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Abstract

Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels
of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson’s disease (PD); however,
mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well
understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA,
thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expres-
sion. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding
of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/
Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of
MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2
knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a
significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding
of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide
closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2
in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for
MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss
of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron
1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation
found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation
of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.
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ChIP Chromatin immunoprecipitation
DN Dopaminergic neurons

EMSA Electrophoretic mobility shift assay
ko Knockout

MBD Methyl-CpG-binding domain
MeCP2 Methyl-CpG binding protein 2
qPCR Quantitative PCR

(s)PD (sporadic) Parkinson’s disease
RTT Rett syndrome

TF Transcription factor

TH Tyrosine hydroxylase

TRD Transcriptional repression domain
Wt Wild type

Background

Alpha-synuclein (a-syn) is an abundant protein in mamma-
lian neurons and numerous cells in the hematopoietic lin-
eage. It has been implicated in various cellular functions,
and the altered expression of the gene for a-syn (SNCA) has
profound effects on many intracellular processes [1]. a-syn
is a major component of Lewy bodies, the pathological
hallmark found in both familial and sporadic Parkinson’s
disease (PD) patients [2, 3]. In kindreds with SNCA multi-
plication and familial parkinsonism, increased a-syn dose-
dependently results in severe parkinsonian phenotypes [4].
Several studies have identified significant risk haplotypes
for sporadic PD (sPD) that are predicted to regulate SNCA
expression (PDbase; [5]). Extensive promoter analyses and
studies of SNCA mRNA in dopaminergic neurons (DN)
showed that genotype-dependent regulatory mechanisms of
SNCA expression contribute to the risk of sPD, and a recent
study revealed that its expression in brain in vivo is regu-
lated predominantly by intronic enhancers [6-9]. Previous
studies have independently identified intron 1 as a regula-
tory region of SNCA with expression-relevant GATA bind-
ing sites and NGF response elements in intron 1 of rodent
Snca [10, 11] and binding of ZSCAN21 to human SNCA
intron 1 [12]. We have shown previously that methylation
of SNCA 956,433 in intron 1 of the SNCA gene is decreased
in sPD patients’ brains and represses expression of SNCA,
which was confirmed in human iPSC-derived neurons by tar-
geted editing of DNA methylation of SNCA intron 1 [13, 14].
The importance of DNA methylation for a variety of condi-
tions and functions of the central nervous system (CNS) in
addition to its pivotal role in malignancies has been well
demonstrated [15]. Depending on the methylation status of
CpGs within gene regulatory regions, methyl-CpG-binding
domain (MBD) proteins can differentially bind and recruit
co-repressor complexes to mediate transcriptional repres-
sion by a conformational change of the chromatin structure
[16, 17]. Some transcription factors (TF) may also bind

their regulatory elements in a methylation-dependent man-
ner [18].

Several putative TF binding site motifs are found within
a region of 23 CpG dinucleotides within SNCA g5¢/.483)s
including methyl-CpG binding protein 2 (MeCP2) binding
motifs [9, 14]. MeCP2 is essential for the normal function
of neurons and is a key regulator of gene transcription—it
has been suggested that MeCP2 may bind to more than half
of all promoters of genes expressed in the CNS [19, 20].
MeCP2 has been shown to bind to methylated CpGs with A/T
sequence stretches in the vicinity [21]—although the precise
identity of all target sequence motifs has not yet been fully
elucidated [22]. In addition, hydration of methylated DNA
[23], non-CG context [24], and DNA sequence properties in
cis [25] are also important factors for the binding of MeCP2
to DNA sequences. Missense or nonsense mutations in the
MeCP2 gene have been linked to the etiology of Rett syn-
drome (RTT), a major cause of mental retardation in girls
with a prevalence of about 1 in 10,000 female births [26-28].
The MeCP2 gene is located on the X chromosome, resulting
in a mosaic of wild-type and mutant MeCP2-expressing cells
in women due to X chromosome inactivation. Though all
MeCP2 mutations were initially thought to be lethal in males,
increasing numbers have been identified recently in around
1.3 to 1.7% of males with mental retardation [29]. Different
MeCP2 mutations lead to a wide spectrum of neurological
disorders, ranging from mild mental retardation to severe
neonatal encephalopathy [30]. Parkinsonism is a particularly
frequent symptom of RTT and MeCP2 mutations [31].

Several observations point to a mechanistic link between
pathophysiological characteristics observed in PD and RTT.
For example, analyses of cerebrospinal fluid from RTT
patients have found reduced levels of dopamine [32, 33],
while another study showed a change in dopaminergic neu-
ron (DN) metabolism related to abnormal motor movements
and late motor deterioration [34]. Changes in dopamine D2
receptors in the basal ganglia have also been reported [35,
36]. Neuropathological studies support an involvement of
the nigrostriatal system in RTT with a reduction in the num-
ber of DN in the substantia nigra [37] and corresponding
reduction of tyrosine hydroxylase (TH) immunoreactivity
[38] and an abnormal thinning of dendrites in the substantia
nigra [39]. A Mecp2 knockout (ko) mouse model, carrying
a deletion of Mecp2 exons 3 and 4, showed a strong reduc-
tion in TH-expressing DN, while treatment with levodopa
and a DOPA-decarboxylase inhibitor, the gold standard
treatment for PD patients, markedly improved the associ-
ated behavioral abnormalities [40, 41]. In another model of
Mecp2-null mice, levels of norepinephrine and dopamine
were reduced [42] and TH-expressing DN diminished [43].
Taken together, these data strongly suggest that genes impli-
cated in the pathophysiology of PD are among the target
genes of MeCP2.
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Here, we provide evidence for methylation-dependent
binding of MeCP2 to a restricted region of SNCA intron 1.
The effects of MeCP2 knockout and overexpression of vari-
ants carrying the four common mutations causing RTT on
a-syn levels in addition suggest that SNCA regulation could
be impaired in some RTT patients.

Materials and Methods
Cell Culture

SK-N-SH and HeLa cells were cultured in DMEM (Mil-
lipore) and RPMI 1640 (PAA Laboratories), respectively,
supplemented with 10% fetal bovine serum (FBS Gold,
PAA Laboratories), 100 U/ml penicillin, and 100 pg/ml
streptomycin (PAA Laboratories) at 37 °C and 5% CO,.

For treatment with 5-aza-2'-desoxycytidin (Aza), 5 X
10° SK-N-SH cells were seeded in 10-cm plates, cultured
overnight and treated with 10 pM Aza (A3656, Sigma; dis-
solved in DMSO) or with DMSO as control. The treatment
was repeated (including medium replacement) every 12 h
for 48 h. The methylation levels of SNCA  g5¢, 453, (CpGs
1-23) were controlled by bisulfite sequencing as previously
described [13].

Human Cortex Samples

Cortex samples from two PD patients and two healthy con-
trols (males, mean age 74.5 + 2.5, post mortem time 25.3
+ 2.3 h) were obtained from the GermanBrainNet (Ethical
approval: 051/00 and 078/20).

ChipP

For 10 independent chromatin immunoprecipitation
(ChIP) experiments, 300-mg cortex or 1 X 10" SK-N-SH
cells were cross-linked by 1% formaldehyde and the tis-
sue disaggregated using a Dounce homogenizer. After cell
lysis, chromatin was sheared by sonication, and DNA was
purified using the Magna ChIP G kit (Millipore) accord-
ing to the manufacturer’s instruction. The antibody against
MeCP2 was kindly provided by C.M. and previously
described [44].

qPCR

Quantitative PCR (qPCR) was performed in triplicate
with SYBR Green JumpStart Taq ReadyMix (Sigma) on
an Applied Biosystems 7500 Fast Real-Time PCR System
using 2 pl of ChIP purified DNA for each reaction. Results
were normalized for IgG binding and related to the input
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DNA. Data are presented as means + s.d. of three inde-
pendent ChIP reactions. All primers used in the study are
listed in Table 1.

Analysis of DNA Methylation and In Vitro
Methylation

To eliminate certain recognition sites for restriction
enzymes in the vector backbone, the insert from the pre-
viously described SNCA ;s,4/.159) Teporter construct [13]
was subcloned into the plasmid pUHC-13-3 [45] after
removal of the intrinsic CM'V promoter. An intrinsic Hpal
restriction site was removed by in vitro mutagenesis. For
site-specific methylation (Fig. 3A), two different fragments
were excised by digestion with BstXI/BamHI and BamHI/
Hpal, respectively. After in vitro methylation with M.SssI
and S-adenosylmethionine (New England Biolabs), the
methylated fragments were re-ligated into the vector con-
struct, transfected into HeLa cells, and luciferase activity
was compared to the respective unmethylated fragment.
The extent of methylation in the vector constructs and its
conservation after transfection was controlled by bisulfite
sequencing as previously described [13].

Luciferase Reporter Assay

HeLa cells (1 x 10° per well) were seeded in 24-well plates
and transfected with the indicated luciferase reporter con-
structs w/o in vitro methylation using Lipofectamine 2000
Reagent (Invitrogen) according to the instructions of the
manufacturer. Renilla luciferase (pRL-CMYV, Promega)
was cotransfected to normalize for transfection efficiency.
Cells were harvested 24 h after transfection, and luciferase
activities were measured using the Dual Luciferase Reporter
Assay System (Promega) in a Centro LB 960 luminometer
(Berthold Technologies).

Genome Editing

CRISPR/Cas9 constructs were generated by insertion of
double-stranded oligonucleotides (Table 1) into the GeneArt
CRISPR nuclease (OFP reporter) vector (Life Technologies)
according to the manual. SK-N-SH cells (1 x 10° per dish)
were seeded on 10-cm dishes and transfected with 10 pg of
the indicated CRISPR constructs each with 2 pg of pPUR
vector (Clontech) using 50 pl ROTIFect PLUS (Carl Roth)
according to the instructions of the manufacturer. Two days
after transfection, medium was supplemented with 2 pg/
ml puromycin (Sigma). Individual resistant clones were
selected for 3 weeks and transferred into single wells of a
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Table 1 Primer sequences Name Position Use Sequence
SYN-FI1 SNCA, Intronl BS-PCR GGAGTTTAAGGAAAGAGATTTGATT
SYN-R2 SNCA, Intronl BS-PCR CAAACAACAAACCCAAATATAATAA
SNCA-CHIP-1F  SNCA, Intronl gPCR,PCR GGGCCAGGTCTCTGGGAGGTG
SNCA-CHIP-1R  SNCA, Intronl gPCR CGCTCCATGGAGCATCCTCG
SNCA-CHIP-2F  SNCA, Intronl gPCR CGAGGATGCTCCATGGAGCG
SNCA-CHIP-2R  SNCA, Intronl gPCR, PCR CAGCCTCCACCCTAGCGGACC
SNCA_CpGIl-F  SNCA, Intronl GE GAGAAGGGAATATCAGAAGCGTTTT
SNCA_CpGIl-R  SNCA, Intronl GE GCTTCTGATATTCCCTTCTCCGGTG
SNCA_CpG2-F  SNCA, Intronl GE AGAGATTAGGCTGCTTCTCCGTTTT
SNCA_CpG2-R  SNCA, Intronl GE GGAGAAGCAGCCTAATCTCTCGGTG
SNCA-1274F SNCA, Intron]l PCR,Seq = GAGAACGCCGGATGGGAGAC
SNCA-1751R SNCA, Intronl PCR,Seq = CTCACACTCGCGGGCCGTC
MeCP2_TS1-F MeCP2, Exon4 GE GGAGGCTCACTGGAGAGCGAGTTTT
MeCP2_TS1-R MeCP2, Exon4 GE TCGCTCTCCAGTGAGCCTCCCGGTG
MeCP2_GCDI-F MeCP2, Exond PCR,Seq = CATCACCACCACTCAGAGTCCC
MeCP2_GCDI1-R MeCP2, Exond PCR,Seq  GTGTTTGTACTTTTCTGCGGC
MeCP2_TS3-F MeCP2,Exon3 GE CATCATACTTCCCAGCAGAGCGGGTTTT
MeCP2_TS3-R MeCP2,Exon3 GE CCGCTCTGCTGGGAAGTATGATGCGGTG
MeCP2_TS4-F MeCP2,Exon2 GE CCATGGAATCCTGTTGGAGCTGGGTTTT
MeCP2_TS4-R MeCP2,Exon2 GE CCAGCTCCAACAGGATTCCATGGCGGTG
RV3 pGL4.23 gPCR TAGCAAAATAGGCTGTCCCC
RV3-Rev pGL4.23 qPCR AACAGTACCGGATTGCCAAG
SNCA-EMSA-1F SNCA, Intron] EMSA CTGGCTTTCGTCCTGCTTCTGATATTCCCTTCTC
SNCA-EMSA-1R SNCA, Intron] EMSA GAGAAGGGAATATCAGAAGCAGGACGAAAG

CCAGCCAGACCAGGGCAC
SNCA-EMSA-2F SNCA, Intron] EMSA GCTGAGAGATTAGGCTGCTTCTCCGGGATCCGC
SNCA-EMSA-2R SNCA, Intron] EMSA GCGGATCCCGGAGAAGCAGCCTAATCTCTC
AGCCCAGACCAGGGCAC

LUEGO / EMSA IRDye700-GTGCCCTGGTCTGG

ChIP chromatin immunoprecipitation, (¢g-) PCR (quantitative-) polymerase chain reaction, GE genome
editing, Seq sequencing, EMSA electrophoretic mobility-shift assay

24-well plate. Cell clones were then analyzed for expres-
sion changes of the targeted gene in Western blot analyses.
CRISPR/Cas9-mediated localized mutations within SNCA
intron 1 were analyzed by sequencing of correspondingly
generated PCR products (primers are listed in Table 1).

Western blot analysis

Protein extracts were prepared by resuspending cells in lysis
buffer (50 mM Tris—HCI, pH 8.0, 150 mM NacCl, 0.5% Tri-
ton X 100, 10 mM MgCl,, 1x Halt protease inhibitor-cock-
tail (Thermo Fisher), 1 pl/ml Benzonase (Thermo Fisher).
After incubation on ice for 1 h, 50 pg of protein per lane
was separated by SDS gel electrophoresis, transferred to
nitrocellulose, and detection was performed with the ECL
Western blotting detection system (GE Healthcare) and sec-
ondary antibodies conjugated with horseradish peroxidase.
The following antibodies and dilutions were used: anti-a-
syn, 1:2000 (610786, BD Bioscience); anti-MeCP2, 1:1000

(ab2828, Abcam); anti beta-actin, 1:10000 (A5441, Sigma);
goat anti-mouse, 1:2000 (P044701-2, DAKO); and goat anti-
rabbit, 1:3000 (7074, Cell Signaling). Inmunoreactive sig-
nals were detected using the Intas ChemoCam system (Intas)
and the software ChemoStar (Intas). Quantification of the
signal intensities was performed using ImageJ.

Protein Expression

For the generation of MeCP2 variants, mutations described
in RTT patients (27) were inserted into a MeCP2 expression
plasmid (pCMV3-MeCP2, isoform 1; Sino Biological Inc.)
by in vitro mutagenesis.

For transfection, 5 X 10° wild type (wt) or MeCP2 knock-
out SK-N-SH cells per well were seeded in six-well plates
and transfected with 1-pg expression plasmids using 2.5-pl
ROTIFect PLUS (Carl Roth) according to the instructions of
the manufacturer. Cells were harvested 24 h after transfec-
tion, and lysates prepared for Western blot analysis.
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Electrophoretic mobility-shift assay (EMSA)

Double-stranded (ds) DNA probes were prepared with
IRDye700-labeled LUEGO oligonucleotides according to
[46] in a ratio of 3:3:1 (LUEGO: forward primer: reverse
primer; Table 1). Naive or in vitro methylated probes
were cleaned with Oligo Clean & Concentrator kit (Zymo
Research).

MeCP2 cDNA was cloned w/o mutations in pET30b
(Novagen). Recombinant His-MeCP2 fusion proteins were
generated in E. coli BL21, purified by His-spin protein mini-
prep according to the instructions of the manufacturer (Zymo
Research) and quantified with NanoDrop One (Thermo Sci-
entific). For electrophoretic mobility shift assays (EMSAs),
50 fmol labeled ds DNA probes were incubated with 30-75
nmol MeCP2 in 5-pl binding buffer (10 mM Tris, pH 7.5, 1
mM EDTA, 100 mM KCI, 100 pM DTT, 5 % glycerol, 10
pg/ml BSA) for 30 min at room temperature. The binding
reactions were separated in 5% non-denaturing polyacryla-
mide gels. After pre-running the gels without samples for
30 min at 55 V, the samples were finally separated at 55 V
for 110 min in 1Xx TAE buffer. Fluorescence was measured
on a LI-COR Odyssey CLx using the Image Studio software
(LI-COR Biosciences). Signal intensities were calculated
using Imagel.

Statistical Analysis

Statistical analysis was performed from at least three indi-
vidual experiments. Data are expressed as the mean +s.d.
(standard deviation). All data were analyzed by one-way
analysis of variance (ANOVA). A p-value < 0.05 was con-
sidered significant (p-value <0.05 (¥), p-value <0.01 (¥%)).

Results

Potential MeCP2 Binding Sites in Intron 1
of the SNCA Gene

DNA methylation of SNCA intron 1 has been shown to
repress SNCA gene expression whereas demethylation
increases SNCA expression [14, 47]. Methylated CpGs gen-
erate binding sites for proteins containing a methyl-CpG
binding domain such as MeCP2 and are associated with
transcriptional repression and chromatin remodeling [22].
Thus, we asked whether methylated CpGs in the subregion
of SNCA intron 1 could be targets for MeCP2 and mediate
downregulation of SNCA transcription. For efficient binding,
MeCP2 requires an A/T-rich sequence flanked by a methyl-
ated CpG [22]. In the CpG island of SNCA intron 1 (region
from — 926/— 483, Fig. 1A, B), five potential MeCP2
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binding sites are found in close proximity to CpGs 1, 2, 8,
9, and 10 (Fig. 1E).

MeCP2 Binds to Methylated CpGs in SCNA Intron 1

To verify if these putative CpGs are bound by MeCP2, we
performed chromatin immunoprecipitation (ChIP) analyses
with a MeCP2-specific antibody and analyzed binding of
MeCP2 to two different subregions of SNCA intron 1 con-
taining CpGs 1-7 (ChIP1) and CpGs 6-13 (ChIP2) by qPCR
(Fig. 1D, E). ChIP analyses were performed using chromatin
DNA isolated from SK-N-SH cells that were either treated
with the demethylating agent 5-aza-2'-deoxycytidine (Aza)
or left untreated. Treatment with Aza decreased methyla-
tion levels in SNCA intron 1 (— 926/— 483) by approxi-
mately 60% compared to untreated control cells (Fig. 2A).
Subsequent ChIP assays of chromatin from untreated cells
revealed a strong enrichment of MeCP2 in both analyzed
regions of the SNCA intron 1, ChIP1 and ChIP2 (Fig. 2B).
In contrast, ChIPs using chromatin from demethylated, Aza-
treated cells revealed a significantly decreased binding of
MeCP2 by 50 to 60% for the ChIP1 and ChIP2 regions (p
= 0.01 and 0.04), respectively (Fig. 2B). Verification of the
endogenous MeCP2 levels in Aza-treated SK-N-SH cells
showed that decreased binding of MeCP2 to ChIP1 and
ChIP2 was not due to a reduction of endogenous MeCP2
expression in Aza-treated cells (Fig. 2C, D). Thus, MeCP2
binds to the SNCA intron 1 region, and binding of MeCP2
depends on the degree of DNA methylation.

To evaluate MeCP2 binding to SNCA intron 1 in human
brain tissue, we prepared DNA and chromatin from differ-
ent human cortex samples and performed bisulfite sequenc-
ing and ChIP assays (n = 2 healthy controls, n = 2 PD
patients). Sequencing of bisulfite converted DNA revealed
far lower levels of DNA methylation within SNCA intron 1
in PD (0.4% + 0.1%) compared to healthy controls (13.1%
+ 0.6%), though no statistical analyses were performed due
to the low group numbers (Fig. 2E). ChIP assays of the
subregions in SNCA intron 1, ChIP1 and ChIP2, showed a
trend towards reduced binding of MeCP2 in PD compared
to healthy controls, but again, the small group numbers pre-
vented statistical analysis (Fig. 2F).

Functional Impact of Methylated CpGs on SNCA
Gene Transcription

To evaluate the functional effects of methylation of indi-
vidual CpG sites on SNCA gene expression, two SNCA
intron 1 fragments, one containing CpGs 1-2 (BstXI/BamHI
fragment) and another one containing CpGs 3-10 (BamHI/
Hpal fragment) (Fig. 1C), were subcloned in luciferase
reporter constructs (Fig. 3A). Based on these constructs,
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tctttgg cctggagaa ¢ gatgggaga ~aatggt - tgggcac - ggagggggtggtgct
gccatgaggaccooctgggccaggtctctgggaggtgagtacttgtccctttggggagectaaggaaa

1
gagacttgacctggctttCGtcctgctg cccttctccacaagggctgagag ggctg
2 3 4 5 6 7
cttcCGggatcCGcttttcccCGggaaaCGCGa:;r gatgctccatggagCGtgagcatccaactttt
8 9
ctctcac ctgtctgccCGectctcttgg ctctgtaaagtaagcaagctgCGtttggce

gaaatggaagtgcaaggaggccaagtcaacaggtggtaaéggg gaagtgctggé&gé
gggtcééctagggtggaggctgagaaééccccctééggtggctggégéégggttggagaéggccégég
agtgtgagégggécctgctcagggtagatagctgagggégggggtggatgttggatggattagaacca
tcacacttgggcctgctgtttgectgagtttgaaccacaccc agtgagcagttagttctgttgect
a - cctttccaccatcaacctgttagccttcttctgggattcatgttaaggatacccctgaccctaag
cctccagcttccatgcttctaactcatactgttaccc gaccc - gg ggggtta
atcttttcatgcaactccacttctgaaatgcagtaataacaactcagaggattcatcc cootgg
ttaggtggctagacttttactagccaagatggatgggagatgct -189

two additional reporter constructs were generated with the  and methylated in vitro using a CpG DNA methyltransferase.
same inserts but with methylated CpGs. For this purpose, = The methylated inserts were re-inserted into the non-methyl-
the inserts were excised from the above reporter constructs  ated reporter constructs to ensure that only the CpGs of the
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«Fig. 1. SNCA gene regions analyzed for DNA methylation and
MeCP2 binding. A Schematic of the SNCA promoter (arrow) and
exons 1 (E1) and 2 (E2). Position of the CpG island (CGI) is depicted
by the striped box (adapted from 13). B Position of the SNCA g6/.453,
region containing CpGs 1-23 analyzed by bisulfite sequencing.
C Position of the SNCA(sy4/159) region used for reporter assays.
Arrows indicate the position of restriction sites for the enzymes
BstXI, BamHI, and Hpal. D PCR-amplified regions within SNCA
intron 1 analyzed by ChIP assays with an MeCP2 antibody (ChIP1,
-964/-792; ChIP2, -811/-617). E Sequence of SNCA sy4/.159) Show-
ing CpGs in blue, CpGs 1-23 as part of SNCA  g56/.433) in black bold
capitals. Sequence of ChIP1 (CpGs 1-7) is marked in red and pink,
sequence of ChIP2 (CpGs 6-13) in pink and blue letters. [A/T] > 4
motifs adjacent to CpGs are marked in green; recognition sites for
the restriction enzymes BstXI, BamHI, and Hpal are underlined, and
target sequences for CRISPR/Cas9 editing are highlighted in yellow
boxes

insert were methylated. Analysis of the methylation levels
revealed increased methylation of CpG 1 and 2 by 90% and
70%, respectively (Fig. 3B). Likewise, in vitro methylation
of the second insert containing CpGs 3 to 10 resulted in
increased methylation of CpGs 4 to 9 ranging from 40 to
90%, respectively (Fig. 3B). Subsequent reporter assays in
transfected HeLa cells showed a significant decrease in lucif-
erase activity by 40% of the construct containing methyl-
ated CpGs 1 and 2 while the construct with methylated CpG
sites 4 to 9 showed a weak but non-significant reduction by
20% in luciferase activity (Fig. 3C). These results indicate
that methylation of the SNCA intron 1 subregion containing
CpGs 1 and 2 plays an important role in the repression of
the SNCA gene expression.

Mutations Closed to the CpG Sites 1 and 2 Affect
SNCA Gene Expression

To further assess specific effects of the methylated CpG
sites in SNCA intron 1 on the transcriptional regulation of
the SNCA gene, two guide RNAs targeting two regions
adjacent to CpGs 1 and 2 were selected to induce local-
ized mutations generated by on-target Cas9 cutting and
repair. SK-N-SH cells were stably co-transfected with
CRISPR/Cas9 and one of each gRNAs (gRNA-CpGl
and gRNA-CpG?2) targeting CpG1 or CpG2 in the SNCA
intron 1 (Table 1). Several individual SK-N-SH clonal
cell lines were selected and analyzed for a-syn expres-
sion by Western blot analysis. Interestingly, gRNA-CpG1
edited cells showed strongly reduced expression levels of
a-syn whereas gRNA-CpG2 edited cells revealed increased
expression of a-syn (Fig. 4A, B). Sequence analysis of
gRNA-CpGl1 edited cells revealed a T to G transversion
at position — 886 (T-886G) generating a novel CpG site
closed to CpGl1 and a single nucleotide deletion of a C
at position — 841 (C-841d) for the gRNA-CpG2 edited
cells (Supplementary Fig. S1). SK-N-SH cells exhibiting
the additional CpG site (T-886G) showed a significantly
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enriched binding of MeCP2 in both SNCA intron 1 subre-
gions, ChIP1 and ChIP2, compared to SK-N-SH wild-type
cells (Fig. 4C, p = 0.0005 and p = 0.008). In contrast,
SK-N-SH cells with the C deletion (C-841d) showed no
MeCP2 enrichment to either SNCA intron 1 subregion
but a 3.2-fold increase in a-syn levels (Fig. 4A, B). Thus,
increased binding of MeCP2 to intron 1 is associated with
decreased a-syn expression whereas loss of MeCP2 bind-
ing increases expression of a-syn. These findings strongly
suggest that transcriptional regulation of SNCA expression
is controlled by binding of MeCP2 to methylated CpG
sites in the SNCA intron 1 subregion.

Knockout and Mutations of MeCP2 Alter A-syn
Expression

To assess the role of MeCP2 in the regulation of SNCA tran-
scription, we generated MeCP2-knockout cell lines in SK-N-
SH cells. To this end, SK-N-SH cells were stably transfected
with a CRISPR/Cas9 expression vector and gRNAs targeting
exon 2, 3, and 4 of the MeCP2 gene. Single-cell colonies
were selected and analyzed for MeCP2 expression by West-
ern blot analysis. Two stable MeCP2-knockout clonal cell
lines (kol and ko2) edited with the gRNA targeting exon 4
(MeCP2-TS1) showed a complete loss of MeCP2 expression
(Fig. 5A). Strikingly, the loss of MeCP2 induced a threefold
increase in a-syn levels compared to wild-type SK-N-SH
cells (p = 0.01). Vice versa, overexpression of recombi-
nant MeCP2 in the knockout cell lines significantly reduced
expression levels of a-syn (p = 0.01) but not in wild-type
SK-N-SH (p = 0.84) cells (Fig. 5A, B). Thus, MeCP2 asso-
ciates with the regulation of SNCA.

Several mutations in the MeCP2 gene have already
been described in RTT patients with Parkinson’s features.
Therefore, we reasoned whether these mutant variants of
MeCP2 might alter SNCA expression. In particular, we
were interested to study the effects of the mutation A140D
in the methyl-binding domain (MBD), R270X in transcrip-
tion repression domain (TRD), and the most common RTT
mutations T158M in MBD and R255X in TRD [27, 28].
Mutations A140D and T158M are amino acid substitutions,
whereas the mutations R255X and R270X result in trun-
cated variants of MeCP2 (Fig. 5C). Expression of wild-type
MeCP2 protein in MeCP2 knockout cells reduced the a-syn
levels on average by 23% compared to untransfected cells
(Fig. 5D, E). Compared to wild-type MeCP2, expression of
the MeCP2 variants TI158M and R255X in MeCP2 knockout
cells did not reduce endogenous a-syn expression levels. In
contrast, expression of the MeCP2 variant A140D signifi-
cantly increased the a-syn protein levels compared to MeCP2
knockout cells transfected with the wild-type MeCP2 protein
(p = 0.02). By far the strongest induction of a-syn expression
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Fig.2 Impact of SNCA methylation on MeCP2 binding. A Methyla-
tion status of SNCA gy6/.453) in SK-N-SH cells untreated (Ctrl) and
treated with 10 pM Aza for 48 h (Aza). The degree of methylation
is presented as the average percentage determined from 10 inde-
pendent clones (n = 10; + s.d.) by bisulfite sequencing in either the
untreated and treated SK-N-SH cells. B Enrichment of SNCA frag-
ments ChIP1 and ChIP2 for MeCP2 binding in Ctrl and Aza-treated
SK-N-SH cells. Data are presented as means + s.d. of three independ-
ent ChIP reactions. C Representative Western blot analysis of MeCP2
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ern blot results for MeCP2 protein levels. The values are expressed
in relation to the respective actin levels. The results were averaged
from triplicates of three independent experiments and are presented
as the mean =+ s.d. E Methylation status of SNCA intron 1 in human
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of the BstXI/BamHI fragment. Right: site-specific methylation of the
BamHI/Hpal fragment. C Luciferase activity after in vitro methyla-
tion of the entire SNCA_sy4/.159) cOnstruct (vector) and after site-spe-
cific methylation of the BstXI/BamHI fragment (CpGs 1-2) and the
BamHI/Hpal-fragment (CpGs 4-9). Data are presented as means +
s.d. of six independent luciferase measurements. (*) p < 0.05; (**)
p<0.01
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mutated SK-N-SH cell lines, C-841d and T-886G. B Quantification
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was observed with the truncated MeCP2 variant R270X (p
= 0.007). These findings show that both knockout of the
endogenous MeCP2 gene and expression of two RTT-related
protein variants of MeCP2 (A140D, R270X) are associated
with increased expression of a-syn. Thus, MeCP2 is most
likely involved in the regulation of SNCA expression and,
moreover, two MeCP2 variants might be associated with PD
features observed in RTT patients.

MeCP2 Variants Show Different Binding Properties
to SNCA Intron 1

The previous findings raised the question of whether differ-
ent binding properties of the MeCP2 protein variants to their
DNA motifs could cause altered expression of a-syn. For
this purpose, we performed electrophoretic mobility shift
assays (EMSA) with unmethylated and methylated SNCA
intron 1 probes of both CpG1 and CpG2 sites containing the
putative MeCP2 binding sites. Formation of high molecular
shift complexes was observed only with methylated probes
of both CpG1 and CpG2 in agreement with our ChIP find-
ings (Fig. 2B). However, only the wild-type MeCP2 pro-
tein and the R255X variant showed increased binding to the
methylated CpG1 and CpG?2 probes containing the putative
MeCP2 binding sites (Supplementary Fig. S2A-B).

To study the binding affinities of the variants in more
detail, increasing amounts of the MeCP2 wild-type protein
and variants were used and analyzed for their binding to the
methylated SNCA intron 1 probes of CpG1 and CpG2. At
30 nM, the wild-type MeCP2 and R255X variant already
produced detectable band shifts with the CpG1 probe while
variants A140D and T158M did not show formation of
shift complexes until 50 nM (Fig. 6A, B). The weakest shift

amounts of a-syn were normalized to actin and compared to untreated
SK-N-SH (wt). C Enrichment of MeCP2 to SNCA-fragments ChIP1
and ChIP2 using chromatin from cell lines C-841d and T-886G by
ChIP analysis. Data are presented as means =+ s.d. of three independ-
ent ChIP reactions. (*) p < 0.05; (**) p < 0.01

complexes were obtained with the R270X variant and only
at the highest concentration of 75 nM. Similarly, to the result
with the CpG1 probe, variant R255X generated the strong-
est shift complexes already at 30 nM with the methylated
CpG2 probe while the other variants and also the wild-type
protein formed only weak or almost undetectable shift com-
plexes with the CpG2 probe (Fig. 6A, B). However, although
the R255X variant showed strong binding to the methyl-
ated CpG1 and CpG?2 probes, this binding apparently does
not alter the a-syn expression levels since the a-syn levels
were comparable to those of MeCP2 knockout cells trans-
fected with wild-type MeCP2 (Fig. 5SE). Among all variants
studied, the R270X variant showed the weakest formation
of shift complexes with both the CpG1 and CpG2 probes
(Fig. 6). These findings indicate that the R270X variant has
probably lost its ability to bind to methylated CpGs in SNCA
intron 1 resulting in increased expression of a-syn (Fig. S5E).

Discussion

In this study, we found that MeCP2 binds to methylated
CpGl1 and CpG?2 sites in SCNA intron 1 and regulates
expression of a-syn protein levels. Interestingly, reduction
of MeCP2 levels as well as expression of mutant MeCP2
RTT variants increased a-syn expression. The increased
a-syn expression in MeCP2 knockout cell lines suggest an
important role of MeCP2 in the regulation of SNCA expres-
sion and may indicate a loss of function in some RTT-related
variants of MeCP2.

In vitro studies suggested that MeCP2 can bind both
methylated and non-methylated DNA sequences [48].
However, in neuronal cells, where MeCP2 is highly
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abundant, it associates preferentially with methylated
regions [49]. For the methylation-dependent interaction,
MeCP2 has been shown to require a methylated CpG and
an adjacent [A/T], motif for high-affinity DNA binding
[22]; five such potential CpG sites (CpGs 1, 2, 8, 9, and
10) reside within SNCA _g56/.453)- This region contains 23
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CpGs and is hypomethylated in sPD patients’ brains [10].
Our ChIP experiments confirmed methylation-specific
binding of MeCP2 at the analyzed CpGs in SK-N-SH
cells. These cells showed strong methylation (~ 70%) at
SNCA intron 1 while treatment with Aza effectively pro-
moted demethylation (~ 10%). The significant decrease
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SNCA intron 1. A EMSAs analyzing the binding to methylated SNCA
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in methylation by Aza resulted in significant reduction of
MeCP2 binding. The differences of SNCA intron 1 meth-
ylation in human brain tissues were much smaller—Ilike-
wise was the reduction of MeCP2 enrichment in the cor-
responding ChIP experiments.

DNA methylation represses transcription in vivo [50], and
MeCP2 binding mediates silencing of gene expression [51].
Differential binding of MeCP2 with downregulation of gene
expression was observed after site-specific methylation of
the arginine vasopressin (Avp) gene in mice [44]. We thus
tested the impact of individual CpG sites on SNCA expres-
sion. Specific methylation of CpGs 1 and 2 in the putative
binding site of MeCP2 in SNCA intron 1 was sufficient to
significantly reduce expression of a reporter gene. In vitro
methylation of CpGs 4-9 was less effective (68% compared
to 80% for CpGs 1 and 2), and we therefore conclude that
methylation of CpGs 1 and 2 in SNCA intron 1 adjacent
to MeCP2 binding sites is important for the modulation
of SNCA gene transcription. To evaluate whether DNA
sequence variations also play a role for binding of MeCP2,
we introduced localized mutations by CRISPR/Cas9-medi-
ated editing in the immediate vicinity of CpGs 1 and 2. Inter-
estingly, the deletion of a C (C-841d) near the CpG2 site in
one of the edited cell lines created novel putative transcrip-
tion factor (TF) binding sites (Supplementary Fig. S3A) for
the glucocorticoid receptor (GR-alpha) [52], cellular E26

(30-75 nmol). (-) indicates free probe. B Densitometric quantification
of signal intensities. Data are presented as relative shift signal nor-
malized to the signal obtained without protein

transformation-specific transcription factor 2 (c-Ets-2) [53],
the general transcription factor II-1 (TFII-1) [54], nuclear
factor-kappa B (NF-kappaB) [55], and the enkephalin tran-
scription factor-1 (ENKF-1) [56], all of which have been
described to activate expression. Thus, the novel TF binding
properties created by deletion of C-841 may also be associ-
ated with an increase in a-syn expression.

Interestingly, CRISPR/Cas9-mediated editing of the
CpGl site (T-886G) created a new CpG site and thereby
increasing the potential for further DNA methylation.
Substitution of T to G at position -886 (near CpG1) increased
overall methylation of SNCA g,/ 453, (Supplementary Fig.
S3B). Rube et al. suggested that MeCP2’s association with
methylation is in part due to its affinity to GC-rich chromatin
[25]. Together with increased methylation of subsequent
CpGs 3-7, this resulted in enhanced binding of MeCP2
at ChIP1. Increased methylation of the CpGs covered by
ChIP2 (CpGs 6-13) most likely accounts for the enhanced
MeCP2 binding at ChIP2. The observation that a single
intronic nucleotide substitution in the human SNCA gene
alters the methylation of neighboring CpGs, binding MeCP2
and subsequent a-syn production might have implications
for other DNA variations in intronic regions. The increased
binding of MeCP2 and the subsequently reduced a-syn
levels corroborate the importance of SNCA intron 1 for
transcriptional regulation of SNCA. In this regard, it is
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important to note that hypermethylation following in vitro
mutation cannot be detected with microarray-based [57,
58] or gene-specific approaches [59, 60] which cannot
distinguish between the influence of the analyzed SNPs and
other sequence differences in linkage disequilibrium with
these SNPs.

While other polymorphisms outside of SNCA and
associated with PD have also been shown to be significantly
associated with both methylation and expression changes
[61], methylation studies have yet to examine SNPs
associated with PD and located within the SNCA g4 483
region (upstream of CpGl, between CpG9 and 10 and at
CpG109, respectively: 12619361, rs1372520 and rs3756063).

The role of MeCP2 in SNCA expression regulation was
additionally demonstrated by knocking out MeCP2. Lack of
MeCP2 resulted in increased a-syn protein expression which
could be reversed by recombinant expression of MeCP2.
Loss-of-function mutations of MeCP2 are associated with
RTT in females and with syndromic and non-syndromic
forms of mental retardation in males [31].

Restoration of MeCP2 knockout cells with mutated
MeCP2 had different effects. MeCP2-T158M and MeCP2-
R255X, which are among the most common mutations in
RTT, acted similar to wild-type MECP2 protein. However,
expression of MeCP2-A140D and MeCP2-R270X resulted
in increased a-syn expression. Reduced binding of these
variants to CpG1 was detected by EMSA pointing to the
importance of MeCP2 binding to CpGl1 for a-syn expression.
MeCP2-A140D and MeCP2-R270X are among the
mutations in RTT syndrome with parkinsonian symptoms
[30]. Resembling PD in the adult, parkinsonian features in
RTT appear as late features during progression of RTT—
suggesting that a minor increase of a-syn over time is
sufficient to trigger the typical symptoms during aging.

Although numerous mouse models with various Mecp?2
mutations (i.e. A140V, T158M and R255X) have been
established [62], none of the models has revealed an
increase in a-syn expression. This is likely due to the distinct
differences of the sequences in the intron 1 region of SNCA
between humans and mice. CpG1 and CpG?2 in particular
are not conserved in the mouse sequence, and Mecp2-related
regulation of a-syn expression in mice may thus differ from
humans. Unfortunately, when genes regulated by MeCP2
were analyzed in five RTT-derived induced pluripotent stem
cell lines, only the T158M mutation, which in our hands
showed no difference to wild type with regard to SNCA
expression, was included and showed no change, too [63].
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Conclusions

We identified the methylation of SNCA intron 1 as an impor-
tant factor for binding of MeCP2 and the regulation of a-syn
expression. The finding that a single nucleotide substitution
next to the CpGl1 site in the human SNCA gene altered adja-
cent CpG methylation, binding of MeCP2 and a-syn produc-
tion could be of importance for other PD-related polymor-
phisms. The observation that a single intronic nucleotide
substitution in the human SNCA gene alters the methylation
of neighboring CpGs, binding MeCP2 and subsequent a-syn
production might have implications for other DNA varia-
tions in intronic regions.

Altered DNA binding properties of specific MeCP2
variants increased a-syn expression, implicating dysregu-
lated expression of SNCA in the pathology of these RTT
genotypes.
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