properties (spatial and/or temporal)

Process-based Generalized models (temporal)
Time-varying AR(p) models (temporal)
Probabilistic time-varying AR(p) (temporal)

Drift–diffusion–jump models (temporal)
Threshold AR(p) models (temporal)
Likelihood ratio (temporal)

Figure 1. Using the “ball in the well” analogy to compare a system
that is far from tipping (left) and a system that is close to tipping
(right). The system that is further away from tipping recovers faster
from perturbations, with the steeper sides of the well describing
the stronger restoring feedbacks of the system. Closer to tipping,
the sides of the well are shallower, such that the system will take
longer to return from the same perturbation because the restoring
feedbacks are weaker.

most direct way to detect CSD is to consider the rate at which
a system returns to its initial state following a perturbation
(return rate or return time). A resilient system with strong
restoring feedbacks will return to its initial state faster than
one which is near to a tipping point (Wissel, 1984). However,
this method requires the occurrence of a well-defined pertur-
bation and clear knowledge of when the equilibrium state of
the system has been reached, neither of which are always
clearly defined in the real world.

As the system approaches a tipping point and its recovery
slows down, each time step X(t) is more correlated to the

previous time step X(t −1) (as shown in Fig. 2). This can be
measured with lag-1 autocorrelation, or AR(1), which tends
towards 1 as a system experiences CSD prior to tipping to
an alternate state. Visually, this can be viewed by observing
a scatterplot of a time series of the system against the time
series lagged by 1 time point (Fig. 2). When the system is
far from tipping (top row of Fig. 2), there is no relationship
between the current state and the state at the previous point
in time (low AR(1)). As the system approaches the tipping
point, CSD means that there is a strong correlation between
the system state now and at the previous point in time (and
thus a higher AR(1)). Larger deviations in the red section
of the time series can be seen, further showing this slowing
down and increase in AR(1).

Similarly, as the system struggles to return to its initial
state as resilience is lost, the variance of the system is also
expected to increase, as the system can sample more of the
“state space” (all the possible states the system can be in) due
to the shallower well. However, this is often recorded along-
side an increase in AR(1) because other factors can lead to a
change in variance, such as how the system is forced exter-
nally.

Spatial analogues of the temporal variance and temporal
AR(1) exist, too, with a similar underlying theory to the one
for the temporal ones: as a system approaches a tipping point
and responds more sluggishly to external perturbations and

Earth Syst. Dynam., 15, 1117–1135, 2024 https://doi.org/10.5194/esd-15-1117-2024
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Figure 2. A comparison of the lag-1 autocorrelation (AR(1)) for a system that is far from tipping (blue), getting close to tipping (purple), and
close to tipping (red). As the time series approaches tipping (top row), there is no correlation between subsequent values of the time series
in the blue part of the time series (far from tipping). However, closer to tipping, in the purple and then red regions of the time series, there
are correlations and thus higher AR(1) values. In the time series itself there are clear deviations towards the end compared to the beginning,
suggesting that CSD occurs as the tipping point approaches. The early warnings are calculated on a moving window (coloured regions in the
bottom plot). Here, AR(1) is shown at the end of the window used to calculate it, with examples shown as coloured points to match those
windows on the detrended time series.

samples more of the state space, it is expected that there will
be a higher spatial autocorrelation (Dakos et al., 2010) and
spatial variance (Guttal and Jayaprakash, 2009).

Just like AR(1) and variance, all other CSD-based early
warnings aim at detecting characteristic changes in the dy-
namical patterns of the system either by directly estimating
a statistical property (e.g. spectral reddening) or by fitting
a statistical model (e.g. detrended fluctuation analysis) (Ta-
ble 2). A parallel approach involves more complex methods
to predict the movement towards tipping points that involve
the use of simple process-based models. One such example
is that of using a generalized model that integrates knowl-
edge about the system into a model, which may allow us
to estimate changes in the leading eigenvalue of the system

once minimal model assumptions have been made (Lade and
Gross, 2012).

2.2 Early warnings not based on critical slowing down
(non-CSD-based)

CSD-based early warnings rely on the assumption that the
system state shows only small deviations around the equilib-
rium state of the system. However, this assumption does not
hold in the presence of strong stochasticity. In other cases,
either CSD is hard to measure or more idiosyncratic met-
rics have been suggested to act as alternatives to CSD-based
warnings. Below, we outline a few of the most representative
non-CSD-based early warnings (Table 2).

https://doi.org/10.5194/esd-15-1117-2024 Earth Syst. Dynam., 15, 1117–1135, 2024
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2.2.1 Skewness

As the current equilibrium state of the system is losing re-
silience and the probability to shift to an alternative equilib-
rium increases, the temporal distribution of states of the sys-
tem is expected to become increasingly skewed toward the
alternative state. This can be quantified by the skewness of
the system. The skewness may increase or decrease, depend-
ing on whether the alternative equilibrium is larger or smaller
than the current equilibrium (Guttal and Jayaprakash, 2008).
Similarly to the change in skewness observed between the
two states with temporal data, it is also possible to observe
this change in skewness in the spatial domain (Guttal and
Jayaprakash, 2009).

2.2.2 Flickering

“Flickering” is the situation where strong stochasticity can
“push” a system temporarily into the basin of attraction of
the alternative state before returning to the current state with
increasing likelihood as the system is approaching tipping
(Dakos et al., 2013; Wang et al., 2012). Flickering can be
measured either by a simple increase in variance (Dakos
et al., 2013) or by more complex statistical approaches,
e.g. quickest detection method (Carpenter et al., 2014) and
heteroscedasticity (Seekell et al., 2012; Seekell and Dakos,
2015).

2.2.3 Potential analysis

Information about a system at multiple sampling points
through time or multiple locations across space can allow
us to reconstruct a “stability landscape” of the system – or
potential, which gives an idea of the most frequent states of
the systems observed in systems experiencing different envi-
ronmental conditions and history (Livina et al., 2010). Multi-
modality in such a landscape for a given set of environmental
conditions suggests that the system could exhibit alternative
stable states for that range of conditions (Abis and Brovkin,
2019; Hirota et al., 2011; Scheffer et al., 2012b; Staver et al.,
2011), although seasonality patterns should be accounted for
to reduce misinterpretation of externally forced “states”.

2.2.4 Spatial patterns

A number of ecosystems have a clear spatial structure which
is self-organized (e.g. drylands, peatlands, salt marshes, mus-
sel beds; Rietkerk et al., 2008). Theoretical models have
shown that the size and shape of the spatial patterns change in
a consistent way along stress gradients, and, as such, they are
good indicators of ecosystem degradation (von Hardenberg
et al., 2001; Kéfi et al., 2007; Rietkerk et al., 2004). Proba-
bly one of the most studied examples is the case of dryland
ecosystems, where changes in the shape of regular patterns
(Rietkerk et al., 2004) and in the patch size distribution (Kéfi

et al., 2007) could inform us about the stress experienced by
the ecosystem (Dakos et al., 2011).

2.2.5 Fitting a threshold model

An alternative approach to pattern-based early warnings is
based on fitting process-based models on the time series of a
system prior to a tipping point. This approach mainly consists
of fitting the simplest dynamical model with a tipping point
(i.e. a saddle-node normal form) (Ditlevsen and Ditlevsen,
2023) and testing its likelihood compared to a model without
a tipping point (Boettiger and Hastings, 2012b) or of fitting
threshold models assuming simple autoregressive state-space
models (Ives and Dakos, 2012; Laitinen et al., 2021).

2.2.6 Structural changes

A novel way to detect tipping points involves monitoring
structural change properties (e.g. connectivity, node central-
ity) in network systems (i.e. a network of interacting com-
ponents) like spatially connected sites, interacting actors, or
species in a community (Cavaliere et al., 2016; Mayfield
et al., 2020; Yin et al., 2016). Alternatively, the temporal
correlation between components in multivariate systems has
been used to construct an interaction network and analyse its
structural properties (Tirabassi et al., 2014).

2.2.7 Trait changes

Another idiosyncratic approach involves monitoring changes
in the statistical moments of fitness-related traits (e.g. body
size) (Clements and Ozgul, 2018). Such trait changes have
been found in populations under stress where there are
changes in the traits of individuals (i.e. decreasing mean and
increasing variance in body size) (Clements and Ozgul, 2016;
Spanbauer et al., 2016). These trait-based and the above-
mentioned structural-based signals are case-specific and id-
iosyncratic to the details of the system, as there is no uni-
versal mechanism that would generate an expected pattern
related to the approach of tipping points.

3 Overview of early warnings empirical research in
the last 20 years

We performed a (non-exhaustive) literature review on the
empirical (not theoretical) use of warning signals. We
first did a topic search (TS) that included title, abstract,
and keywords in the Web of Science for the period
from 1 January 2004 to 1 April 2023 with the follow-
ing terms. TS= ((“tipping point∗” or “tipping” or “catas-
trophic bifurcation∗” or “catastrophic shift∗” or “regime
shift∗” or “abrupt shift∗” or “critical transition∗”) and
(“early warning∗” or “early warning∗” or “warning sign∗”
OR “resilience indicator∗” or “leading indicator∗” OR
“precursor∗”)). We selected the year 2004 as the starting date
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of our search, despite the fact that CSD was known in ecol-
ogy much earlier (Wissel, 1984) and that signatures of catas-
trophic bifurcations were theoretically described for dynam-
ical systems (Gilmore, 1981). Our choice was driven by the
fact that 2004 is around the time of the first studies in climate
(Held and Kleinen, 2004; Kleinen et al., 2003) and ecology
(Carpenter and Brock, 2006) where the theoretical idea of us-
ing CSD as a warning signal emerged, while a few years later
the first review on early warnings on critical transitions was
published (Scheffer et al., 2009). Within this time period, our
topic search returned 887 unique publications. For complete-
ness, we also ran the same topic search before 2004 going
back to 1960, and we retrieved 11 publications of which only
1 was related to bifurcations. Clearly, we might have missed
relevant records with the TS we selected. For example, had
we also included the term “phase transition∗”, we would have
retrieved 3916 records. We decided not to include this term,
as it pertains to a specific and rich field of physics, but with
our TS we are confident to have a rather complete overview
of the tipping point (and related terms) literature.

We screened all 887 publications to select only the ones
where there was an empirical application of early warnings
(i.e. an indicator was measured on real data to signal the
occurrence of a tipping point). This screening led to 229
papers that we classified as ones that included at least one
empirical application of early warnings. For each paper, we
collected the following information: “domain” (e.g. climate,
ecology), “system” (e.g. Arctic sea ice, fisheries, mental de-
pression), the “tipping point” described, data source (e.g.
lab experiment, field survey, remote-sensed datasets, social
data), “data type” (i.e. temporal, spatial, spatiotemporal), “in-
dicator” (i.e. the specific warning signal(s) used), and “per-
formance” (whether the performance of the early warning
was reported in the paper as positive, negative, mixed (in the
case of multiple signals used or multiple datasets analysed),
or inconclusive). To facilitate the analysis, we regrouped the
“data source” and “indicator” categories into broader groups
(see Sect. S1 in the Supplement). We also created two ex-
tra categories: we classified systems under a specific “field”,
and we introduced an “indicator type” based on whether the
early warning was CSD-based or non-CSD based. We then
excluded the running year 2023 and summarized results in
terms of unique publications using simple statistics and allu-
vial plots in R (4.3.1).

3.1 Overall use of early warnings across disciplines

We were able to classify the total 229 papers published
from 2004 to 2023 into five main domains: ecology, climate,
health, social sciences, and physical sciences. We found that
empirical papers first appeared in 2007 in the domains of
ecology and climate but that the first papers in health, so-
cial sciences, and physical sciences were only published af-
ter 2010 and 2011 (Fig. 3). This change may be associated
with the highly cited review by Scheffer et al. (2009) that in-

Figure 3. Evolution of studies applying early warnings in empirical
datasets. The total 229 papers we identified through our literature
review between 2004 and 2022 were classified within five main sci-
entific domains (ecology, health, climate, social sciences, and phys-
ical sciences). The dotted white line shows the cumulative number
of papers.

troduced (and popularized) the terms “early warning signals”
and “critical transitions”. Since then, the number of empiri-
cal studies has quickly increased but has remained dominated
by ecology (43.6 % of the papers overall), followed by health
(22.6 %), climate (14.6 %), social sciences (12 %), and phys-
ical sciences (7.6 %) – showing the diversification of the uses
of early warning (Fig. 3).

The higher number of publications in the health domain
compared to the climate domain is unexpected. We found
a large number of studies in the medical field (Fig. S1 in
the Supplement) that form a distinct group on the emer-
gence of human diseases, such as cancer (Liu et al., 2020),
which use a non-CSD context-specific early warning (“dy-
namic_network_biomarkers”; see also Sect. 3.3). Zooming
into within each domain, we observed that the most ecolog-
ical studies are on terrestrial and freshwater fields (Fig. S1),
namely on drylands and in forest and lake ecosystems (Ta-
ble S1 in the Supplement). The majority of climate studies
are on past climate transitions and modern records (Fig. S1,
Table S2), while the social studies are split between soci-
etal shifts (like in politics, social behaviour, and transport)
and finance transitions (Fig. S1, Table S4). Lastly, studies on
physical sciences appear more heterogeneous, including tip-
ping points in materials, power systems, and even astronomy
(Fig. S1, Table S5).

3.2 Multiple sources of data used

Across scientific domains, the vast majority of early warn-
ings were analysed on temporal data (77.7 %), while the spa-
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Figure 4. Alluvial plot connecting scientific domains, data sources, and data types. Colours indicate the data source used for the estimation
of early warnings. The size of the boxes in each column represents the proportion of each category. The figure is “read” from the middle
column (b, “data source”) to either the right (c, “data type”) or the left (a, “scientific domain”). The thickness of the lines is proportional
to the studies of a given data source that belong to a certain domain (from the “data source” column, b, to the “domain” column, a) or is
proportional to the specific data type used (from the “data source” column, b, to the “data type” column, c). For example, for the “data source”
field experiment (light green), all studies using field experiments belong to the “ecology” domain, while field experiments are split into three
types of data (spatial, spatiotemporal, and temporal). field_exp: field experiment; lab_exp: lab experiment; palaeo: palaeo-reconstructed data;
remote-sensed: data through remote sensing; social_data: financial data and from social media; survey: data from surveys (field, lab, social).

tial data were used in only 8 % of all studies (Fig. 4) only
pertaining to ecology (Fig. S2). Survey data made up the ma-
jority of the data sources (43.8 %; including field surveys,
social survey data, data from weather stations or other mon-
itoring devices, medical data from hospitalization records
to electroencephalograms (EEGs)), followed by data from
lab experiments (20.7 %), remote sensing (12 %), palaeo-
reconstructions (10 %), and field experiments (7 %). This
partitioning can mostly be explained by our classification,
meaning that we have grouped together a heterogeneity of
data sources (e.g. field surveys, historical climate data, social
study surveys, hospitalization records; Sect. S1). However,
it also reflects the availability of each data source (e.g. most
survey and palaeo data were readily available and reanalysed
in the context of tipping points) or the difficulty in their ac-
quisition (e.g. field experiments are harder to execute com-
pared to lab experiments). Looking at how data sources are
used across domains, ecology is the only domain where all
kinds of data sources have been used. What is also interest-
ing to note is that two sources of data are increasingly used:
survey data and remote-sensed data (Fig. S3). Specifically,

the latter were the latest to be used (2011) but show a consis-
tent rising pattern over the last years, mainly due to the fact
that satellite products span a long enough time period by now
(∼ 20 years) to allow the estimation of early warnings.

A closer look at studies using remote-sensed products re-
veals a focus on the analysis of temporal early warning in
land environments, mainly forests (e.g Boulton et al., 2022;
Majumder et al., 2019; Saatchi et al., 2021) and drylands (e.g
Veldhuis et al., 2022; Uden et al., 2019; Wu et al., 2023), but
this also extends to the cryosphere, focusing on the analy-
sis of the Arctic and the Antarctic ice sheets (AlMomani and
Bollt, 2021; Carstensen and Weydmann, 2012). The spatial
resolution of remote-sensed data has also been exploited for
the identification of spatial early warning, especially regard-
ing desertification (Berdugo et al., 2017) and vegetation anal-
yses (Majumder et al., 2019). Overall, we found that the use
of remote sensing products offers two distinct yet comple-
mentary approaches to detect early warning: high-level prod-
ucts, which correspond to physical variables, for instance
sea surface temperature (SST) (Wu et al., 2015), or differ-
ent types of indices like the normalized difference vegetation
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index (NDVI) (Liu et al., 2019) and low-level products or
direct sensor observables.

3.3 A growing list of early warnings

We recorded 65 different early warnings after reclassifying
some into the same group (for example, variance, coeffi-
cient of variation, and standard deviation were reclassified as
“variance”; Sect. S1). As expected, the majority were CSD-
based warnings (74.9 %), while 25.1 % were non-CSD-based
ones. Out of the 65 reclassified early warnings, only 21 were
used more than once (the remaining 44 early warnings were
used only once; Figs. 5, S5). Variance and autocorrelation
were the dominantly used early warnings across all domains,
followed by skewness (Fig. 5). Besides these 3 early warn-
ings, the remaining 18 were used selectively within particu-
lar domains. The most striking are “spatial variance” (only
used in ecological studies) and “dynamic network biomark-
ers” (only used in health studies; see also Sect. 3.1). Within
domains (Fig. S4), ecology is the domain with the highest
heterogeneity in the early warnings (18 out of the 21 used
more than once), followed by health (10) and climate (7).

3.4 A positively skewed performance of early warnings

Of all studies, 67.8 % reported a positive performance of
all 65 reclassified early warnings across all domains (Fig. 6).
Only 3.4 % of the studies reported negative performances
(i.e. no expected warning or opposite to expected warning).
Studies in ecology reported the most negative results, fol-
lowed by climate and health, with none reported for phys-
ical or social sciences. The performance in the rest of the
studies was either mixed (i.e. positive or negative in studies
which analysed multiple early warnings or datasets; 24.7 %)
or inconclusive (i.e. a statistically weak result; 4.8 %). This is
an impressively positively skewed result potentially reflect-
ing the known bias in publishing significant results (Fanelli,
2012) or in post hoc analysis where a tipping point has al-
ready been documented and early warnings have been ap-
plied in hindsight (Boettiger and Hastings, 2012a). Inter-
estingly, all the negative results included CSD-based warn-
ings, while for non-CSD warnings only a small fraction re-
ported inconclusive or mixed results (Fig. 6). This difference
could be attributed to the fact that non-CSD warnings are
at times idiosyncratically developed for the specific system
under study compared to the more generic CSD-based warn-
ings. Indeed, focusing on the 21 early warnings that were
used more than once (Sect. 3.3), such system-specific indica-
tors (such as the “dynamical_network_biomarkers”) always
had a positive result (Fig. 7). Overall, the least-used warn-
ings were associated with a positive performance, whereas
the most-used ones (like variance, autocorrelation, skewness,
and power spectrum) showed all types of performance. There
was no early warning that had predominantly negative or
mixed results except for kurtosis (Fig. 7). There was no par-

ticular difference in the performance across domains of the
early warnings used more than once (Fig. S5).

4 Discussion

The idea of early warnings based on CSD is relatively old.
In the book Catastrophe Theory for Scientists and Engineers
(1981), Gilmore already talked about “catastrophe flags” for
indicators of CSD (Gilmore, 1981). After an early ecolog-
ical paper (Wissel, 1984), the topic generated an enormous
amount of interest, mainly theoretical, 20 years later, with
the first empirical tests being on past climate tipping points
(Dakos et al., 2008; Livina and Lenton, 2007). Our review
of the literature of the last 2 decades shows how the use of
these indicators has since spread to many other disciplines.
Indeed, the generality of the approach – the fact that CSD
can be observed in many dynamical systems, independent of
the details of the underlying dynamical equations – created
an opportunity for testing their validity on many systems and
explains the enthusiasm they generated and the diversifica-
tion of applications which followed.

4.1 Early warning applications: a success story?

Our literature overview suggests that the 65 early warning
signals identified successfully detected a tipping point al-
most 70 % of the times they were used. This is an impres-
sively positive result which should nonetheless be treated
with caution. Firstly, in many cases, the empirical studies
were conducted on systems that are either relatively simple or
under controlled lab conditions, making them mostly proof-
of-principle demonstrations (Dai et al., 2012; Veraart et al.,
2012). Secondly, most empirical studies were restricted to
hindsight application, meaning that an a priori knowledge of
a tipping point may introduce bias towards detecting CSD in-
dicators (Boettiger and Hastings, 2012a; Spears et al., 2017).
Thirdly, the documented publication bias against negative
or insignificant results (Fanelli, 2012; Franco et al., 2014)
probably applies in the case of the early warning research
given the attention this specific topic has attracted in re-
cent years. One important aspect that we have not consid-
ered in the comparative analysis of the reviewed literature is
the fact that each paper uses different statistical methods, dif-
ferent hypothesis-testing approaches (like surrogate data and
Bayesian and frequentist p-values), and different significance
levels to conclude on the identification of an early warning
or not. To what extent such differences may even induce p-
hacking is unclear, but it needs to be acknowledged in future
work.

However, these considerations do not reduce the value and
prospect of early warning research. For instance, one of their
biggest values lies in the possible detection of an approaching
tipping point. A number of studies have demonstrated the po-
tential proximity of tipping points in modern climate data us-
ing early warnings (Boers, 2021; Boulton and Lenton, 2015;
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Figure 5. Number of papers of the 21 early warnings used more than once in our literature review. Each bar is partitioned into the five
scientific domains.

Ditlevsen and Ditlevsen, 2023). It has also become increas-
ingly clear that early warnings can be very useful for com-
paring the resilience of similar ecosystems across space (e.g.
(Forzieri et al., 2022; Lenton et al., 2022; Verbesselt et al.,
2016) to provide an approximate estimate of resilience that
can help prioritize management. In this way, with “resilience
maps”, rather than speculating about the proximity to a po-
tential threshold, we can rank situations at a given moment
and place.

4.2 Challenges

There are a number of conceptual, operational, and method-
ological challenges that can blur the detection of early warn-
ings on real data (Dakos et al., 2015). For these reasons,
some studies have highlighted their failure at detecting early
warnings on data (Burthe et al., 2016), while others have
raised caution about their uninformed use without knowing
more about the system’s drivers and underlying mechanisms
(Boettiger et al., 2013). Our review can be used as a start-
ing point in trying to understand when and why early warn-
ings can fail or not by looking at how they have been ap-
plied within the domains we have identified, as their perfor-
mance seems to be idiosyncratic to the data type and case
study used. In what follows, we discuss more generally some
of the most important challenges related to the use of early
warnings.

4.2.1 Fast changes, slow responses, stochasticity,
multiple drivers, and limited data challenge early
warning performance

The detection of early warnings relies on the assumption that
the system is approaching a transition gradually. A system
should be externally forced on a slow timescale towards the
tipping point while experiencing perturbations on a shorter
timescale such that CSD-based early warning signals can be
estimated. In theory, it is generally assumed that the short-
term noise is independent and identically distributed with a
mean of zero. This is unlikely to be the case with climate
systems experiencing extreme weather events, for example,
which are likely becoming more prevalent with the chang-
ing climate. There have been three “1-in-100-year” droughts
in the Amazon rainforest since 2005 (Erfanian et al., 2017;
Lewis et al., 2011) which clearly alter the signals observed.
For cases like these, it is worth measuring early warnings on
the drivers themselves. If these show early warnings, then it
is likely that signals observed in the system itself are being
driven by changes in forcing rather than by a gradual move-
ment towards tipping. However, early warnings of the drivers
as a false-positive check make sense only in the case where
the drivers are independent from the system variable. For in-
stance, in the case of the Amazon, early warnings of rain-
fall can be seen as indicators of the Amazon tipping itself
because of the strong moisture recycling feedback present

Earth Syst. Dynam., 15, 1117–1135, 2024 https://doi.org/10.5194/esd-15-1117-2024



V. Dakos et al.: Tipping point detection and early warnings in climate, ecological, and human systems 1127

Figure 6. Alluvial plot connecting scientific domains, the performance of the early warnings, and the type of early warning (CSD-based vs
non-CSD-based). Colours indicate the performance. The size of the boxes in each column represents the proportion of each category. The
figure is “read” from the middle column (“performance”, b) to either the right (“early warning type”, c) or the left (“scientific domain”, a).
The thickness of the lines is proportional to the performance that belongs to a certain domain (from the “performance” column, b, to
the “domain” column, a) or is proportional to the type of early warning (from the “performance” column, b, to the “early warning type”
column, c). For example, for the “performance” mixed (blue), studies with mixed performance were done with both CSD-based and non-
CSD-based warnings (“early warning type” column, c), while the CSD-based mixed were found in all domains and the non-CSD-based were
split among climate, ecology, and social sciences (“scientific domain” column, a). “Positive” performance indicates there was a warning
identified, “negative” indicates no warning was identified, and “mixed” indicates positive and negative performances when tested in multiple
datasets or when testing more than one early warning in the same dataset. For “inconclusive”, the results could indicate neither a positive nor
a negative warning.

rather than an external factor inducing early warnings on
Amazon vegetation dynamics.

Things get even more complicated when more than one
driver is acting on the system. In most cases, the assump-
tion is that there is a single driver with a monotonic direc-
tional change towards the tipping point or that there are mul-
tiple drivers which all have the same effect and directionality.
However, it has been shown experimentally that, in the pres-
ence of multiple drivers, contradictory early warnings may
arise even if both drivers would produce similar patterns in
early warnings acting in isolation (Dai et al., 2015).

When monitoring a system, longer time series are desir-
able to detect the upcoming tipping point. For instance, the
best-case studies found in this literature review from remote-
sensed products, which have been available since ∼ 1972,
have approximately 50-year-long time series. However, due
to sensor degradation and upgrades, it can be challenging to
get a long time series from a single sensor, and products are
often created from combined data sources. This can interfere

with most of the early warnings if this merging changes the
signal-to-noise ratio (SNR) across time (Smith et al., 2023).
For example, newer sensors will measure with a greater ra-
diometric accuracy, increasing the SNR and in turn “erro-
neously” increasing the AR(1) as far as an early warning is
concerned. This increase in SNR will also decrease variance,
thus allowing the user to check for anticorrelation between
AR(1) and variance to see if the early warnings are being
influenced or not.

As well as questions around data availability and noise be-
haviour, the inherent timescale of the system being studied
can hinder our ability to detect tipping points. While tipping
is by definition a “fast” process, for slow-moving systems
like the thermohaline circulation (AMOC), this tipping event
occurs over decades; therefore, it could be difficult to detect
that the tipping point has been passed using early warnings.
Another example of this is the Amazon rainforest, where, at
least in modelled vegetation, there is a slow response of the
forest based on the climate change that it has been subjected
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Figure 7. Early warnings (used > 1) and their performance. “Positive” performance indicates there was a warning identified, “negative”
indicates no warning was identified, and “mixed” indicates positive and negative performances when tested in multiple datasets or when
testing more than one early warning in the same dataset. For “inconclusive”, the results could indicate neither a positive nor a negative
warning.

to (Jones et al., 2009). It could take decades for dieback to
occur even under a constant climate such that a tipping point
could be passed long before it is actually realized (Hughes
et al., 2013). This “committed response” has been explored
in a number of GCM experiments (Boulton et al., 2017; Jones
et al., 2009), but it is unclear how early warnings would be
affected by this (van Der Bolt et al., 2021).

4.2.2 Non-specificity of early warnings

The generic and universal character of most (but in partic-
ular CSD-based) early warnings comes at a price of these
warnings not being specific to abrupt and irreversible tip-
ping points. Instead they can also be used to detect smooth
and reversible transitions (Kéfi et al., 2013). This limita-
tion suggests that we need additional indicators, in particular
system-specific indicators (Boettiger et al., 2013). In the case
of spatially structured ecosystems such as drylands, studies
have shown that temporal early warnings could fail (Dakos
et al., 2011), in which case the use of the changes in the pat-
terns themselves could provide a good alternative (Kéfi et al.,
2007; Rietkerk et al., 2004). In the same way, specific indi-
cators have been developed in health sciences for the moni-
toring of disease emergence (Table S3).

System-specific early warnings may also be a better
prospect, where understanding processes in the system can
help us to monitor its resilience in novel ways (Boulton et al.,
2013). However, the original idea behind the development of
early warnings was based on the premise that this knowl-
edge is missing or insufficient; thus a pattern-based approach
could be more informative (Scheffer et al., 2009). Therefore,
the challenge is to strike the right level of system-specific
warnings and to combine them with the generic ones. For in-
stance, trait-based (Clements and Ozgul, 2016) and function-
based (Hu et al., 2022) warnings have been recently sug-
gested as complementary to the existing generic warning sig-
nals. A first step towards that direction could be to map the
65 classified early warnings we reviewed on a gradient of
generic to system-specific indicators.

4.2.3 Multivariate (high-dimensional) systems

Most early warnings are well-tailored for unidimensional
systems, meaning systems described by a single observable
(e.g. vegetation cover). However, real dynamical systems are
typically high-dimensional, and the quantification of early
warnings in those multivariate systems presents challenges.
For instance, two different variables may give conflicting in-
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formation or obscure a clear signal (Boerlijst et al., 2013;
Weinans et al., 2021). In theory, one expects that the variables
directly involved in the interactions to cause a tipping point
are the best to monitor (Carpenter et al., 2014). However, it is
challenging to know from which variable(s) to measure early
warnings in a multivariate system (Dakos, 2018).

Two main approaches in the analysis of multivariate sys-
tems have recently been developed. One relies on conceiving
the system as a network, where the nodes are the variables
and whose dynamics are followed through time, and evaluat-
ing changes in the structure of the network. For instance, as
the system moves towards a tipping point, changes in degree
distributions of such a network are representative for an ap-
proaching tipping point (Lu et al., 2021). Recent research ex-
plores a complementary approach where causal links are cal-
culated instead of correlation links and where the strength of
the causal link works as the indicator of resilience (Nowack
et al., 2020).

Alternatively, dimension-reduction techniques can capture
overall network dynamics into a representative statistic. For
instance, principal component analysis (PCA; often referred
to as empirical orthogonal function (EOF) in climate science)
can be used to get directions of change (Held and Kleinen,
2004; Weinans et al., 2019). Data can be projected onto the
leading principal component, effectively yielding a univari-
ate time series on which the univariate early warning can be
applied (Bathiany et al., 2013; Boulton and Lenton, 2015;
Held and Kleinen, 2004). This analysis does not make any a
priori assumptions about the interactions between the differ-
ent network nodes and is therefore quite flexible in its use.
However, it requires large amounts of high-quality data to
yield accurate results. The underlying assumption is that, as
the system approaches the tipping point, the dynamics be-
come more correlated, leading to a high explained variance
of a PCA and clear directionality in the dynamics (Lever
et al., 2020).

4.2.4 Tipping cascades

A more peculiar challenge in the application of early warn-
ings is their ability to detect cascading tipping points, where
a tipping point in one system has a knock-on effect on an-
other system, causing that to also tip (Klose et al., 2020; van
de Leemput et al., 2018; Saade et al., 2023). Unless these
systems are linked in such a way that early warnings can
be observed in both systems, the cascade is likely to present
as a shock to the second system such that it would be un-
predictable whilst monitoring it in isolation (Bathiany et al.,
2013). For systems where tipping in one system causes the
connected system partially towards a tipping point (known
as a “two-phase transition”), a stepwise jump in early warn-
ings in the second system can be detected. For coupled sys-
tems where the tipping in the second system happens instan-
taneously (a “joint cascade”) or soon after the tipping in the

first system (a “domino cascade”), early warnings are un-
likely to be detectable (Klose et al., 2021).

4.3 Opportunities

These challenges associated with the use of early warnings
are also accompanied by a number of opportunities to im-
prove their detection in real data. Below we outline a few of
the most promising ones.

4.3.1 Composite metrics

Although there exists a multitude of early warnings (CSD-
based and non-CSD-based; generic and system-specific; and
on spatial, structural, and temporal data), few studies have
compared in a systematic way how these warnings behave
one against the other or across different systems (Dakos
et al., 2011; Veldhuis et al., 2022). Apart from the CSD-
based warnings where their relationships are mathematically
known (Kuehn, 2012), we simply do not know what similar
information early warnings provide. Understanding the in-
terrelationships between all types of the early warnings most
used will be crucial to improve their use for detecting tip-
ping points. Composite metrics – where multiple early warn-
ings are combined (Drake and Griffen, 2010), abundance-
based with trait-based warnings are compared (Clements and
Ozgul, 2016), or machine learning has been used to train
models of multiple warnings as predictors (Brett and Ro-
hani, 2020) – have been suggested to improve the signifi-
cance and detectability of approaching tipping points. Given
the increasing capacity to monitor the multivariate aspects of
most systems (discussed in Sect. 4.2.3) and the increasing
availability of such data (see Sect. 4.3.2), we are not far from
estimating multiple early warnings on multiple dimensions
of a system. The next step is to develop meaningful ways to
best combine them for detecting tipping points.

4.3.2 Increasing data availability: open databases and
remote-sensed data

Over the last decade, data from long-term databases and re-
mote sensing have grown to become the primary sources
for capturing temporal and spatial early warnings for tip-
ping points. Especially for remote sensing data, this coin-
cides with the expansion of freely available Earth observa-
tion datasets combined with access to cloud-based systems
which provide the computational power to process this in-
crease in data (Gorelick et al., 2017). A primary focus has
been on the temporal analysis of optical imagery from satel-
lites such as the Moderate Resolution Imaging Spectrora-
diometer (MODIS) (Liu et al., 2019; Majumder et al., 2019)
or from the AVHRR (Lenton et al., 2022). Additionally, the
vegetation optical depth (VOD) derived from microwave pas-
sive radiometers (Moesinger et al., 2020) has been employed
to analyse early warnings, with temporal records since the
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late 1970s (Boulton et al., 2022; Smith et al., 2023). Overall,
the continued growth of remotely sensed datasets is likely
to drive further temporal early warning research, while the
emergence of new satellite sensors with enhanced spatial res-
olutions (in the order of metres) will also enable an improved
analysis of spatial early warning at large scales. However,
such development requires a profound understanding of the
acquisition systems to effectively control and account for pa-
rameters that may impact the extraction of early warnings.

4.3.3 New approaches: machine learning

The success of neural networks for time series classification
problems has inspired the development of machine learning
(ML) techniques for early warning detection. There is a nat-
ural synergy to this approach in that the same CSD phenom-
ena manifest across a wide range of systems approaching tip-
ping points, so the notoriously data-intensive task of training
a neural network can be accomplished using plentiful syn-
thetic data and still produce a result which can plausibly be
applied to empirical data.

Deep learning models which combine convolutional lay-
ers have been shown to outperform methods using statisti-
cal CSD-based warnings (e.g. variance, AR(1)) in a variety
of both real and simulated case studies (Bury et al., 2021;
Deb et al., 2022). Furthermore, these models have exhibited
success in inferring the type of upcoming bifurcation from
observed pre-transition dynamics and have performed well
in extensions to phase transitions on spatiotemporal lattices
(Dylewsky et al., 2023). Other ML techniques can also tell
us something about how far systems are from tipping. For
example, random forest models could be used to determine
the factors that determine autocorrelation in forest areas on a
global scale and thus how close to tipping these forest areas
could be based on driving variables (Forzieri et al., 2022), or
they can help us determine the factors the influence the occur-
rence of tipping points (Berdugo et al., 2022). However, one
should always bear in mind that ML will be as good as their
training sets. Testing these approaches on existing datasets
will help understand their potential along with testing them
in cases of noise- or rate-tipping. Taking into consideration
their limitations (Lapeyrolerie and Boettiger, 2022), combin-
ing ML techniques with “traditional” early warnings could
become promising for monitoring systems that may be ap-
proaching tipping points.

5 Conclusions

The unprecedented amount of data originating from remote
sensing systems, field measurements, surveys, and simulated
data, coupled with innovative models and cutting-edge com-
puting, has made possible the development of a multitude of
tools and approaches for detecting tipping points in a variety
of scientific fields. Early warnings can tell us that “some-
thing” important may be about to happen, but they do not

tell us what precisely that “something” may be and when ex-
actly it will happen (Dakos et al., 2015). The next step is
to test the real potential of early warnings as preventive and
management tools in anticipating natural and human-induced
changes to come.
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