ORIGINAL ARTICLE

Root exudation patterns of contrasting rice (*Oryza sativa* L.) lines in response to P limitation

Henning Schwalm¹ · Christiana Staudinger^{1,2} · Mohammad-Reza Hajirezaei³ · Eva Mundschenk⁴ · Alireza Golestanifard¹ · Maire Holz⁴ · Matthias Wissuwa⁵ · Eva Oburger¹

Received: 17 July 2024 / Accepted: 14 October 2024 © The Author(s) 2024

Abstract

Main conclusion Rice exudation patterns changed in response to P deficiency. Higher exudation rates were associated with lower biomass production. Total carboxylate exudation rates mostly decreased under P-limiting conditions.

Abstract Within the rhizosphere, root exudates are believed to play an important role in plant phosphorus (P) acquisition. This could be particularly beneficial in upland rice production where P is often limited. However, knowledge gaps remain on how P deficiency shapes quality and quantity of root exudation in upland rice genotypes. We therefore investigated growth, plant P uptake, and root exudation patterns of two rice genotypes differing in P efficiency in semi-hydroponics at two P levels (low $P = 1 \mu M$, adequate $P = 100 \mu M$). Root exudates were collected hydroponically 28 and 40 days after germination to analyze total carbon (C), carbohydrates, amino acids, phenolic compounds spectrophotometrically and carboxylates using a targeted LC–MS approach. Despite their reported role in P solubilization, we observed that carboxylate exudation rates per unit root surface area were not increased under P deficiency. In contrast, exudation rates of total C, carbohydrates, amino acids and phenolics were mostly enhanced in response to low P supply. Overall, higher exudation rates were associated with lower biomass production in the P-inefficient genotype Nerica4, whereas the larger root system with lower C investment (per unit root surface area) in root exudates of the P-efficient DJ123 allowed for better plant growth under P deficiency. Our results reveal new insights into genotype-specific resource allocation in rice under P-limiting conditions that warrant follow-up research including more genotypes.

Keywords Amino acids · Carbohydrates · Carboxylates · Phenolics · Phosphorus

Abbreviations

AP Adequate phosphorus

C Carbon

DAG Days after germinationLP Low phosphorusP Phosphorus

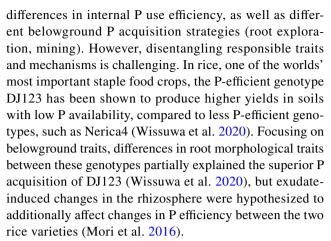
Communicated by Dorothea Bartels.

Henning Schwalm and Christiana Staudinger contributed equally.

Eva Oburger eva.oburger@boku.ac.at

Published online: 23 October 2024

- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, 3430 Tulln an der Donau, Vienna, Austria
- Department of Crop Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, 3430 Tulln an der Donau, Vienna, Austria
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gartersleben, Germany
- Group of Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., Müncheberg, Germany
- ⁵ Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan


123 Page 2 of 12 Planta (2024) 260:123

Introduction

Phosphorus (P) is often a major growth-limiting factor in agroecosystems, particularly on highly weathered tropical soils where upland rice is typically cultivated (Lynch 2011; Fageria and Oliveira 2014; Saito et al. 2019). As essential plant macronutrient, P is a constituent of various organic molecules (e.g., nucleic acids, phospholipids) and involved in metabolic energy transfer processes in the form of ATP, explaining its vital role in photosynthesis and respiration, and subsequently in plant growth (Plaxton and Tran 2011). An improved understanding of and consequent breeding for root and rhizosphere traits involved in efficient P acquisition is considered a key strategy for rendering agricultural production more sustainable (Bishopp and Lynch 2015; Oburger et al. 2022a, b). Plants increase P acquisition by (i) enhanced top soil exploration via increased lateral root growth (Lynch and Brown 2001) and/or in association with mycorrhizal fungi (Smith et al. 2003), as well as via (ii) increased soil mining driven by enhanced exudation of organic compounds (Lambers et al. 2006) and by nurturing beneficial rhizosphere-associated microbes (Richardson and Simpson 2011). While the importance of enhanced soil exploration has been repeatedly demonstrated (Lynch and Brown 2001; Wissuwa et al. 2020), the role of root exudation in improving P acquisition in rice is still not well understood.

Root exudates are plant metabolites released by roots into the surrounding soil. They are key components within the rhizosphere as they mediate the interaction between plant roots, the soil matrix and the root-associated microbiome (Vives-Peris et al. 2019). Various low molecular weight root exudates were found to increase nutrient desorption from soil minerals and organic matter which renders the nutrients more available for plant uptake (Clarholm et al. 2015; Chai and Schachtman 2022). However, the relationship between root exudation and nutrient availability is bidirectional. Root exudates are synthesized from photosynthates and the very same nutrients that exudate help acquire simultaneously function as important building blocks and regulatory molecules in plant metabolism. Consequently, root exudates not only modify nutrient availability in the rhizosphere but also the overall plant nutrient status, which in turn can affect root exudation (Carvalhais et al. 2011; Canarini et al. 2019).

Differences in the ability to maintain sufficient growth and yield under nutrient limiting conditions have been repeatedly reported among various crop genotypes (Sadana et al. 2002; Paponov et al. 2005; Wacker-Fester et al. 2019). The difference in growth between genotypes grown under a certain concentration of P supply (here defined as P efficiency, George et al. 2011) is determined by

Previous studies showed that root exudation rates of specific carbohydrates, amino acids, organic acids and phenolics can increase in maize (Zea mays) and bean (Phaseolus vulgaris) under P limitation (Juszczuk et al. 2004; Carvalhais et al. 2011). Metal complexing root exudates have the potential to contribute to P availability by triggering iron-/ aluminum-oxide dissolution via surface complexation, thereby co-liberating surface bound P or by directly mobilizing adsorbed P via ligand exchange. In particular, the anions of di- and tri-carboxylic organic acids, such as citrate, malate or oxalate (hereinafter summarized as carboxylates), are known to mobilize P and thereby improve P acquisition (Hoffland et al. 2006; Oburger et al. 2011; Ding et al. 2021). Uncharged molecules, such as most carbohydrates, or charged molecules with low metal complexation affinity, such as proteinogenic amino acids, are unlikely to solubilize P directly, but can stimulate microbial activity and turnover in the rhizosphere and thereby contribute to plant nutrient uptake (Carvalhais et al. 2011; Raymond et al. 2021). In rice, enhanced carboxylate exudation under P deficient conditions has been reported (Hoffland et al. 2006), but the effect of P deficiency on exudation rates of other organic compounds which may be important for microbial community assembly has not been extensively studied.

Understanding the response of root exudation to P limitation is a prerequisite to unravel the potential role of exudation in improved P acquisition of upland rice. We therefore investigated the effect of P deficiency on exudation of total organic C and other main exudate compound classes including carbohydrates, amino acids, phenolics and carboxylates, at two time points [i.e., 28 and 40 days after germination (DAG)] in two rice genotypes with contrasting P efficiencies (DJ123 and Nerica4) in a semi-hydroponic setup with limiting and adequate P supply. We hypothesized that the exudation rates of total C and of the different exudate compound classes investigated (carbohydrates, amino acids, phenolics and carboxylates) increase in response to P limitation (H1), and are greater in the P-efficient genotype DJ123 compared

Planta (2024) 260:123 Page 3 of 12 123

to inefficient Nerica4 (H2), and that exudation rates decrease over time (H3).

Materials and methods

Plant material and experimental design

Two contrasting upland rice (Oryza sativa L.) genotypes were used in this study: DJ123 with high P efficiency and Nerica4 with low P efficiency (Wissuwa et al. 2020). Seeds were surface-sterilized in 15% NaOCl for 3 min and washed prior to germination on filter paper imbibed with 12 μM FeEDTA and 0.1 mM CaCl₂ at room temperature for seven days. Germinated rice seedlings were transferred into free draining 2 L pots filled with 2.8 kg of quartz sand (Quarzwerke Österreich GmBH, Melk, Austria) and with half strength Yoshida solution (Yoshida et al. 1972) with an adjusted pH of 6 prepared in deionized water with P concentrations of either 1 µM (low P) or 100 µM (adequate P supply). The semi-hydroponic experiment was conducted in a greenhouse with day/night temperatures of 30 °C/24 °C, air humidity of 70%, and a photosynthetic photon-flux density of min. 396 μmol m⁻² s⁻¹ (PAR). Six replicates per genotype and per P treatment were grown in a completely randomized 2×2 factorial design. Plants reached average phenological growth stages of BBCH 14 (four leaves unfolded) and BBCH 16 (six leaves unfolded) at 28 and 40 DAG, respectively (Bleiholder et al. 2001).

Root exudate sampling

At 28 and 40 DAG, root exudates were collected according to the soil-hydroponic-hybrid approach (Oburger et al. 2014; Santangeli et al. 2024). High-quality (HQ) water (conductivity 0.055–0.08 μS cm⁻¹; Thermo Electron LED GmbH, Niederelbert, Germany) was used to prepare an exudate sampling solution containing 10 mg L⁻¹ sterilizing agent (Micropur® Classic MC 1'000F; Katadyn Group, Kemptthal, Switzerland). Briefly, roots were gently rinsed with deionized water to remove the sand and clean root systems of intact plants were transferred to containers containing fresh solution (later to be discarded) for osmotic adjustment for 5 min. Thereafter, plants were placed into opaque containers containing 0.3 L (28 DAG) or 0.5 L (40 DAG) of exudate sampling solution. Sampling containers with submerged roots were wrapped in aluminum foil and moved back into the greenhouse for 3 h of exudate collection. Exudate solution was then filtered with 0.2 µm cellulose acetate filters (ChromafilTM CA-20/25 (S); Macherey–NagelTM GmbH, Düren, Germany) aliquoted and frozen at −20 °C. Aliquots were freeze-dried and reconstituted in a smaller volume with HQ water prior to spectrophotometric and LC-MS analyses.

Spectrophotometric analysis of total C, carbohydrates, amino acids and phenolic compounds

A spectrophotometry-based assay was conducted to quantify dissolved organic C (=total C) concentration in rice exudate samples (Oburger et al. 2022a, b). Absorbance of filtered original exudate solution was determined at 260 nm (Infinite 200 Pro; Tecan, Grödig, Austria) and potassium hydrogen phthalate (KHP) was used as a standard (calibration range from 1 to 49 µM). Spectrophotometric quantification of other exudate compound classes required adapted re-suspension of lyophilized exudate samples in HQ water. Applied protocols included an anthrone colorimetric assay for the determination of total carbohydrates with absorbance measured at 625 nm (Hansen and Møller 1975), a spectrofluorometric assay without ammonium correction (as ammonium concentrations were below detection limit) for amino acids with an emission wavelength of 450 nm and an excitation wavelength of 340 nm (Jones et al. 2002), and a modified Folin-Ciocalteu method for the quantification of total phenolics with absorbance measured at 765 nm (Ainsworth and Gillespie 2007). Corresponding standards for calibration were D-glucose for total carbohydrates (calibration range 0.025 to 1 mM), glycine for amino acids (calibration range 0.5 to 50 µM), and chlorogenic acid for phenolics (calibration range 5.6 to $282 \mu M$).

Carboxylates analysis

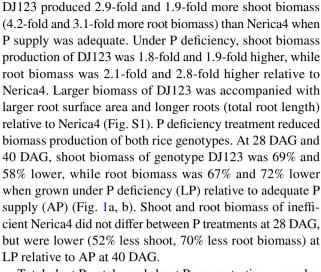
The concentration of carboxylates in rice exudates was assessed on an Agilent 1290 ultra-performance liquid chromatography (UPLC) system coupled to an Agilent 6490 triple quadrupole mass spectrometer (TQMS) (Agilent Technologies). Lyophilized exudate samples were re-suspended in 0.1 mL of HQ water prior to analysis. The chromatographic separation was performed on an Acquity UPLC column, HSS T3, 2.1 × 100 mm, 1.8 µm column at a flow rate of $0.6~\text{mL}~\text{min}^{-1}$ and a column temperature of 40 $^{\circ}\text{C}$ (Waters GmbH). The separation was done with a linear gradient of solvent A (water) containing 0.5% formic acid (v/v). The run was performed in linear mode within 4.5 min. The ESI-MS/ MS analysis was performed in negative ionization mode with nitrogen as drying and nebulising gas. The gas flow was set at 12 L min⁻¹ at 250 °C and the nebulizer pressure was 30 psi. The capillary voltage was 2 kV and the dwell time set to 5 ms. The collision energy ranged from 9 to 69 eV depending on the masses estimated using the MassHunter optimizer software with MS2 Selected Ion Monitoring (SIM). For quantification, a calibration curve was generated from a range of 0.1 to 100 µM per mL for each metabolite. Standard mixtures were measured three times at the beginning, middle and end of sample batch to monitor the stability of the mass spectrometer.

123 Page 4 of 12 Planta (2024) 260:123

In addition, blanks of ultrapure methanol were injected after every 5 samples to avoid cross-contamination. MassHunter software (version 10.1, Agilent Technologies) was used for data acquisition and final qualitative and quantitative analysis.

Root morphological and plant nutrient analysis

An aliquot of the intact root system was weighed and stored in 30% EtOH until root morphological analysis. The remaining root aliquot and the shoot were dried for 72 h at 60 °C to determine root and shoot biomass dry weights. Rice seeds, dried shoot and dried root aliquot were milled and digested with 65% HNO₃ and 30% H₂O₂ using a microwave digestion system (MARS 6; CEM GmbH, Kamp-Lintfort, Germany) and lucerne as certified plant reference (IPE 152; LGC Standards Ltd.) to assess P concentrations with optical emission spectroscopy (ICP-OES OptimaTM 8300; Perkin-Elmer). For each genotype, plant P uptake was calculated as the amount of P present in the plant body, minus 75% of the amount of P contained in seeds. Intact root aliquots stored in EtOH were scanned (Epson Perfection V850 Pro; Seiko Epson Corporation) using the following settings: "professional mode", 720 dpi, 8-bit grayscale, and positive film. Root scans were analyzed with WinRHIZOTM (Version 2019a; Regent Instruments Inc.). Total root length (m) and root surface area (cm²) were calculated by extrapolating the values of the scanned aliquot to the whole root system. Root morphology results are shown in Fig. S1 (supplementary information).


Statistical analysis

Two-way analysis of variance (ANOVA) and Fisher's least significant difference (LSD) test with Benjamini–Hochberg correction to account for multiple comparisons and a Permutational Multivariate Analysis of Variance (PERMANOVA) were carried out with R (version 4.4.0; The R foundation for statistical computing). R was also used to create the figures shown in this work. Data were log- or square root-transformed, if required, to approximate normality and homoscedasticity assumptions. Additionally, two-sample unequal variance t-test for pairwise comparison between time points, between P treatments and between genotype was applied (Tables S1, S2, S4). Means were considered significantly different when the (corrected) *P*-value was lower than 0.05.

Results

Biomass, total P uptake and shoot P concentration

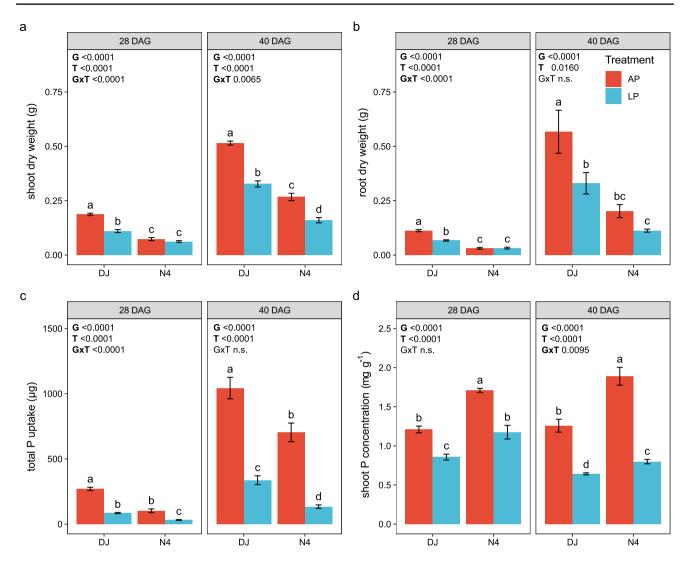
Both genotype and P supply had a significant effect on shoot and root biomass (Fig. 1a, b). Irrespective of P supply and

time point, shoot and root biomass production was higher in

DJ123 relative to P-inefficient Nerica4. At 28 and 40 DAG,

Total plant P uptake and shoot P concentration were also significantly reduced under P deficiency for both genotypes and harvesting dates (Fig. 1c, d). Total plant P uptake was generally higher, while shoot P concentration was lower in P-efficient DJ123 compared to inefficient Nerica4, irrespective of P supply and time point. Under P deficiency and after 28 DAG, total P uptake was 2.7-fold higher in DJ123 relative to Nerica4 (85.01 \pm 3.9 μ g P in DJ123 and 31.8 \pm 3.4 μ g P in Nerica4, mean \pm SE). The genotypic difference for total P uptake decreased over time and was lower at 40 DAG (2.2-fold higher in DJ123 relative to Nerica4 at LP). In contrast, shoot P concentration was higher in Nerica4 (at LP 1.4-fold and 1.3-fold at 28 and 40 DAG, respectively) compared to DJ123 (Fig. 1d).

Effect of time, genotype and P treatment on investigated exudate parameters


Overall, root exudation rates per root surface area of total dissolved organic C, carbohydrates, amino acids, phenolics and carboxylates were significantly affected by time, genotype and P treatment, with time as most significant factor accounting for 50% of the variation in exudation ($R^2 = 0.50$), followed by genotype ($R^2 = 0.26$), and P supply ($R^2 = 0.05$) only being of minor relevance (Table 1).

Exudation rates of total C, carbohydrates, amino acids and phenolic compounds

Overall, exudation rates of dissolved organic C (total organic C), carbohydrates, amino acids and phenolics were higher at the earlier time point investigated (28 DAG), irrespective of genotype, P supply and exudate compound class investigated (Fig. 2a–d). Root exudation patterns differed significantly between the investigated genotypes and

Planta (2024) 260:123 Page 5 of 12 123

Fig. 1 Shoot dry weight (**a**), root dry weight (**b**), total P uptake (**c**) and shoot P concentration (**d**) of rice genotypes (G) DJ123 (DJ) and Nerica4 (N4) in response to different P treatments (T) including low (LP) and adequate (AP) phosphorus supply at 28 and 40 days after

germination (DAG). Values represent means \pm SE, n=5-6. Different letters indicate significant differences within each time point (two-way ANOVA and LSD, P < 0.05)

were partially affected by P treatment, with Nerica4 overall showing more pronounced changes under P deficiency, especially in carbohydrate, amino acids and phenolics exudation at the later time point (Fig. 2).

When averaged across both P treatments, P-inefficient Nerica4 had 2.3-fold and 3.1-fold higher exudation rates per root surface area of total C compared to P-efficient DJ123, at 28 DAG and 40 DAG, respectively. Exudation rates of individual exudate compound classes were also higher in P-inefficient Nerica4 with carbohydrate exudation rates being 1.5-fold and 2.1-fold, amino acid exudation rates 3.2-fold and 4.3-fold and phenolics exudation rates being 3.1-fold and 2.9-fold higher in Nerica4 when compared to P-efficient DJ123, at 28 DAG and 40 DAG,

respectively (Fig. 2). Genotypic differences in exudation rates per entire plant were mostly not significant (Fig. S3).

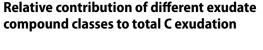
P supply had no significant effect on genotype-specific total C exudation rates at 28 DAG, while at 40 DAG C exudation rates were 1.4-fold and 1.3-fold higher in LP compared to AP for DJ123 and Nerica4, respectively (Fig. 2a). Among the investigated exudate compound classes, at 28 DAG, amino acids (1.6-fold) and phenolics (1.5-fold) showed a significant increase in exudation rates in Nerica4 under low P supply while exudation rates of efficient DJ123 were only slightly enhanced and did not differ significantly when compared to adequate P supply (AP) (Fig. 2c, d). At 40 DAG, exudation rates of carbohydrates (1.8-fold), amino acids (1.2-fold) and

123 Page 6 of 12 Planta (2024) 260:123

Table 1 Permutational Multivariate Analysis of Variance (PER-MANOVA) results showing the effect of factors (phosphorus treatment, genotype, time point) on root exudation rates

	R^2	P-value
Treatment	0.05	0.001
Genotype	0.26	0.001
Time	0.50	0.001
Treatment: genotype	0.03	0.001
Treatment: time	0.02	0.005
Genotype: time	0.05	0.001
Treatment: genotype: time	0.01	0.05
Residual	0.08	
Total	1	

The exudate variables include exudation rates per unit root surface area of total dissolved organic C, carbohydrates, amino acids, phenolics and carboxylates


Effect on the exudation variables is considered to be significant when P-value is below 0.05, n = 43

phenolics (2.1-fold) were significantly higher in Nerica4 under low P supply when compared to the respective control. Efficient DJ123 showed a non-significant tendency of an elevated phenolic exudation rate at 40 DAG while all other investigated compound classes remained comparable to the control.

Root exudation rates of carboxylates

Irrespective of P supply and genotype, carboxylate exudation of the two investigated rice lines was dominated by citrate and malate and decreased with increasing plant age (Fig. 3). In contrast to our expectations, carboxylate exudation rates did not increase under P-limiting conditions and rather showed the opposite trend that was significant for Nerica4 at 28 DAG. When averaged across both P treatments, total carboxylate exudation rates were 1.9-fold and 2.3-fold higher in inefficient Nerica4 compared to efficient DJ123, at 28 and 40 DAG, respectively (Fig. 3a). Exudation rates of individual carboxylates are shown in the supplementary information (Fig. S2).

Across both sampling time points, the relative proportion of malate to the total amount of carboxylates exuded significantly decreased under P deficiency relative to control conditions (-9.3% and -8.3% for DJ123 and Nerica4, respectively, P < 0.01, t-test, Table S2), while the relative contribution of citrate significantly increased (+5.9% and +4.1% for DJ123 and Nerica4, respectively, P < 0.05, t-test) (Fig. 3b). P deficiency effects on relative contribution of the other less abundant carboxylates were minor and not significant.

The relative contribution of different exudate compound classes to total C exuded per unit root surface area (RSA) depended on genotype, P treatment and time of plant growth. Across all investigated treatments, carbohydrates were estimated to account for 24–49%, carboxylates for 12–35%, amino acids for 2–16% and phenolics for 3–6% of the total C exuded, leaving 17–47% of the exuded C unassigned (unknown compound class) (Fig. 4). Irrespective of genotype and P supply, the relative contribution of carboxylates and amino acids decreased with time, while the contribution of unknown exudate compounds to total C increased (*P* < 0.05, 3-way-ANOVA, Table S3). Relative contributions of carbohydrates and phenolics to total C were unaffected by time.

Irrespective of genotype and time point, proportion of carboxylates decreased significantly under P deficiency relative to the control, while the proportion of amino acids and phenolics increased (P < 0.05, 3-way ANOVA). Under P deficiency, the relative contribution of carboxylates to total C exuded decreased in DJ123 by -10.2% and -5.8% and in Nerica4 by -10.9% and -8.5% at 28 and 40 DAG, respectively. In contrast, relative proportion of amino acids increased in DJ123 by +4.6% and +1.4% at 28 and 40 DAG and in Nerica4 by +5.7% only at 28 DAG under low P. Averaged across both time points, relative contribution of phenolics increased under P deficiency in comparison to the control by $+1.9\% \pm 0.2\%$ (mean \pm SE) for both genotypes. Only in DJ123 at 40 DAG, the relative contribution of carbohydrates and unknown compounds was affected by P treatment, with carbohydrates decreasing by -14.5% and unknown compounds increasing by + 18.1% under P deficiency relative to the control (P < 0.05, t-test, Table S4).

Comparing the two genotypes under P deficiency shows that DJ123 exuded a higher relative (but not absolute, see Fig. 2) proportion of carbohydrates (+8.5% and +2.7% at 28 and 40 DAG, respectively) and carboxylates (+4.6% and +5.7%) than Nerica4, whereas Nerica4 released higher proportions of unknown compounds (+7.1% and +7.2%) and phenolics (+2.3% and +0.67%) than DJ123 (P < 0.05, 3-way ANOVA).

Discussion

P deficiency triggers increased exudation rates in most investigated compound classes but not in carboxylates

This work aimed to reveal the response of root exudation rates to P limitation of two rice lines contrasting in

Planta (2024) 260:123 Page 7 of 12 123

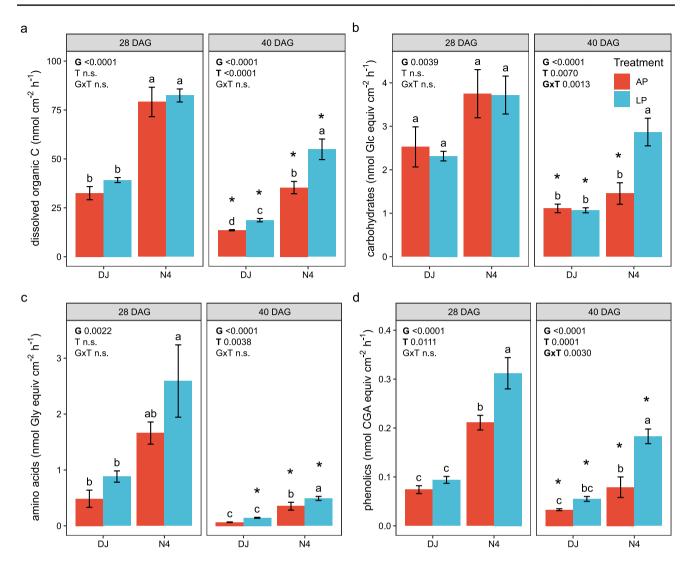
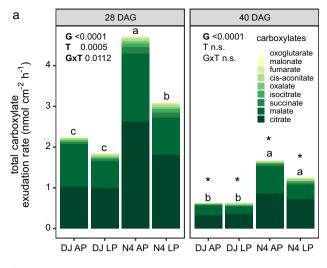


Fig. 2 Root exudation rates per root surface area of rice genotypes (G) DJ123 (DJ) and Nerica4 (N4) in response to different P treatments (T) including adequate (AP) and low (LP) phosphorus supply at 28 and 40 days after germination (DAG). a Dissolved organic C (=total C). b Total soluble carbohydrates expressed in nmol Glc equivalents. c Total amino acids expressed in nmol Gly equivalents. d Total phenolic compounds expressed in CGA equivalents. Values


represent means \pm SE, n=5–6. Different letters indicate significant differences within each time point (two-way ANOVA and LSD, P<0.05). Asterisks indicate significant differences for each group between the two time points (two-sample unequal variance t-Test, P<0.05). Glc glucose, Gly glycine, CGA chlorogenic acid, equiv equivalents, AP adequate phosphorus, LP low phosphorus, G genotype, TP treatment

P efficiency. Among the different root exudate compound classes investigated, carboxylates, especially the anions derived from tri- and di-carboxylic acids, are known to improve P solubilization by chelating Fe- or Al-oxide and releasing P (Hoffland et al. 1989; Oburger et al. 2011). Previous studies demonstrated an increased exudation of organic compounds in response to P deficiency for maize (Carvalhais et al. 2011; Ganie et al. 2015), rapeseed (*Brassica napus* L.) and rice (Hoffland et al. 1989, 2006), as well as for tomato (*Lycopersicon esculentum* L.), chickpea (*Cicer arietinum*) and white lupin (*Lupinus albus* L.) (Neumann and Römheld 1999). Further studies investigating P uptake mechanisms in rice surmised that

an enhanced exudation of carboxylates could play a role in an improved P mobilization from P-fixing soils (Mori et al. 2016; Wissuwa et al. 2020; Matsushima et al. 2021). Overall, we observed in most cases an increase in exudation rates of total C, carbohydrates, amino acids, and phenolics under P deficiency compared to adequate P supply (both genotypes and time points, Fig. 2). However, total carboxylate exudation rates showed the opposite trend with either no change or a significant decrease under P-limiting conditions (Fig. 3a). While our original hypothesis of higher overall exudation rates under low P (H1) was true for the majority of investigated rice exudate characteristics, we have to reject this hypothesis for carboxylates.

123 Page 8 of 12 Planta (2024) 260:123

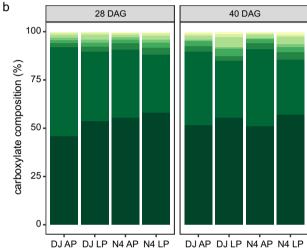
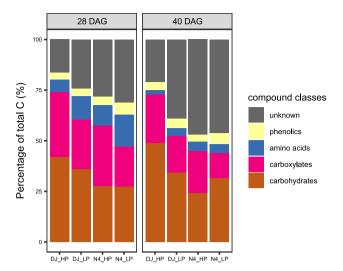



Fig. 3 Root exudation rates of carboxylates per root surface area of rice genotypes (G) DJ123 (DJ) and Nerica4 (N4) in response to different P treatments (T) including adequate (AP) and low (LP) phosphorus supply at 28 and 40 days after germination (DAG). a Absolute exudation rates. Values represent means, n=5-6. Different letters indicate significant differences across the different treatments and genotypes within each sampling event (two-way ANOVA and LSD, P < 0.05). Asterisks indicate significant differences for each group between the two time points (two-sample unequal variance t-Test, P < 0.05). b Relative contribution of individual organic anions (%) to total organic anions in root exudates. AP adequate phosphorus, LP low phosphorus, DJ DJ123, N4 Nerica4

Among others, citrate and malate were the most abundant carboxylates exuded by the two rice lines tested (Fig. 3b). The quantities of citrate and malate released in our study were lower compared to P mining lupins (Shen et al. 2005; Wang et al. 2024), but were comparable to the quantities exuded by soil-grown rice (different genotypes) when converting exudation rates on a root dry weight basis (Aulakh et al. 2001; Bhattacharyya et al. 2013). For example, malate exudation rates ranged from 1.5 to 3.5 µmol per root dry weight g⁻¹ h⁻¹ across the three different rice studies.

Fig. 4 Estimated relative contribution of analyzed compound classes to total C exuded by rice genotypes DJ123 (DJ) and Nerica4 (N4) under adequate P supply (AP) and P deficiency (LP). *DAG* days after germination

Regarding citrate exudation, contrasting reports were found for rice: an increased citrate exudation rate under P deficiency was reported in a semi-hydroponic experiment (Hoffland et al 2006), while no change or a decreased exudation rate of citrate was observed by Bhattacharyya et al. (2013) (soil-grown rice), in Tawaraya et al. (2013) (hydroponic) and in this study (semi-hydroponic). Comparison of the general carboxylate exudation patterns across different studies is difficult because different sets of carboxylates were analyzed as well as sampling setup (e.g., no bacteriostatic agent was used in the exudation sampling solution of the soil-grown plants) and duration differed. Based on available data from different rice genotypes and comparing the same developmental stage (before tillering), Hoffland et al. (2006) (semi-hydroponic) and Bhattacharyya et al. (2013) (soil) found increased total carboxylate exudation rates in rice under P deficiency. In contrast, this study observed no or decreased carboxylates (sum of analyzed) exudation rates under P limitation. Aulakh et al. (2001) who did not specifically target P deficiency found that carboxylates contributed around 39% to total C exuded in soil-grown rice plants of a similar growth stage, while we observed 12-35% carboxylate C, with a lower contribution to total C exuded from P starved plants. Taken together, this suggests that our results from semi-hydroponically grown plants represent reasonable insights into altered rice exudation patterns under P deficiency. Extrapolating from semi-hydroponic systems to the soil environment, the observed decrease in carboxylate exudation under P-limiting condition suggests a minor role of carboxylate exudation as relevant plant response to increase P mobilization. In other grass crops, such as wheat, P starvation was also reported to either have a negative or no effect on carboxylate

Planta (2024) 260:123 Page 9 of 12 123

exudation (Neumann and Römheld 1999; Pearse et al. 2006). This observation was related to the relatively low accumulation of citrate and malate in P limited wheat roots when compared to high exuding species such as white lupin or chickpea. Interestingly, the activity and the abundance of enzymes involved in citrate synthesis (PEPC) and degradation (aconitase) were both upregulated in wheat roots in response to low P, while PEPC activity was increased and aconitase activity was decreased in carboxylate exuding species (Neumann and Römheld 1999; Staudinger et al. 2022). Here, we only observed an increase of the relative contribution of citrate to the total amount of carboxylates exuded at the expense of malate, while absolute carboxylate exudation rates were either lower (28 DAG) under LP or comparable (40 DAG) to adequate P irrespective of genotype investigated (Fig. 3a). These results indicate that the citric acid (TCA) cycle in rice roots was reprogrammed, but that a substantial accumulation of citrate and malate in roots may have been limited by catabolizing enzymes.

In line with our results for rice, enhanced exudation of specific carbohydrates and amino acids in response to P limitation was also observed in maize (Carvalhais et al. 2011; Ganie et al. 2015). As carbohydrates (in the strict sense) present a net charge of zero, they are unlikely to contribute directly to nutrient mobilization in the rhizosphere. Amino acids can carry charges, depending on chemical structure, and the pH of the soil solution. However, a study on proteinogenic amino acids showed that these compounds have low P mobilizing capacity (Jones et al. 1994). Carbohydrates and amino acids are common respiratory substrates for soil microbes and present short residence times in soil (Jones and Murphy 2007). Therefore, they can contribute to plant nutrient availability through microbial feedback loops (Carvalhais et al. 2011). However, stress-induced increases in exudation rates of total carbohydrates, amino acids and phenolics were higher in P-inefficient Nerica4 and the higher exudation rates were associated with lower biomass production in Nerica4 relative to P-efficient DJ123, demonstrating that in this experimental setup (i.e., semi-hydroponic), potentially increased, exudation-induced plant-microbe feedback processes (mining) could not compensate for the smaller root biomass (exploration) of Nerica4. Whether the same results can be observed when plants are grown in natural soils, where more complex and diverse P sources and microbial communities can be expected, remains to be tested.

P-efficient DJ123 had lower exudation rates per unit root surface area than P-inefficient Nerica4

In contrast to our original hypothesis (H2), we observed significantly lower exudation rates per unit root surface area of almost all investigated exudation parameters in P-efficient

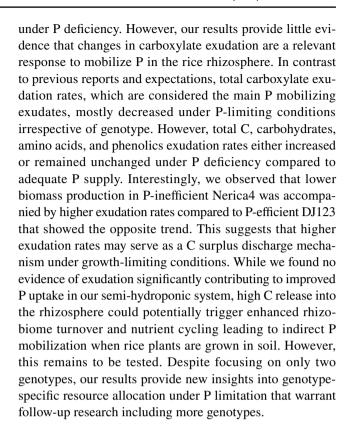
DJ123 compared to Nerica4, irrespective of P supply and sampling time point. Interestingly, total exudation per plant showed no or only minor differences between genotypes as the overall larger root system of DJ123 (with lower exudation rates) counterbalanced the higher exudation rate per unit root surface area in Nerica4 (with lower root biomass, Fig. S3). While the total exudate input per root system is relevant for soil C dynamics, normalizing root exudation data per unit root (per g dry weight or per cm² root surface area, RSA) better allows addressing localized and spatially resolved rhizosphere processes like nutrient mobilization and we here focused on the latter.

Previous studies have shown that a larger root system enhances soil P foraging and subsequent P acquisition (Lynch and Brown 2001; Reichert et al. 2022). A larger root system, including longer roots (total root length) and larger root surface area of P-efficient genotype DJ123 compared to Nerica4 (Fig. S1), confirms the important role of root system size in P foraging and it explains the detected higher P uptake of DJ123 under P deficiency (Fig. 1c). Our biomass and root morphology data further confirm a previously reported overall slower root development in Nerica4 relative to P-efficient DJ123 (Wissuwa et al. 2020). Different root development stages between the two genotypes could have possibly driven the observed differences in exudation rates. Root exudation is unequally distributed across the root system with higher exudation being observed at root tips (Pausch and Kuzyakov 2011; Holz et al. 2017). Assuming that the proportion of strongly exuding root tips to the entire root system is larger in a less developed and smaller root system of Nerica4, this could further explain its overall higher exudation rates per unit root surface area.

Higher exudation rates of P-inefficient Nerica4 could also represent a way of discharging surplus C when an increasing amount of assimilated C allocated belowground cannot be used for growth due to limited P availability. To avoid accumulation of high concentrations of soluble C that would inhibit photosynthesis and lead to further oxidative stress in leaves (Prescott et al. 2020), exudation of this excess C could therefore simply be a mechanism of metabolic stress avoidance. This theory of increased exudation as a C surplus discharge mechanism when growth is limited due to environmental stress is supported by reports on exudation under drought stress where growth reduction is typically accompanied with an increase in (total C) exudation rates (Karst et al. 2017; Karlowsky et al. 2018; Preece et al. 2018). As Nerica4 generally produced less root and shoot biomass than DJ123 irrespective of P supply (Fig. 1a, b), it is likely that C allocated belowground was utilized for root biomass production in DJ123, but may have been discharged via exudation in the more growth-limited Nerica4. However, further evidence needs to be collected to support or reject the proposed mechanism of exudation being a C discharge strategy

123 Page 10 of 12 Planta (2024) 260:123

when belowground C allocation exceeds C demand for root growth.


Rice exudation rates decreased with increasing plant development irrespective of P supply

As expected (H3), exudation rates of total C and measured compound classes were generally higher in younger rice plants (28 DAG) relative to plants grown for 12 more days (Figs. 2, 3). Our findings are supported by other studies including *Arabidopsis thaliana* grown hydroponically (Chaparro et al. 2013), maize grown under semi-hydroponic conditions (Gransee and Wittenmayer 2000) or in soil (Santangeli et al. 2024), and soil-grown rice (Aulakh et al. 2001). Returning to the theory of exudation as C discharge mechanism (Prescott et al. 2020), decreasing quantities of exuded C would imply changes in internal C partitioning over time. Ganther et al. (2022) reported decreasing allocation of freshly assimilated ¹³C to roots with increasing plant developmental stage in field grown maize which further supports that exudation is strongly influenced by the plant's internal C allocation dynamics.

In addition to exudate quantity, we also investigated relative changes in exudate quality (i.e., estimated relative contribution (%) of different compound classes to total C exuded) with time (Fig. 4). Similar to previous reports on rice and maize (Aulakh et al. 2001; Santangeli et al. 2024), carbohydrates contributed most to total released C, while amino acids and phenolics represented a relatively small proportion (below 20%) of the total released C. Interestingly, the relative estimated proportion of unknown compounds, which were not assessed by our analytical approaches, increased under P deficiency relative to adequate P supply (Fig. 4), especially in DJ123. This suggests that P-efficient DJ123 might release a larger proportion of nonphenolic secondary metabolites to the growth substrate or soil when P is limited. Under P deficiency, increased exudation of many metabolites not targeted in this work (e.g., choline and polyamines) was found using non-targeted metabolomic analysis (Tawaraya et al. 2018). Therefore, involving non-targeted metabolomic analysis in further exudate studies of rice grown in soil or field (to also consider plant-soil-microbe feedback processes) could represent a promising approach when aiming to investigate the growing metabolite diversity under P deficiency (as suggested by our data) to further unravel the rhizosphere-related mechanisms of enhanced P acquisition suspected by previous studies (Mori et al. 2016; Matsushima et al. 2021).

Conclusion

The contribution of root exudates to P acquisition in upland rice is not well understood. Our data confirms that the root system size plays a decisive role in higher P uptake of DJ123

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00425-024-04556-2.

Acknowledgements This study was funded by the Austrian science fund (FWF I 4445), the German Research Foundation (HO 6381/1-1), and the German Federal Ministry for Food and Agriculture (2821BIJP02). Eva Oburger was also supported by the ERC StG 801954 PhytoTrace. Matthias Wissuwa has been partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2070 – 390732324. We also thank Olivier Duboc for his support with the ICP-OES measurements.

Author contributions HS: Conceptualization, investigation, methodology, formal analysis, data curation, writing—original draft. CS: Conceptualization, investigation, methodology, data curation, visualization, writing – review and editing. MRH: Formal analysis. EM: Conceptualization. AG: Formal analysis. MH: Conceptualization, writing—review and editing. EO: Conceptualization, funding acquisition, writing—review and editing, supervision. All authors read and approved the final manuscript.

Funding Open access funding provided by University of Natural Resources and Life Sciences Vienna (BOKU). The research leading to these results received funding from the Austrian Science Fund (FWF-DACH project I4445), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, HO 6381/1–1), and the German Federal Ministry for Food and Agriculture (2821BIJP02).

Data availability Data will be available upon request.

Planta (2024) 260:123 Page 11 of 12 123

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877. https://doi.org/10.1038/NPROT.2007.102
- Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (*Oryza sativa* L.) cultivars. Plant Biol 3:139–148. https://doi.org/10.1055/S-2001-12905
- Bhattacharyya P, Das S, Adhya TK (2013) Root exudates of rice cultivars affect rhizospheric phosphorus dynamics in soils with different phosphorus statuses. Commun Soil Sci Plant Anal 44:1643–1658. https://doi.org/10.1080/00103624.2013.769562
- Bishopp A, Lynch JP (2015) The hidden half of crop yields. Nat Plants 1:1–2. https://doi.org/10.1038/nplants.2015.117
- Bleiholder H, Weber E, Lancashire P, Feller C, Buhr L, Hess M, Wicke H, Hack H, Meier U, Klose R (2001) Growth stages of mono-and dicotyledonous plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry, Berlin/Braunschweig
- Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:422679. https://doi.org/10.3389/fpls.2019.00157
- Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei M-R, Borriss R, Von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11. https://doi.org/10.1002/jpln.201000085
- Chai YN, Schachtman DP (2022) Root exudates impact plant performance under abiotic stress. Trends Plant Sci 27:80–91. https://doi.org/10.1016/j.tplants.2021.08.003
- Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8:55731. https://doi.org/10.1371/journal.phone.0055731
- Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter—the unbutton model. Soil Biol Biochem 84:168–176. https://doi.org/10.1016/j.soilbio.2015.02.019
- Ding W, Cong WF, Lambers H (2021) Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends Ecol Evol 36:899–906. https://doi.org/10.1016/j.tree.2021.06.005

- Fageria NK, Oliveira JP (2014) Nitrogen, phosphorus and potassium interactions in upland rice. J Plant Nutr 37:1586–1600. https://doi.org/10.1080/01904167.2014.920362
- Ganie AH, Ahmad A, Pandey R, Aref IM, Yousuf PY, Ahmad S, Iqbal M (2015) Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS ONE 10:1–25. https://doi.org/10.1371/journal.phone.0129520
- Ganther M, Lippold E, Bienert MD, Bouffaud ML, Bauer M, Baumann L, Bienert GP, Vetterlein D, Heintz-Buschart A, Tarkka MT (2022) Plant age and soil texture rather than the presence of root hairs cause differences in maize resource allocation and root gene expression in the field. Plants 11:2883. https://doi.org/10.3390/plants11212883/S1
- George E, Horst WJ, Neumann E (2011) Adaptation of plants to adverse chemical soil conditions. In: Marschner P (ed) Marschner's Mineral Nutrition of Higher Plants 3rd edn. Elsevier, Adelaide, pp 409–472. https://doi.org/10.1016/B978-0-12-384905-2.00017-0
- Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385. https://doi.org/10.1002/1522-2624(200008)163:4%3c381::AID-JPLN381%3e3.0.CO:2-7
- Hansen J, Møller I (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94. https://doi.org/10.1016/0003-2697(75)90682-X
- Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape-II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165. https://doi.org/ 10.1007/BF02280176
- Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (*Oryza sativa* L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162. https://doi.org/10.1007/S11104-005-3937-1
- Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A (2017) Root hair increase rhizosphere extension and carbon input to soil. Ann Bot 121:61–69. https://doi.org/10.1093/aob/mcx127
- Jones DL, Murphy DV (2007) Microbial response time to sugar and amino acid additions to soil. Soil Biol Biochem 39:2178–2182. https://doi.org/10.1016/j.soilbio.2007.03.017
- Jones DL, Edwards AC, Donachie K, Darrah PR (1994) Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant Soil 158:183–192. https://doi.org/10.1007/BF00009493
- Jones DL, Owen AG, Farrar JF (2002) Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem 34:1893–1902. https://doi.org/10.1016/S0038-0717(02)00203-1
- Juszczuk I, Wiktorowska A, Malusá E, Rychter AM (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (*Phaseolus vulgaris* L.). Plant Soil 267:41–49. https://doi.org/10.1007/S11104-005-2569-9
- Karlowsky S, Augusti A, Ingrisch J, Akanda MKU, Bahn M, Gleixner G (2018) Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front Plant Sci 871:1–16. https://doi.org/10.3389/fpls.2018.01593
- Karst J, Gaster J, Wiley E, Landhäusser SM (2017) Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol 37:154–164. https://doi.org/10.1093/treephys/tpw090
- Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann Bot 98:693–713. https://doi.org/10.1093/aob/mcl114

123 Page 12 of 12 Planta (2024) 260:123

Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049. https://doi.org/10.1104/pp.111.175414

- Lynch JP, Brown KM (2001) Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. https://doi.org/10.1023/A:1013324727040
- Matsushima C, Shenton M, Kitahara A, Wasaki J, Oikawa A, Cheng W, Ikeo K, Tawaraya K (2021) Multiple analysis of root exudates and microbiome in rice (*Oryza sativa*) under low P conditions. Arch Microbiol 203:5599–5611. https://doi.org/10.1007/s00203-021-02539-5
- Mori A, Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka J, Wissuwa M (2016) The role of root size versus root efficiency in phosphorus acquisition in rice. J Exp Bot 67:1179–1189. https://doi.org/10.1093/jxb/erv557
- Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130. https://doi.org/10.1023/A:1004380832118
- Oburger E, Jones DL, Wenzel WW (2011) Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341:363–382. https://doi.org/10.1007/s11104-010-0650-5
- Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel WW, Puschenreiter M (2014) Root exudation of phytosiderophores from soil-grown wheat. New Phytol 203:1161–1174. https://doi.org/10.1111/nph.12868
- Oburger E, Schmidt H, Staudinger C (2022a) Harnessing belowground processes for sustainable intensification of agricultural systems. Plant Soil 478:177–209. https://doi.org/10.1007/s11104-022-05508-z.
- Oburger E, Staudinger C, Spiridon A, Benyr V, Aleksza D, Wenzel WW, Santangeli M (2022b) A quick and simple spectrophotometric method to determine total carbon concentrations in root exudate samples of grass species. Plant Soil 478:273–281. https://doi.org/10.1007/s11104-022-05519-w
- Paponov IA, Sambo P, Erley GSAM, Presterl T, Geiger HH, Engels C (2005) Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil 272:111–123. https://doi.org/10.1007/s11104-004-4211-7
- Pausch J, Kuzyakov Y (2011) Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging. J Plant Nutr Soil Sci 174:12–19. https://doi.org/10.1002/jpln.200900271
- Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139. https://doi.org/10.1007/s11104-006-9099-y
- Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphatestarved plants. Plant Physiol 156:1006–1015. https://doi.org/10. 1104/pp.111.175281
- Preece C, Farré-Armengol G, Llusià J, Peñuelas J (2018) Thirsty tree roots exude more carbon. Tree Physiol 38:690–695. https://doi.org/10.1093/treephys/tpx163
- Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I (2020) Surplus carbon drives allocation and plant–soil interactions. Trends Ecol Evol 35:1110–1118. https://doi.org/10.1016/j.tree.2020.08.007
- Raymond NS, Gómez-Muñoz B, van der Bom FJT, Nybroe O, Jensen LS, Müller-Stöver DS, Oberson A, Richardson AE (2021) Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol 229:1268–1277. https://doi.org/10.1111/nph.16924
- Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. https://doi.org/10.1104/pp.111.175448

- Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K (2022) Plant phosphorus-use and -acquisition strategies in Amazonia. New Phytol 234:1126–1143. https://doi.org/10.1111/NPH 17085
- Sadana US, Lata K, Claassen N (2002) Manganese efficiency of wheat cultivars as related to root growth and internal manganese requirement. J Plant Nutr 25:2677–2688. https://doi.org/10.1081/pln-120015531
- Saito K, Vandamme E, Johnson JM et al (2019) Yield-limiting macronutrients for rice in sub-Saharan Africa. Geoderma 338:546–554. https://doi.org/10.1016/j.geoderma.2018.11.036
- Santangeli M, Steininger-Mairinger T, Vetterlein D, Hann S, Oburger E (2024) Maize (*Zea mays* L.) root exudation profiles change in quality and quantity during plant development—a field study. Plant Sci 338:111896. https://doi.org/10.1016/j.plantsci.2023. 111896
- Shen J, Li H, Neumann G, Zhang F (2005) Nutrient uptake, cluster root formation and exudation of protons and citrate in *Lupinus albus* as affected by localized supply of phosphorus in a split-root system. Plant Sci 168:837–845. https://doi.org/10.1016/j.plantsci. 2004.10.017
- Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20. https://doi.org/10.1104/pp.103.024380
- Staudinger C, Dissanayake BM, Duncan O, Millar AH (2022) The wheat secreted root proteome: implications for phosphorus mobilisation and biotic interactions. J Proteom 252:104450. https://doi.org/10.1016/j.jprot.2021.104450
- Tawaraya K, Horie R, Saito A, Shinano T, Wagatsuma T, Saito K, Oikawa A (2013) Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. J Plant Nutr 36:1138–1159. https://doi.org/10.1080/01904 167.2013.780613
- Tawaraya K, Horie R, Wagatsuma T, Saito K, Oikawa A (2018) Metabolite profiling of shoot extract, root extract, and root exudate of rice under nitrogen and phosphorus deficiency. Soil Sci Plant Nutr 64:312–322. https://doi.org/10.1080/00380768.2018.1476828
- Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2019) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17. https://doi.org/10.1007/s00299-019-02447-5
- Wacker-Fester K, Uptmoor R, Pfahler V, Dehmer KJ, Bachmann-Pfabe S, Kavka M (2019) Genotype-specific differences in phosphorus efficiency of potato (*Solanum tuberosum* L.). Front Plant Sci 10:474235. https://doi.org/10.3389/fpls.2019.01029
- Wang R, Funayama-Noguchi S, Xiong Z, Staudinger C, Wasaki J (2024) Phosphorus absorption kinetics and exudation strategies of roots developed by three lupin species to tackle P deficiency. Planta 259:29. https://doi.org/10.1007/s00425-023-04307-9
- Wissuwa M, Gonzalez D, Watts-Williams SJ (2020) The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties. Plant Soil 448:523–537. https://doi.org/10.1007/s11104-020-04453-z
- Yoshida S, Forno DA, Cock JH, Gomez K (1972) Laboratory manual for physiological studies of rice 2nd edn. International Rice Research Institute, Los Banos
- **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

