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ABSTRACT The permanent scatterer interferometric aperture radar (PS-InSAR) technique is used to
measure and monitor displacements of the Earth’s surface over time. While the approach is promising
for large-scale deformation, the density of the received PS points is insufficient for localized deformation
analysis. In this first work, we aim to improve the technique by increasing the point density of high-precision
deformation monitoring in PS-InSAR data by developing a convolutional long short-term memory
(ConvLSTM)model that predicts PS points on different land covers, such as forest, urban, natural, water, and
combinations among them. The proposed architecture, PS-ConvLSTM, was trained on a temporary dataset
with interferograms to classify stable and unstable PS pixels from over 200,000 site images obtained from the
city of Barcelona, Spain. The result showed that the trained PS-ConvLSTMmodel is highly compatible with
themethod currently used, which requires a largemanual effort by an expert (accuracy: 99%). In addition, the
proposed approach increased the point density by 15%, indicating that ConvLSTM is a promising approach
for increasing the point density in PS-InSAR data and thus improving localized deformation analysis.

INDEX TERMS Deep learning, recurrent neural network, long short-term memory, point density, persistent
scatter, InSAR process.

I. INTRODUCTION
Insufficient point density of high-precision deformationmon-
itoring in Interferometric Synthetic Aperture Radar (InSAR)
data is one of the current research problems in Earth Sci-
ence [1]. Solving this problem can be done using one of
the most powerful Remote Sensing (RS) methods called
Persistent Scatterer Interferometry (PSI). Thanks to this
method, it is possible to measure millimeter displacements
of the earth’s surface. Looking at the chronology of how
PSI was developed [2], the method was first introduced by
Ferretti et al., in 2000 and [3], [4]. Furthermore, the Small
Basic Subset Method (SBAS) has been introduced in several
papers: Berardino et at. [5], Mora et al. [6], Schmidt and
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Bürgmann [7], Duro et al. [8], Crosetto et al. [9], [10], López-
Quiroz et al. [11], Goel and Adam [12], and Devanthéry et al.
[13]. Similar studies can also be attributed to the following
series of works with a basic configuration - one primary:
Werner et al. [14], Kampes [15], Hooper et al. [16], Costan-
tini et al. [17], Ferretti et al. [18], Van Leijen [19], and
Lv et al. [20].
There are hundreds of studies in the literature that present

this method, but it still has several drawbacks.We noticed that
since the first papers by Ferretti et al. in 2000 [3], researchers
in InSAR have not used deep learning (DL) until 2019. One
of the main reasons for this was unfamiliarity with these
fields. In particular, based on the presented literature, the
previously method is not fully automated and still requires
the participation of an expert [21]. Another feature is that it
does not allow obtaining the maximum point density map,
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especially on scenes with natural objects. In addition, the
method is computationally expensive and requires a signif-
icant amount of time to obtain the result, depending on the
field of study. However, we highlight the following studies
where DL has been used in individual steps of the InSAR
process: scatterer acceleration approach [22], homogeneous
pixel selection [23], and coherent pixel selection [24]. Further
research is needed as the overall accuracy remains above 90%
despite the increased data processing speed. In addition, the
algorithms are not universal and require additional training
on a diverse set of real-world data.

In the last decade, DL methods have gained immense pop-
ularity to solve various types of problems in different fields.
Convolutional Neural Network (CNN) [25], [26], Recurrent
Neural Network (RNN) [27], and Long Short-Term Memory
(LSTM) [28] are widely used. CNNs are most commonly
used for making predictions but not always suitable for time-
series prediction [29]. It depends on the time series data to
which CNN is applied. In real-time series datasets, many
features are temporally correlated, i.e. they occur one after
another in a certain order, and this information can be lost
depending on the size and type of pooling operations used.
RNNs are designed to handle complex sequence dependen-
cies in time series analysis [30], [31]. However, a traditional
RNN is not capable of predicting a long time series due
to the problem of lack of long-term memory, that is, the
vanishing gradient problem [32]. As the gradients disap-
pear, the weights of the earlier layers in the network may
not be updated significantly, causing these layers to learn
very slowly or not at all. This can result in the network
failing to capture long-term dependencies in the sequential
data as it struggles to propagate relevant information over
many time steps. To solve this problem, the LSTM model
was developed [33]. Although, for the task of predicting
any object on the data sequence (in our case, PS point
and non-PS point), it is necessary to capture the spatial
dependency including composition and configuration. For
this purpose, a convolution layer was built into the LSTM
(ConvLSTM) [34]. To perform individual steps of the InSAR
process, the LSTM algorithm was used to detect ground
displacements from InSAR products, which are deforma-
tion rate (velocity map) and deformation time series [35],
[36]. Tiwari et al. [37] demonstrated the promising potential
of ConvLSTM for selecting measurement pixels in multi-
temporal InSAR. However, the performance of ConvLSTM
for increasing the point density of InSAR has not been
investigated.

The main contributions of this paper can be listed as
follows:

• This is the first paper to present the potential of Con-
vLSTM for increasing point density in PS-InSAR data
(hereafter, namely, PS-ConvLSTM). We demonstrate
that PS-ConvLSTM increases the point density by 15%,
enhancing the detectability of finer-scale land displace-
ments with InSAR.

• We built a new labeled dataset of temporal interferomet-
ric with two classes as PS point and non-PS point.

• We provide a complete description of the network used
with the open-source code for wider applications. Our
source code is available at https://github.com/ansafo/
AI_InSAR.

The rest of the paper is organized as follows. The materials
are provided in Section II, which includes the study area
and the InSAR Imagery and dataset construction. The meth-
ods are presented in Section III, which includes description
of InSAR processing, the proposed PS-ConvLSTM archi-
tecture, experimental setup, and metrics for performance
evaluation of the PS-ConvLSTM architecture. Section IV
presents the experimental results of increasing point density
by PS-ConvLSTM architecture, including training, valida-
tion, and testing results. The discussion and the conclusions
are presented in Section V.

II. MATERIALS
A. STUDY AREA AND InSAR IMAGES
The study area is located in Barcelona, Catalonia,
Spain with the Global Positioning System coordinates of
41◦23’24.7380’’ N and 2◦9’14.4252’’ E (Figure 1).

FIGURE 1. Test area in Barcelona, Catalonia, Spain.

The climate is Mediterranean with mild winters, hot sum-
mers, and rainy fall and spring [38]. The average annual
temperature in the city is 21.2 ◦C during the day and 15.1 ◦C
at night. The average annual relative humidity is 72%, and
the average annual rainfall is 614 mm. This part of Spain is
located on the northeastern coast of the Iberian Peninsula,
on a plain about 5 km wide, bounded by the Collserola
mountain range, the Llobregat rivers in the southwest and the
Besòs in the north. The total area of the plain is 170 km2,
of which 101 km2 is urban. The territory of Barcelona is var-
ied and rich and includes such terrains as mountains, forests,
urban environments, water, natural and their combinations.
Therefore, the whole territory of Barcelona was chosen as a
test area. For the experiment we used a set of InSAR images in
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the form of a rectangle dimension 5600 pixels by 1600 pixels
with a resolution of 10 meters per pixel.

B. DATASET CONSTRUCTION
To use the PS-InSAR technique in theory, 10 temporary
images may be sufficient to highlight stable points and build
a PS mask. In practice, this may not be enough, especially in
natural landscapes such as forests and water, due to the lack
of stable points on them. However, in our study, the InSAR
dataset consists of 240 time series of satellite interferometry
images obtained from Sentinel-1 radar images with 4× 14 m
spatial resolution as Single Look Complex products, which
were used as inputs for the NN. The Single Look Complex
images are in the oblique range along the azimuth image
plane, in the satellite data acquisition image plane. Each
pixel in the image is represented by a complex (I and Q)
amplitude value with image resolution 4 × 14 m. It contains
both amplitude and phase information. Each I and Q value is
16 bits per pixel. The images are georeferenced using satellite
orbit and position data. The image set was downloaded from
the Alaska Satellite Facility website [39] with dates ranging
from January 1, 2019 to August 2022. Interferograms have
short temporal baselines, less than 18 days.

Since each interferometric image was large (5600 by
1600 pixels), it was therefore decided to divide the entire
dataset into patches of 100 by 100 pixel resolution. The
patches are binary raster with a byte value between 0 and 255.
This step made it possible to train the NN more efficiently
and to speed up the computations depending on the available
computing power. Also, because of this step, all patches were
classified

and divided into 9 areas, including forest, urban, natural,
water, forest and urban, urban and natural, natural and water,
urban and water, and forest and natural. This allowed us to see
the percentage of content represented in the dataset. Since the
test area is not artificially prepared for the experiment, there
is an imbalance of classes. The percentages of the classes are
shown in Table 1.

TABLE 1. Proportions of dataset areas.

Thus, a dataset representing the diversity of land cover
was created. Therefore, 864 patches per interferogram were
prepared, resulting in 207,360 patches in the dataset. Based
on the documentation provided for the TensorFlow library for
the following function ConvLSTM3D, in our case the input

layer was prepared as a 5D tensor with shape: (samples, time,
channels, rows, cols, depth).

As a ground truth (output) for the NN, a PS mask was used
as a binary raster with dimensions 1600 by 5400 pixels and
with values 1 (PS point) and 0 (non-PS point). PS point is a
stable behavior that doesn’t have significant movements and
has an average deformation of less than± 2mm per year. Like
the entire set of images, the mask was divided into patches
of 100 by 100 pixels. The dataset and mask with one patch
example are shown in Figure 2.

III. METHODS
A. InSAR PREPROCESSING
PSI is a radar-based technique within the field of differen-
tial interferometric SAR and is proving to be a powerful
RS method for the measuring and monitoring of surface
displacements over time [2]. Typically, pixels are selected
by considering the perceived noise in the spatially uncorre-
lated phase component along with the angle of view error
in the temporal interferometric stack. Various PS-InSAR
approaches have been proposed in the last thirty years, where
four of the most important approaches in terms of impact
on the PSI field are the PSInSAR™ technique proposed by
Ferretti et al., in 2000 and 2001 [3], [4], the Small BAseline
Subset (SBAS) technique [5], the PSI contribution was given
by Hooper et al. in 2004 [16] with their new InSAR PS
method, and the SqueeSAR™algorithm proposed by Ferretti
et al. in 2011 [18]. The main flowchart of the algorithm is
shown in Figure 3 [13].
The method includes 7 steps: interferograms generation,

linear velocity estimation, linear velocity residuals, time
series without linear component, atmosphere estimation and
removal from the time series, reintroduction of the linear
component into the time series, and geocoding.

The first step includes image loading, burst and swath
extraction, co-registration, and different interferograms and
coherences generation. The second step performs dispersion
of amplitude selection, PS linear velocity estimation and
Gamma-based PS selection. The third step is the removal of
the linear velocity component from all the interferograms and
the construction of residual interferograms. The fourth step
includes 2D phase unwrapping and 1D phase unwrapping
(time series estimation). The fifth and sixth steps include
atmosphere estimation and removal from the time series and
reintroduction of the linear component into the time series,
respectively. A map of the deformation activity is created
at the final stage - geocoding. The most detailed descrip-
tion of the method developed at the Centre Tecnologic de
Telecomunicacions de Catalunya (CTTC) was presented by
Devanthéry et al. [13], [21].
InSAR techniques include several processing steps to

obtain the final outputs, including SAR data quality assess-
ment, image co-registration, phase unwrapping errors, topo-
graphic and atmospheric corrections, etc. Although almost all
these steps are performed automatically, they still need to be
checked step by step. For instance, experts should assess the
quality of the raw SAR data. They need to identify potential
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FIGURE 2. Test area in Barcelona, Catalonia, Spain.

FIGURE 3. Flowchart of conventional InSAR processing.

issues such as atmospheric artifacts, orbital errors, and other
sources of noise that could affect the accuracy of the defor-
mation measurements. Also, the co-registration of primary
interferogram must be visually monitored by an expert to
check whether the corresponding pixels of the images and
interferograms are correctly aligned to the same geographical
location [2].

After the acquisition of SAR images, the next processing
steps are performed by processing tools. The final output

is then reviewed by InSAR experts to assess the validity of
the results. For example, an active construction site cannot
be without movement during a time series of InSAR mea-
surements. Therefore, if InSAR measurements show that an
active construction site did notmove during the acquired SAR
images, the InSAR outputs have not been processed correctly.
Consequently, InSAR experts start to check the processing
step by considering the errors of the final outputs. However,
almost all InSAR processing techniques can be performed
at a lower level (checking the output of each processing
step). Thus, an expert can check the correctness of each step.
In the maximum point density step, the strong backscattered
signals are mostly received from natural and artificial objects
that are proper reflectors, such as rocks and urban areas.
Thus, in study areas without proper reflectors, the number
of measurement points will decrease, which may affect the
quality of the outputs.

B. PS-ConvLSTM ARCHITECTURE
In order to improve the PSI method (step 2 in Figure 3)
developed by CTTC [13], [21], it was decided to introduce
DL technologies as the most promising technology [25],
[40] to partially increase the point density of high-precision
deformation monitoring. The PS-ConvLSTM architecture
was developed and trained on the prepared images (see
Section II-B) to increase the point density on stable and unsta-
ble PS pixels. A number of experiments were conducted to
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achieve a high performance. To create the NN and improve
the quality of its training, we manually tuned the hyper-
parameters in the network. To evaluate the quality of the
developed model in each experiment, a different number of
layers, network hyperparameters, training time, percentage
split of the dataset into test and validation sets, optimization,
loss function and evaluation metric were chosen.

The architecture of a NN has sequential layers. Since the
input data are vectors and can be grouped into a 5D array in
time, it was decided to use the ConvLSTM2D layer (1). This
layer can inject a tensor with a shape: (samples, time, rows,
cols, and channels) and the output shape: (samples, new rows,
new cols, and filters) [34].

it = σ
(
Wxi ∗ xt +Whi ∗ ht−1 +W ◦

cict−1 + bi
)

ft =

(
Wxf ∗ xt +Whf ∗ ht−1 +W ◦

cf ct−1 + bf
)

ct = f ◦
t ct−1 + i◦t tanh (Wxc ∗ xt +Whc ∗ ht−1 + bc)

ot = σ (Wxo ∗ xt +Who ∗ ht−1 +W ◦
coct + bo)

ht = o◦
t tanh(ct ), (1)

where (x1, . . . , xt ) are inputs, (c1, . . . , ct ) are outputs, (h1, . . . ,
ht ) are hidden states, it is input gate, ft is forgot gate, ot is
output gate, σ is the Sigmoid activation function, Wx , Wh,
and b are the input data weight, ‘∗’ denotes the convolution
operator, and ‘◦’ denotes the Hadamard product.
To normalize the input data in the network, the batch

normalization layer was used (2) [41].

x̄i =
xi − µB√
σ 2
B + ϵ

, (2)

where xi is the i-th element of the input,µB is the mean within
a batch, σ is the variance within a batch, and ϵ is a very
minimal number, can be 0 or 1e-12.

The NN architecture consists of three blocks. Each block
includes one ConvLSTM layer and the batch normalization
layer. After the first and last blocks, there are Dropout regu-
larization layers (3) with values of 0.1 and 0.2, respectively,
to prevent network retraining [42].

r (l)i ∼ Bernoulli(p)

ỹ(l) = r (l) ∗ y(l)

z(l+1)
i = w(l+1)

i ỹ(l) + b(l+1)
i

y(l+1)
i = f

(
z(l+1)
i

)
, (3)

where r is a vector of independent Bernoulli random variables
each of which has probability p of being 1, zl is the vector of
inputs into layer l, y is the vector of outputs from layer l (y
(0)

= x is the input), ỹ is the thinned outputs, w and b are the
weights and biases at layer l, f is the input of the activation
function, and ‘∗’ denotes an element-wise product.
At the end of the NN, two regulars densely connected

layers at 100 and 1 (4), respectively, were used over the time-
distributed layer.

x lj = f
(∑

i
x l−1
i wl−1

i,j + bl−1
j

)
, (4)

where x is the input of the layer l, wi,j is the weight vector,
and bj is the bias.
Throughout the latent PS-ConvLSTM, the Rectified Linear

Unit function (5) was used to activate the neuron on the
layer [43]. However, on the last layer of the densely connected
NN layer, the sigmoid activation function of the neuron was
used because it is a smooth function and varies in the range
from −1 to 1 (6).

g (x) = max {x, 0} , (5)

g (x) =
1

1 + e−x
. (6)

The loss function to be minimized in our network was
given by the binary cross entropy loss (7), which is commonly
used in binary classification problems like ours [44].

Log loss = −
1
N

∑N

i

∑M

j
yil log

(
pij

)
, (7)

where N is the number of rows, M is the number of classes,
and pij is the probability of the class.

As an adaptive learning rate method or optimizer, the Root
Mean Square Propagation algorithm (8) was used [45], which
is a root mean square propagation and is a modification of the
stochastic gradient descent algorithm, the impulse method,
and the basis of the Adam algorithm [46]. The propagation
value was set up 0.001. The performance of the NN was
evaluated using the Accuracy metric. To evaluate the impact
of the number of training epochs on the accuracy of the CNN,
training was performed and compared in the range of 1 to
50 epochs.

vt = ρvt−1 + (1 − ρ)∗g2t

1ωt = −
η

√
vt + ϵ

∗gt

ωt+1 = ωt + 1ωt , (8)

where ρ is a hyperparameter, η – initial learning rate, vt –
exponential average of squares of gradients, and gt – gradient
at time t along ωj.
The output dimensions and network parameters of the

PS-ConvLSTM architecture are shown in Table 2 and
Figure 4.

TABLE 2. The PS-ConvLSTM with output dimensions and network
parameters.
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FIGURE 4. PS-ConvLSTM architecture.

C. METRICS FOR PS-ConvLSTM ARCHITECTURE
PERFORMANCE EVALUATION
The performance of the PS-ConvLSTM architecture was
evaluated using the Accuracy metric (9) based on confusion
matrix, that shown in Figure 5 [47].

Accuracy =
TP+ TN

TP+ TN + FN + FP
, (9)

where TP – true positive, TN – true negative, FP – false
positive, and FN – false negative. The highest and best value
of all this metric is 1.0 and the worst is 0.0.

FIGURE 5. Confusion matrix.

D. EXPERIMENTAL SETUP
The developed architecture was trained and tested using the
Python programming language version 3.5.2 and the Tensor-
Flow Object Detection API [48], an open-source software
library for high-performance DL models. The calculations
were performed on a computer with an Intel(R) Core(TM)
i7-9750H central processing unit (CPU) accelerated by
an NVIDIA GeForce GTX 1650 graphics processor unit
(GPU) as a platform for studying and testing the proposed
PS-ConvLSTM architecture.

The NN training process on our dataset takes about
60 hours on the GPU. Testing the PS-ConvLSTMarchitecture
on a new dataset takes a few seconds, depending on the
number of temporary images provided and the size of the
test region. To train the PS-ConvLSTM architecture during
its development, a new dataset consisting of 207360 patches
and a shape as (864, 240, 100, 100, 1) was used. Where 864 is
the number of interferogram patches, 240 is the time, 100 by
100 is the patch dimension in pixels, and 1 is the binary gray
channel, respectively. The entire dataset was divided into 60%
for NN training and 40% for NN validation.

The PS-ConvLSTM architecture was tested on randomly
selected patches for each class in the dataset, except for the
8th class - Urban&Water, due to the fact that only one sample
was present in the dataset (see Table 1). To externally test
the PS-ConvLSTM architecture, a small dataset was used for
each class with a shape as (1, 240, 100, 100, 1). Where 1 is
the class type (Forest, Urban, Natural,Water, Forest &Urban,

Urban & Natural, Natural & Water, and Forest & Natural),
240 is the number of images in time, 100 × 100 is the
patch dimension in pixels, and 1 is the binary gray channel,
respectively. The average time spent on each test set was
1 millisecond.

IV. EXPERIMENTAL RESULTS OF INCREASING POINT
DENSITY USING THE PS-ConvLSTM ARCHITECTURE
A. PS-ConvLSTM ARCHITECTURE TRAINING AND
VALIDATION RESULTS
To evaluate the impact of the number of training epochs
on the CNN accuracy, training was performed and compared
in the range of 1 to 50 epochs. The maximum performance
of the NN was achieved at the 16th training epoch, providing
an internal test accuracy up of 92% and a minimum training
loss of less than 0.2. After the 16th epoch, the validation
loss was stabilized and the difference between the training
and validation loss increased. In this context, and to avoid
overfitting, the model was trained on 20 epochs (Figure 6).

FIGURE 6. Accuracy and loss for each epoch of the training and
validation PS-ConvLSTM architecture.

B. TEST RESULTS OF THE PS-ConvLSTM ARCHITECTURE
The results of point density prediction in PS-InSAR data
using the newly developed PS-ConvLSTM architecture are
shown in Figure 7. Note that the original interferogram
images are shown in the first column of Figure 7. The second
column shows the results of the PS mask computed using the
PS-InSAR techniques developed at the CTTC (Section III-A),
which proved to be the ground truth in the PS-ConvLSTM
training. The third column contains the results of testing
the trained RS-ConvLSTM, where each pixel represents a
percentage probability of a stable pixel in the color map,
where green is a predicted label, red is a missed label, and
blue is an extra label. A visual examination of the final color
representation reveals a clear increase in the density of points
on the predicted map.

As can be seen from the results obtained in Figure 7,
the average test accuracy was 94.5% and the average loss
was 0.14. However, the best classes were Nature, Water, and
Nature & Water with an average accuracy of 99.94% and a
loss of 0.03. This suggests that the developed PS-ConvLSTN
architecture can distinguish the tested classes in the best pos-
sible way. However, the worst result from testing the model
with a relatively low accuracy of 81.21% is on the Forest &
Nature class.
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FIGURE 7. A results of increasing point density in PS-InSAR data using
the newly developed PS-ConvLSTM architecture, where each path has
dimensions of 100 × 100 pixels.

The presented PS mask approach can overlook stable
points, although it was used as a ground truth. Therefore,

we consider that the developed model completed the task of
increasing the point density on PS-InSAR data by an average
of 15%.

V. DISCUSSION AND CONCLUSION
Insufficient point density on stable and unstable PS pixels in
SAR data is one of the current research problems in Earth
Observation because the insufficiency prevents from local
land surface displacement detection. Despite the fact that
there is a huge number of methods to solve this problem
(Ferretti et al. [3], [4], Berardino et at. [5], Mora et al. [6],
Schmidt and Bürgmann [7], Duro et al. [8], Crosetto et al.
[9], [10], López-Quiroz et al. [11], Goel and Adam [12],
and Devanthéry et al. [13], Werner et al. [14], Kampes [15],
Hooper et al. [16], Costantini e al. [17], Ferretti et al. [18],
Van Leijen [19], and Lv et al. [20] and others), all of them
are carried out with the participation of an expert or work
in a semi-automatic mode. Another point is that the methods
proposed in the literature do not allow to obtain a map of
the maximum of the point density. In addition, the method is
computationally expensive. Depending on the field of study,
it can take a considerable amount of time to obtain a result.
From the above, it can be concluded that in order to achieve
this goal, it is necessary to develop some automization
methods.

In this article, we demonstrated that the novel approach,
PS-ConvLSTM, can increase the point density on stable and
unstable PS pixels according to PS-InSAR data. To construct
the NN, each experiment consisted of a different number
of layers, network hyperparameters, number and position of
Dropout layers, training time, percentage split of the dataset
into test and validation sets, optimization, loss function, and
evaluation metric. For example, we found that a more com-
plex model with a large number of layers and kernels could
not be trained correctly to solve the problem, and in most
cases led to overfitting. In addition, the long time it took to
train the model on the limited data also failed to effectively
capture the underlying patterns in the data.

Also, the quality of training is influenced by such hyper-
parameters as dilation rate, loss and activation functions,
optimizer, and metrics. Thus, the fine-tuning of the NN was
done manually by refining the pre-trained model to better
match the PS pixel selection. The proposed network consists
of 3 blocks. The PS-ConvLSTM architecture was trained on
a new labeled InSAR dataset with two classes: PS points and
non-PS point. In addition, the entire data set was divided
into 9 areas, including forest, urban, natural, water, forest
and urban, urban and natural, natural and water, urban and
water, and forest and natural. The results obtained with the
PS-ConvLSTM model showed an average test accuracy of
94.5% and an average loss of 0.14. The developed model
increased the point density on PS-InSAR data by an average
of 15%. As illustrated in Figure 7, the majority of scenes,
including Forest, Urban, Forest&Urban, Urban&Natural,
Forest&Natural, are capable of containing stable points that
have been accurately identified with a 94.5% success rate
by the developed NN. However, an examination of scenes
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such as Natural, Water and Natural&Water reveals that in
the majority of cases, there is a paucity of PSs, or indeed,
no points at all. This is exemplified by the Water class.
This indicates that even the ground truth employed in the
experiment may not be entirely reliable, as evidenced by the
accuracy percentage on the predicted mask. For instance,
in the case of the Water instance, the ground truth mask
displays stable points, which do not always align with the
model’s actual prediction.

The proposed development can be implemented in practice
or as a separate step in InSAR pre-processing. The presented
results are of great interest both for scientific and practical
purposes, since the proposed approach based on DL allows to
increase the density of map points in a fully automatic mode.

Compared to classical methods (Fig. 3), the proposed
PS-ConvLSTM network is fully automated and does not
require the participation of an expert. It also improves point
density, even in scenes with natural objects. In addition,
the method is not computationally expensive and does not
require a significant amount of time to obtain a result,
depending on the field of study. However, despite the high
accuracy results and the advantages of using the developed
algorithm,we encountered some limitations. Themost impor-
tant issue is the inability to evaluate the performance of
the PS-ConvLSTM based on the available ground truth data
because the ground truth itself tends to underestimate point
density.

In future research, we therefore plan to apply the algorithm
in real-world scenarios on different test areas and analyze
whether these proposed points by ConvLSTM network are
reliable. Furthermore, a comparisonwill bemade between the
developed network and other existing PS-InSAR methods,
including interferometric point target analysis, stable point
network, Stanford method for PS, spatio-temporal unwrap-
ping network, Delft PSI, coherence pixel technique, small
baseline subset, and others [49]. It is of particular interest
to note the expansion of the test areas to include phenom-
ena such as building collapses, earthquakes and volcanic
eruptions.

ABBREVIATIONS
PS Permanent Scatterer.
InSAR Interferometric Synthetic Aperture Radar.
CNN Convolutional Neural Network.
RNN Recurrent Neural Network.
LSTM Long Short-Term Memory.
ConvLSTM Convolutional Long Short-Term Memory.
CPU Central Processing Unit.
GPU Graphics Processing Unit.
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