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Abstract. Our study focuses on absolute dynamic topog-
raphy (ADT) and sea surface temperature (SST) map-
ping from satellite observations, with the primary objec-
tive of improving the satellite-derived ADT (and derived
geostrophic currents) spatial resolution. Retrieving consis-
tent high-resolution ADT and SST information from space
is challenging, due to instrument limitations, sampling con-
straints, and degradations introduced by the interpolation
algorithms used to obtain gap-free (L4) analyses. To ad-
dress these issues, we developed and tested different deep
learning methodologies, specifically convolutional neural
network (CNN) models that were originally proposed for
single-image super resolution. Building upon recent find-
ings, we conduct an Observing System Simulation Experi-
ment (OSSE) relying on Copernicus numerical model out-
puts (with respective temporal and spatial resolutions of 1 d
and 1/24°), and we present a strategy for further refinements.
Previous OSSEs combined low-resolution L4 satellite equiv-
alent ADTs with high-resolution “perfectly known” SSTs to
derive high-resolution sea surface dynamical features. Here,
we introduce realistic SST L4 processing errors and modify
the network to concurrently predict high-resolution SST and
ADT from synthetic, satellite equivalent L4 products. This
modification allows us to evaluate the potential enhancement
in the ADT and SST mapping while integrating dynami-
cal constraints through tailored, physics-informed loss func-
tions. The neural networks are thus trained using OSSE data
and subsequently applied to the Copernicus Marine Service
satellite-derived ADTs and SSTs, allowing us to reconstruct
super-resolved ADTs and geostrophic currents at the same

spatiotemporal resolution of the model outputs employed
for the OSSE. A 12-year-long time series of super-resolved
geostrophic currents (2008–2019) is thus presented and val-
idated against in situ-measured currents from drogued drift-
ing buoys and via spectral analyses. This study suggests that
CNNs are beneficial for improving standard altimetry map-
ping: they generally sharpen the ADT gradients, with con-
sequent correction of the surface currents direction and in-
tensities with respect to the altimeter-derived products. Our
investigation is focused on the Mediterranean Sea, quite a
challenging region due to its small Rossby deformation ra-
dius (around 10 km).

1 Introduction

Oceanic currents play a pivotal role in influencing both short-
term and long-term dynamics within the ocean–atmosphere
system. Monitoring these currents on a large scale is essen-
tial for assessing the transport of heat and salt and enhancing
our ability to predict variations and shifts in ocean dynamics
and their impact on marine ecosystem. At smaller oceanic
scales, such as mesoscale and submesoscale, observing and
predicting ocean currents is key to understand and model
Earth system dynamics. Mesoscale eddies, oceanic features
with length scales from 10 to 100 km, and persisting on
timescales from weeks to months, can migrate over consider-
able distances while carrying heat, salt, and nutrients. These
eddies also introduce perturbations that drive significant ver-
tical exchanges. Submesoscale features, including eddies,
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fronts, and filaments, operate at spatial and temporal scales
of 0.1 to 10 km and hours to days. These transient, small-
scale features introduce notable variations in both horizon-
tal and vertical velocities, profoundly affecting local three-
dimensional transport properties (Clarke and Li, 2004; Li and
Clarke, 2004; Carlson and Clarke, 2009; Siokou-Frangou
et al., 2010; Buongiorno Nardelli, 2013; Barbosa Aguiar
et al., 2013; Ponte et al., 2013; Frenger et al., 2013; Bash-
machnikov et al., 2015; Chenillat et al., 2016). The moni-
toring of ocean currents is also crucial for various societal
and environmental purposes, including aiding ship naviga-
tion, supporting safety and rescue operations, and managing
marine ecosystem services (Pisano et al., 2016, and Onink
et al., 2019). These applications necessitate precise, high-
resolution tracking of surface oceanic currents.

Since the early 1990s, satellites equipped with nadir-
looking radar altimeters have provided indirect observations
of the marine surface circulation at a global scale. This is ac-
complished by measuring the absolute dynamic topography
(ADT) with respect to a reference surface (the geoid) along
1D tracks and inferring surface motion from interpolated
2D ADT maps using the geostrophic approximation. How-
ever, this method has inherent limitations tied to ADT sam-
pling and the geostrophic approximation, primarily captur-
ing only larger mesoscale geostrophic processes, O(100 km,
10 d) (Pascual et al., 2006; Pujol et al., 2012, 2016; Ballarotta
et al., 2019).

The direct estimation of marine surface (or near-surface)
currents relies on satellite radar interferometry techniques
or in situ measurements from Lagrangian buoys, ship-
mounted devices such as the acoustic Doppler current pro-
filer (ADCP), or high-frequency radar (HFR) platforms. La-
grangian observations can serve as reference points to val-
idate remotely sensed surface currents and, when properly
organized in space and time, can yield pseudo-Eulerian
surface circulation estimates. However, this approach faces
constraints related to the spatial–temporal coverage of La-
grangian platforms and their tendency to become trapped
in oceanic recirculation or convergence zones. Conversely,
HFR systems offer comprehensive maps at fine spatial and
temporal resolutions (less than 10 km and 1 h, respectively),
albeit only within coastal regions (Chapron et al., 2005; Falco
and Zambianchi, 2011; Lumpkin et al., 2017; Laurindo et al.,
2017; Capodici et al., 2019; Ribotti et al., 2023; Fanelli et al.,
2024b).

The fusion of altimeter-derived and in situ-measured cur-
rents represents a valuable strategy for enhancing surface
current estimates from altimetry, in both coastal and open-
ocean regions (Mulet et al., 2021; Ballarotta et al., 2023).
Nonetheless, the effectiveness of this approach is contingent
on the availability of in situ measurements. Alternatively,
several studies proposed the merging of altimeter-derived
products with independently observed satellite-derived trac-
ers, like sea surface temperature (SST) and surface chloro-
phyll concentration data (González-Haro and Isern-Fontanet,

2014; Rio and Santoleri, 2018; Ciani et al., 2020; González-
Haro et al., 2020; Miracca-Lage et al., 2022). Such method-
ologies turned out to be useful in improving the altimeter-
derived geostrophic circulation with limitations related to the
season and/or the geographic location, making it challenging
to implement them operationally at a global scale.

High-resolution monitoring of ocean dynamic topogra-
phy using imaging sensors, which natively provide two-
dimensional observations, has only recently become avail-
able thanks to the successful launch of the Surface Wa-
ter and Ocean Topography (SWOT) mission in December
2022 (https://swot.jpl.nasa.gov/mission/, last access: 16 Au-
gust 2024). This is currently providing 2D images of sea sur-
face height at unprecedented spatial resolutions, allowing us
to better characterize the signatures of oceanic mesoscale
features from altimetry maps. The SWOT revisit time is,
however, set to 11 d, limiting the high rate monitoring of the
fast-evolving or persistent oceanic features (Fu et al., 2009;
Fu and Ubelmann, 2014; Morrow et al., 2019, 2023).

Here, we propose an ocean surface current reconstruction
methodology based on artificial intelligence, also following
recommendations from the international altimetry team (Ab-
dalla et al., 2021) and recently implemented by Beauchamp
et al. (2022), Buongiorno Nardelli et al. (2022), Martin et al.
(2023, 2024), Fablet et al. (2023), Moschos et al. (2023), Ku-
gusheva et al. (2024), and Archambault et al. (2024).

In particular, we rely on a family of deep learning meth-
ods known as convolutional neural networks (CNNs) for
super resolution, firstly proposed for computer vision pur-
poses (e.g., Dong et al., 2015). CNNs for super resolution
learn a direct mapping between low-resolution and high-
resolution images and are here applied to the case of satellite-
derived images of absolute dynamic topography (ADT) and
sea surface temperature (SST). Our primary focus is to
super-resolve ADT maps exploiting information from low-
resolution interpolated ADTs and higher-resolution interpo-
lated SSTs, improving both in a joint reconstruction. Then,
the super-resolved ADT maps are used to derive the oceanic
surface circulation via the geostrophic balance. The study
builds on, but also constitutes a substantial advance with re-
spect to, the results firstly presented by Buongiorno Nardelli
et al. (2022) (BBN22 hereinafter), which consisted in train-
ing a CNN through an Observing System Simulation Ex-
periment (OSSE) and then using the same CNN model to
reconstruct ocean surface currents from true satellite prod-
ucts. BBN22 also presented a sensitivity study to assess the
performances of different CNN architectures, mainly test-
ing networks with different numbers of tunable parameters
and different perceptive capabilities. However, BBN22 per-
formed the OSSE only considering the limitations of the al-
timeter products (i.e., accounting for the interpolation of ob-
servations in order to obtain 2D ADT maps from the along-
track observations), thus assuming a perfectly known SST.
Our work improves BBN22 in two particular ways: (i) we
generate a satellite equivalent SST time series accounting for
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a realistic operational level 4 (gap-free) analysis based on
gapped input data, as in Buongiorno Nardelli et al. (2013),
and (ii) we train our CNN relying on updated loss functions,
which now include physics-based constraints, and exploit the
joint reconstruction of ADT, SST, and ∂tSST data, also im-
posing physics-based constraints. The study focuses on the
Mediterranean Sea area, dominated by motions with length
scales down to 6 km (Malanotte-Rizzoli, 2014), thus consti-
tuting a challenging test bed for the super resolution of stan-
dard altimetry products.

2 Materials and methods

The datasets involved in our study are basically those de-
scribed in BBN22 and Ciani et al. (2021), with the excep-
tion of the newly generated synthetic SSTs described in
Sect. 2.5.2. For the sake of clarity, we provide a brief de-
scription of all datasets in the present paper as well.

2.1 Numerical model

The Mediterranean Forecasting System (MFS) is a hydro-
dynamic model designed for the Mediterranean Basin and
the easternmost section of the Atlantic Ocean near the Strait
of Gibraltar. It provides 3D horizontal current and sea sur-
face height (SSH) outputs ranging from monthly to 15 min
intervals, as well as 3D temperature and salinity fields with
monthly to hourly estimates. These data are accessible via
the Copernicus Marine Service web portal (product ID:
MEDSEA-ANALYSIS-FORECAST-PHY-006-013). For our
current research, we utilized daily SSH and SST data ex-
tracted within the boundaries of the Mediterranean Basin (30
to 46° N and 6° W to 37° E). These datasets are provided on
a 1/24° regular grid with 125 unequally spaced vertical lev-
els. The simulations are based on the NEMO model (Nucleus
for European Modelling of the Ocean) in combination with
WAVEWATCH III for the wave component. The MFS sim-
ulations also incorporate data assimilation from 2D satellite-
derived SST, vertical salinity profiles, and sea level anomaly
observations along satellite tracks (Clementi et al., 2019).

2.2 Altimeter ADT and derived quantities

The altimeter-derived ADTs were obtained from the
Copernicus Marine Data Store. The surface currents, for
consistency with the results presented in Sect. 3.2, were
derived from ADT using the geostrophic approximation
equation, i.e., by applying a finite-central-differences oper-
ator to the gridded L4 ADTs in order to compute its spatial
gradients. The Copernicus ADTs are provided as daily data
with a nominal 1/8° horizontal resolution. We extracted the
time series covering the years 2008 to 2019. The correspond-
ing Copernicus Marine Service product and dataset IDs are
SEALEVEL-MED-PHY-L4-REP-OBSERVATIONS-008-
051 and dataset-duacs-rep-medsea-merged-allsat-phy-l4,

respectively (last access: 1 March 2021 and now included
as part of the SEALEVEL-EUR-PHY-L4-MY-008-068
product). To match the resolution of the numerical model
outputs used in our study, the altimeter ADTs are up-sized
to 1/24° via cubic interpolation.

2.3 Satellite SST

We obtained remotely sensed SST data from the Coper-
nicus Marine Service (https://doi.org/10.48670/moi-00172).
These are L4 products, ensuring gap-free estimates of the
foundation temperature (i.e., at ' 10 m depth) provided on
a regular grid, and are produced and distributed opera-
tionally in near real time. Specifically, we used 12 years
of the ultra-high-spatial-resolution (UHR) Mediterranean
dataset spanning from 2008 to 2019, with a nominal res-
olution of 1/100° (product ID: SST-MED-SST-L4-NRT-
OBSERVATIONS-010-004-c-V2). This SST product is gen-
erated by combining nighttime images collected by satellite
infrared sensors after rigorous quality control, removal of
cloudy pixels, and application of an optimal interpolation al-
gorithm. In order to homogenize the satellite SST L4 data
with that used for training the neural network model, we
evaluated the effective spatial scales captured by the model
SST and filtered the UHR via a low-pass, cut-off wave-
length Lanczos filter to obtain comparable effective resolu-
tions. Successively, the satellite SSTs were remapped onto
the final (model) 1/24° grid through bilinear interpolation.

2.4 In situ measurements

In situ measurements of sea surface currents were ob-
tained from autonomous Lagrangian drifting buoys, which
are transported passively by ocean surface currents. Dur-
ing the buoy’s drifting process, positional data are interpo-
lated at regular intervals (approximately every 30 min) us-
ing the kriging interpolation method developed by Poulain
et al. (2012). Velocities are subsequently computed through
a finite-differences method applied to the interpolated po-
sitions and are provided with 6-hourly temporal resolu-
tion. The data covering the period of our study were
originally provided by the Italian Institute of Oceanog-
raphy and Experimental Geophysics (OGS) for the ESA
CIRCOL project (http://circol.artov.ismar.cnr.it/, last ac-
cess: 29 September 2024). These time series are acces-
sible via https://doi.org/10.6092/7a8499bc-c5ee-472c-b8b5-
03523d1e73e9. It is worth noting that buoy-derived surface
current values are retained only if the buoy is equipped with
a drogue, a device that ensures the buoy’s movement is pri-
marily driven by ocean currents rather than surface winds
(Menna et al., 2018).
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2.5 Synthetic satellite equivalent ADT and SST

2.5.1 Satellite equivalent ADT

We generated 1 year (2017) of synthetic, satellite equiv-
alent altimeter-derived absolute dynamic topography (SE-
ADT hereinafter) maps using outputs from the Coperni-
cus Marine Service MFS hydrodynamic simulation, employ-
ing the Data Unification and Altimeter Combination System
(DUACS) mapping method. The steps involved in this pro-
cess are detailed below. Initially, the sea level anomaly (SLA)
was calculated from model outputs according to the follow-
ing expression:

SLA= SSH− (MDT− 0.344). (1)

Here, the mean dynamic topography (MDT) is provided as
a static field along with the model outputs. A constant value
of 0.344 (expressed in meters) is used to adjust the SLA val-
ues in the Mediterranean Sea to ensure that the spatiotem-
poral average of SLA is zero for the year 2017. To remove
the large-scale, high-frequency variability typically due to
dynamic atmospheric processes, we applied a Loess filter
to these synthetic data. Subsequently, the SLA was sampled
along the actual paths of a synthetic constellation comprising
four radar altimeters: Jason-3, Sentinel-3A, SARAL/Altika,
and CryoSat-2 missions. This step was executed using the
SWOT simulator software, which accounts for the actual or-
bits, errors, and noise associated with each mission. The cho-
sen four-satellite constellation represents the constellation
used in the Copernicus Marine Service processing during
2017. These along-track synthetic measurements were then
incorporated into the DUACS processing chain to generate
L4 SLA maps. The optimal interpolation (OI) scheme fol-
lows the DUACS DT2018 (delayed time) configuration for
the Mediterranean area, as described in Taburet et al. (2019).
The reconstructed L4 maps were then combined with the fil-
tered large-scale maps in order to obtain the ADT. These data
are provided on a daily basis and are available on a regular
1/8° grid (further details can be found in Ciani et al., 2021).
A subsequent up-size to 1/24° is applied before using this
dataset for our application.

2.5.2 Satellite equivalent SST

The generation of the synthetic satellite equivalent SST
(SE-SST) follows the same principle as for the SE-
ADT. The SE-SSTs combine information from the
model-derived SST and the Copernicus Marine Ser-
vice merged multi-sensor L3S (Level 3, super-collated)
satellite SSTs for the Mediterranean area (product ID:
SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012,
last access: 20 October 2023). The L3S SSTs are a satellite-
derived product that considers information from several
infrared radiometers and provides daily ocean surface tem-
perature on a regular latitude–longitude grid at high (1/16°)

Figure 1. Results of the OSSE for the satellite equivalent (SE) SST
generation on 16 May 2017. (a) SE L3S gapped SST; (b) SE-SST
generated via OI algorithm; (c) ground truth SST.

and ultra-high (1/100°) spatial resolution, representative of
nighttime SST values (00:00 UTC). As such, the L3S SSTs
contain gaps whenever the infrared SST retrieval is not pos-
sible (e.g., due to cloud cover) or the single-sensor satellite
SSTs have been labeled as poor-quality observations. Start-
ing from 1 year of model-derived SSTs, we remapped gappy
(missing values) patches found in the 1/16° L3S product
(year 2017) onto the original modeled SST, thus generating
a synthetic model-derived L3S SST time series. Finally, the
gap-free (Level 4) SE-SSTs, including an estimate of the
uncertainty on the Level 4 analysis, are obtained through
standard OI via a dedicated algorithm reproducing the
main steps described in Buongiorno Nardelli et al. (2013),
constituting the backbone of the present-day L4 satellite
SST operational production for the Mediterranean area.
An inter-comparison of the synthetic gapped SST, SE-SST
generated via OI, and ground truth SST is depicted in Fig. 1,
where we notice a strong smoothing and underestimation
of the mesoscale SST features in correspondence of cloudy
areas, as expected for present L4 SST satellite products. In
the end, the ∂t (SE-SST) and its error are computed from
the SE-SST time series via central finite differences and
standard error propagation, respectively. The SE-SST, ∂t
(SE-SST), and their errors are daily fields provided on 1/24°
regular grid.

2.6 Ocean currents and SST reconstruction
methodology

In this study, ocean currents are reconstructed through a joint
ADT–SST super resolution relying on a CNN approach, with
a primary focus on ADT. The workflow of the reconstruc-
tion exercise is depicted in Fig. 2. The work consists of
three phases: (i) the satellite equivalent data generation (de-
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tailed in Sect. 2.5.1 and 2.5.2), (ii) the training of the net-
work by means of an Observing System Simulation Experi-
ment (OSSE), and (iii) the application of the neural network
model (optimized via the OSSE) for the reconstruction of the
ocean surface currents from satellite-derived input ADTs and
SSTs. The OSSE consists in the generation of super-resolved
ADTs and SSTs which are then directly compared with an
independent test dataset detailed in Sect. 2.6.1. In addition,
in the present study we will also inter-compare our results
with the ones obtained by BBN22, i.e., an earlier version
of the dilated adaptive multi-scale residual super-resolution
CNN, detailed in Sect. 2.6.1. The super-resolved geostrophic
currents obtained from satellite-derived data are provided at
1/24° (to match the data used for training the neural network
with the OSSE), and their performance assessment is carried
out via direct comparison with in situ-measured currents (see
Sect. 2.4) and spectral analysis.

2.6.1 Convolutional neural network architecture and
training strategy

Convolutional neural networks used for super resolution are
built to learn a mapping between low-resolution and high-
resolution images. This is achieved by relying on convolu-
tion operators designed to detect and learn specific features
in the input images. The network learns the end-to-end map-
ping from low- to high-resolution images via a minimization
of the error between the output and the validation data. This
is quantitatively achieved using loss functions which are it-
eratively minimized by relying on a validation dataset (i.e., a
fraction of the dataset involved in the training procedure).
The overall performance of the CNN is finally quantified by
means of an independent test dataset.

The dataset preparation is carried out as follows. (i) Firstly,
we extracted 40 dates from the model outputs detailed in
Sect. 2.1, which served as independent test dataset. The 40
dates are distributed along the year in order to cover all
dynamical regimes. (ii) Starting from the remaining model
data, we performed a resampling into 76× 100 pixels (corre-
sponding to ' 300× 400 km) tiles. The tile extraction also
considered a 50 % spatial overlap, resulting in a total of
42 250 samples. All the samples then undergo a normaliza-
tion procedure with respect to the maximum observed in the
time series. In addition, for SE-ADT, SE-SST, and ∂t(SE-
SST), we compute anomalies filtering out signals larger than
approximately 200 km. This operation aims at retaining sig-
nals related to the local SST variations due to the horizontal
current advection. In this way the extraction of patterns from
the SST field can help the ADT reconstruction with contri-
butions primarily due to the ocean surface dynamics. Such
samples were thus used for the network training and valida-
tion procedure. Here, compared to BBN22, we changed the
splitting strategy between training and validation datasets,
whose relative amount is 85 % and 15 % of the 42 250 (total)
samples, respectively. In particular, we forced the validation

dataset to be a time series of samples adjacent in time (dur-
ing the late fall/early winter season), instead of applying a
random selection from the available samples. This strategy
is used to train the network, preferably selecting scenarios
where enhanced small-mesoscale and submesoscale activity
is expected, as further detailed in Sect. 4.

The CNN employed here is called the dilated adaptive
deep residual network for super resolution (dADR-SR), de-
picted in Fig. 3. In previous formulations (BBN22), the net-
work considered

– four predictors, namely the SE-ADT, SE-ADT error,
and SST and its temporal derivatives (∂tSST), and

– one target, i.e., the super-resolved ADT.

The predictors were chosen considering the (local) modu-
lation of SST features by water mass advection as well as
the present-day altimeter observation geometry and satellite
observation repetitiveness. The main upgrade of the present
study is the introduction of additional inputs (predictors) like
the SE-SST and ∂t(SE-SST) errors as well as two additional
targets/outputs, i.e., the super-resolved SST and its tempo-
ral derivatives (∂t(SE-SST)). This upgraded architecture, de-
picted in Fig. 3, allows us to perform a more realistic ADT
and SST reconstruction exercise, also accounting for the lim-
itations of the present-day satellite SST operational retrieval.

The basic architecture of the CNN is briefly recalled here.
In the dADR-SR network, the low-resolution input dataset
initially passes through three parallel dilated convolutional
layers, each containing 10 convolutional filters characterized
by a 3× 3 kernel and an increasing dilation factor (1, 3, and
5, respectively). Dilated convolution enhances the CNN per-
ceptive capability, enabling the extraction of information at
increasingly larger scales and maintaining the same com-
putational cost of a standard 3× 3 convolutional filter. Fol-
lowing this initial stage, the data undergo a sequence of 12
multiscale adaptive residual blocks (MARBs). Each of these
blocks incorporates two sets of parallel dilated convolutional
layers, featuring 120 and 10 filters, respectively, also includ-
ing a squeeze-and-excitation (SQ-EX) module. The SQ-EX
block functions as a channel attention mechanism, adaptively
scaling information coming from the several input data be-
fore summing all contributions to produce the final high-
resolution output.

The algorithm is trained applying an early stopping rule,
terminating the training process when the validation loss
function increases for a predefined number of epochs, as de-
termined by the patience parameter, set to 5 in our study. An
adaptive learning rate (initialized at lr= 10−4) is employed,
and we rely on the Adam optimizer with the same config-
uration used in BBN22. The dADR-SR training model ulti-
mately utilizes nearly 1.6 million trainable parameters.

We adopt the mean squared error as the initial loss function
(LF), although physics-informed constraints are introduced,
as detailed in Sect. 3.
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Figure 2. Workflow of the study. Blue stands for generation of the satellite equivalent input data, orange blocks indicate the OSSE, and green
blocks refer to the application of the reconstruction methodology to satellite-derived data.

Finally, for the CNN test/prediction phase, we perform a
tile-by-tile reconstruction, and we merge the output high-
resolution tiles (considering a weighted average in the over-
laps) in order to produce maps covering the entire study area.
This is done on a tile-by-tile basis, with each tile incorpo-
rating a 50 % overlap in both the longitudinal and latitudi-
nal directions. During this process, the central regions of the
tiles are expected to achieve superior performance, whereas
edge effects can lead to spurious features near the tile bound-
aries related to the application of convolutional kernels. To
mitigate these edge-related artifacts, a pixel-wise weighting
function is applied, progressively decreasing the weight as-
signed to pixels with increasing distance from the tile centers.
This approach enables a seamless basin-wide reconstruction
from the 76× 100 tiles.

3 Results

3.1 The Observing System Simulation Experiment

The results of the OSSE are presented below. We firstly
discuss a test case for the ADT reconstruction on 4 Jan-
uary 2017, depicted in Figs. 4 and 5.

The ADT maps obtained through CNN for super reso-
lution (panel b), compared with the ones given by stan-
dard altimetry processing (in panel a), exhibit features in
good agreement with the model outputs (our ground truth,
panel c). Visual inspection suggests an overall sharpening
of the basin-scale ADT gradients and the potential of the
CNN approach to overcome the dynamical feature distortion
due to standard altimetry mapping. This is observed in many
cases along the Algerian coast, in proximity of the Gulf of
Lion, as well as in the Adriatic Sea and the Levantine Basin.
Choosing a land-free area in the Levantine Basin (depicted
in Fig. 4c) and relying on fast Fourier transform (FFT) anal-
ysis, we also quantified the spectral properties of the three
aforementioned ADT estimates, as in Droghei et al. (2018).
At a large scale (< 200 km) the three spectra exhibit a sim-

ilar power spectral density (PSD), indicating a similar de-
scription of the largest mesoscale oceanic features. Progres-
sively approaching smaller scales, i.e., from' 100 km down-
ward (1 per degree wavenumber onward), the super-resolved
ADT spectrum (SR-ADT, red line in Fig. 4c) evolves in fairly
good agreement with the ground truth (green line in Fig. 4c),
confirming an improved representation of smaller mesoscale
features compared to standard altimetry products. The SR-
ADT spectrum eventually shows the injection of noise below
scales of ' 20 km, as confirmed by a flattening of the spec-
trum. The aforementioned sharpening of the super-resolved
ADT gradients is further confirmed by the analyses reported
in Fig. 5. In particular, we show maps of geostrophic current
velocity derived from the SE-ADT, the super-resolved ADT,
and the ground truth ADT, shown in panels (a)–(c), respec-
tively. The SE geostrophic current velocity is characterized
by flows seldom exceeding 0.75 m s−1, with broader spa-
tial patterns compared to the ones derived from the ground
truth ADT. On the other hand, the CNN super-resolved cur-
rent velocity (Fig. 5b) exhibits sharper patterns at the basin
scale, with flow intensities reaching 1 m s−1, in agreement
with our reference field, given in Fig. 5c. Accordingly, per-
forming the spectral analysis on the current velocity fields
(Fig. 5d) leads to the same results already discussed for ADT.
The spectral analyses presented in Figs. 4 and 5 serve to as-
sess the enhancement of the mesoscale activity in the SR
fields compared to present-day altimetry mapping. A more-
in-depth comparison with theoretical predictions of energy
and enstrophy transfer is based on the computation of ki-
netic energy (KE), depicted in Fig. 6. We firstly compute the
KE relying on the surface currents from the SE-ADT, SR-
ADT, and model outputs (ground truth). The KE spectra are
then presented along with the k−5/3 and k−3 slopes, as in
Ciani et al. (2019) and following Vallis (2006). With simi-
lar outcomes with respect to previous analyses, the ground
truth KE (green line in Fig. 6) is in agreement with the pre-
dictions of energy and enstrophy transfer, following the k−3

slope for larger wavenumbers and the k−5/3 for shorter ones.
An expected exception occurs for wavenumbers approaching
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Figure 3. CNN architecture. The set of input tiles, from left to right, respectively, indicate SE-ADT, SE-ADT error, SE-SST, SE-SST error,
∂t(SE-SST), and ∂t(SE-SST) error. The three output tiles, from left to right, respectively, indicate the SR-ADT, SR-SST, and SR-∂tSST. In the
figure, Conv2D stands for 2D convolutional filter, Dil stands for dilation factor, F is the number of filters, ADD stands for aggregation, SQ-
EX is the squeeze-and-excitation module, and MARB indicates a multiscale adaptive residual block (further detailed in the panel highlighted
by the dashed lines). The ADT output file is emphasized by a thick edge to indicate the focus of the present study.

Figure 4. Results of the OSSE on 4 January 2017. (a) SE-ADT; (b) super-resolved ADT; (c) model ADT (ground truth); (d) comparative
spectral analysis of the ADT maps (SE-ADT, SR-ADT, and ground truth are given in blue, red, and green, respectively). Results refer to the
2D box depicted in panel (c).

10 per degree, where the spectrum exhibits an energy loss,
suggesting that model outputs are unable to fully resolve the
small mesoscale motion. The KE spectra derived from SR-
and SE-ADTs are superimposed to the ground truth case only
in the large mesoscale regime (wavenumbers< 1 per degree).
As soon as the mesoscale regime is reached, the SE KE spec-

trum experiences a significant loss of energy, while the SR
KE follows theoretical predictions until scales of ' 50 km,
which is thus identified as the scale at which processes are
fully resolved.

In addition, we present the CNN performances as root
mean square error (RMSE) differences, 1RMSE, between
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Figure 5. Results of the OSSE on 4 January 2017. (a) Satellite equivalent (SE) current velocity from SE-ADT; (b) current velocity from
super-resolved (SR) ADT; (c) current velocity from model ADT (ground truth); (d) comparative spectral analysis of the current velocity
maps (SE-ADT, SR-ADT, and ground truth are given in blue, red, and green, respectively). Results refer to the 2D box depicted in panel (c).

Figure 6. Results of the OSSE on 4 January 2017. Kinetic energy
spectra of the surface currents derived from satellite equivalent (SE)
ADT (blue), super-resolved (SR) ADT (red), and model outputs
(ground truth) ADT (green). Results refer to the 2D box depicted
in Fig. 4c. The continuous and dashed black lines refer to the k−3

and k−5/3 slopes, respectively. The 50 km scale is reported for ref-
erence.

two versions of the ADT L4 mapping, using the inde-
pendent test data (i.e., the original model-derived ADTs)
as benchmark. The aforementioned L4 ADT mappings are
(i) the operational standard altimetry system discussed in
Sect. 2.5.1 and (ii) the CNN-based reconstruction proposed
in the present study. In practice, whenever the 1RMSE as-
sumes positive values, the CNN-based reconstruction im-
proves the capabilities of the standard altimetry system.
In particular, Fig. 7 illustrates a comparative analysis be-
tween the optimal CNN reconstruction proposed by BBN22

Figure 7. (a) 1RMSE (in m) according to the CNN architecture
of BBN22. (b) 1RMSE (in m) following the CNN proposed in the
present study. Positive values indicate an ADT mapping improve-
ment with respect to standard altimetry.

(panel a) and the one resulting from upgrading the CNN ar-
chitecture (panel b).

In the BBN22 formulation, the OSSE indicates an over-
all improvement of the CNN-based reconstruction, with very
few spots of degradation mainly distributed along the coasts
of the Adriatic Sea, the Liguro-Provencal area, and few ad-
ditional isolated spots distributed in the southern section of
the basin (from 30 to 35° N). Upgrading the CNN still en-
abled us to observe improvements in more than 95 % of the
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basin, with isolated spots of degradation found in the western
Mediterranean Sea and an overall decrease in the more in-
tense1RMSE values. However,1RMSE areas around 2 cm,
expressing an improvement of 60 % with respect to standard
altimetry (computed as in Rio and Santoleri, 2018), are ubiq-
uitous. The slight decrease in the 1RMSEs compared to the
BBN22 formulation is not surprising, as we presently train
the neural network based on a degraded, satellite equivalent
SST field, which likely impacts on the overall CNN perfor-
mances, with the advantage of including information on the
actual, current SST observing systems, also including a new
training strategy which can likely impact the results at the
OSSE level, as described thoroughly at the end of this sec-
tion. Upgrading the CNN architecture, beyond relying on a
realistic observing system, also enables the fine tuning of the
LF during training. In the present-day CNN formulation, the
LF is given by the following equation:

LF= α
[(

SSTpred−SSTref
)2]

+β

[(
ADTpred−ADTref

)2]
+ γ {

[
(∂tSST)pred− (∂tSST)ref

]2
}+ δLossphy, (2)

where

– LossPhy =

((
∂SST
∂t

)
pred
−

g
f

∂ADTpred
∂y

∂SSTpred
∂x

+
g
f

∂ADTpred
∂x

∂SSTpred
∂y

)2
;

– α = 1, β = 0.25, γ = 0.67, and δ = 0.025;

– the subscripts “pred” and “ref” stand for the output of
the CNN prediction and the validation dataset used dur-
ing training, respectively; and

– g is the gravity acceleration; f is the Coriolis parameter;
and x, y, and t are the zonal, meridional, and temporal
coordinates, respectively.

As such, the LF employed in our study quantifies the dis-
crepancies between the predicted and the ground truth ADTs,
SSTs, and ∂tSSTs, and it includes an additional physics-
informed term (Lossphy in Eq. 2). Locally, this is equiva-
lent to imposing the evolution of the ocean surface temper-
ature according to the horizontal geostrophic advection on
the super-resolved fields predicted by the CNN, based on the
following equation:

∂SST
∂t
+ ug

∂SST
∂x
+ vg

∂SST
∂y
= 0, (3)

where

– ug and vg indicate the zonal and meridional surface
geostrophic currents, respectively, and

Figure 8. Basin-scale percentage of improvement of the CNN re-
construction with respect to standard altimetry. The improvement is
evaluated against the independent test dataset. The green and yel-
low dots stand for Julian day 4 and 324, respectively, and refer to
the case studies depicted by Figs. 5 and 9, respectively.

– x, y, and t stand for zonal, meridional, and temporal
coordinates, respectively.

The physics-informed LF is applied to the super-resolved
fields predicted by the CNN. The coefficients α, β, γ , and
δ have been determined via preliminary CNN training over
three epochs, considering separately the four terms of the LF
appearing in Eq. (2). In particular, we firstly impose α = 1
and perform a first training of the CNN accounting only for
SST. We then repeat the same exercise for the remaining
terms of the LF separately, and we estimate the mean ratio of
the training and validation losses compared to the SST case.
We finally assign those ratios to the coefficients β, γ , and δ.
The aim of this operation is to allow the CNN to be trained
considering the weighted contributions from the four terms
appearing in the LF (more details on the LF optimization are
provided in Appendix A).

As mentioned in Sect. 2.6.1, in the present study we mod-
ified the CNN training strategy, systematically excluding
15 % of tiles towards the end of our available time series
(year 2017). This is primarily due to the potential overfit-
ting issue recently claimed by Martin et al. (2023). In or-
der to quantify the CNN performances throughout the year,
we computed daily, basin-scale percentages of improvement
(again, as in Ciani et al., 2021; Rio and Santoleri, 2018) to
quantify the relative improvement of the CNN reconstruc-
tion with respect to standard altimetry along the 40 dates of
our independent test dataset, as reported by Fig. 8.

As expected, the percentage of improvement drops after
Julian day 300, in correspondence of the time indices for
which tiles had been excluded during training and valida-
tion. However, the improvement is still exhibiting satisfying
basin-scale improvements, around 30 %, indicating that the
CNN prediction is still efficient in reconstructing features un-
seen during the training phase. Performing the spectral anal-
ysis, as depicted in Fig. 5, for Julian day 324 (20 November
2017), revealed differences in the CNN performances com-
pared to the temporal window bounded by Julian days 1 and
310. In general, the SE-ADT spectrum is closer to the ground
truth characteristics over the entire wavenumber range. How-
ever, within the range of 1 to 4 per degree (approximately
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Figure 9. Results of the OSSE on 20 November 2017. (a) Satellite equivalent (SE) current velocity from SE-ADT; (b) current velocity from
super-resolved ADT; (c) current velocity from model ADT (ground truth); (d) comparative spectral analysis of the current velocity maps.
Results refer to the 2D box depicted in panel (c).

Figure 10. 1RMSE (in °C) based on the CNN proposed in the
present study. Positive values indicate an SST estimate improve-
ment with respect to standard optimal interpolation.

100 to 30 km), the SR-ADT spectrum demonstrates better
agreement with the ground truth in comparison to the satellite
equivalent spectrum. This reaffirms the CNN ability to en-
hance the characterization of mesoscale dynamics (Fig. 9d).
The potential overfitting issue will be further addressed in fu-
ture studies, in which we plan to extend the time series of the
OSSE. Ideally, we aim at exploiting 1 full year for each of
the following operations: training, validation, and test.

3.1.1 Reconstruction of ocean surface temperature

Although our primary scope is the computation of super-
resolved surface currents from super-resolved ADTs, we
briefly illustrate the CNN performances in reconstructing the
super-resolved SSTs, which is among the novelties of the
new CNN architecture. This is summarized by Fig. 10.

Overall, the CNN is indicating an improvement through
the Mediterranean Basin, as illustrated by the dominance of

positive1RMSE values. The local1RMSE maxima reached
0.1 °C, corresponding to ' 60 % improvement with respect
to standard optimal interpolation mapping, while the mean
basin-scale improvement is ' 14 %. Unlike ADT, the ap-
pearance of local degradation areas looks ubiquitous. These
small-scale degradation spots are likely due to the assump-
tions behind our study. As claimed in Sect. 2.6.1, we build
the CNN architecture considering the modulation of SST fea-
tures by the surface geostrophic advection and, simultane-
ously, feeding the SST mapping with the dynamical infor-
mation contained in ADT. This could limit the description of
SST signals related to non-geostrophic phenomena or to ver-
tical advection. Such behavior is under investigation and will
be the subject of future studies.

3.2 Surface currents predictions from satellite-derived
data

The neural network model trained via the OSSE is now
tested to predict super-resolved ADTs, using state-of-the-art
L4 ADT derived from satellite altimetry and high-resolution
L4 satellite SSTs. The satellite-derived input data are pro-
duced within the Copernicus Marine Service and cover the
2008 to 2019 time frame (as detailed in Sect. 2.2 and
2.3). The evaluation of CNN performance involves deriving
super-resolved (SR) geostrophic currents from SR-ADTs,
through the geostrophic approximation. This is achieved
applying a finite-central-differences operator to the SR-
ADTs (to estimate its spatial gradients) and using drifting
buoy measurements as a validation benchmark (detailed in
Sect. 2.4). The validation relies on root mean square error
inter-comparisons, carried out by interpolating the gridded
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Figure 11. Number of in situ measurements from drifting buoys in
the 2008–2019 time frame.

Figure 12. (a) Altimeter-derived surface current velocity; (b) SR
current velocity. The fields refer to 19 May 2019.

altimeter-derived and SR currents along the 6-hourly drifter
acquisitions (for both components of the circulation) at the
drifter time and location (as in Rio and Santoleri, 2018). In
order to maximize the number of matchups between grid-
ded and in situ-measured currents, statistics are provided in
2°× 2° boxes, choosing a 12-year-long time series (2008–
2019). This guarantees a coverage of in situ measurements
as depicted in Fig. 11, with an approximate minimum num-
ber of 100 observations per box.

As addressed by BBN22, provided clear-sky conditions,
the overall effect of the CNN for super resolution is a sharp-
ening of the mesoscale SR-ADT gradients compared to stan-
dard altimetry processing, with a significant enhancement of
the mesoscale eddy activity in the derived SR currents. For
clarity, a visual comparison of the altimeter-derived currents
(i.e., derived from the ADT computed via standard mapping)
and SR current velocity is provided in Fig. 12 and refers to

Figure 13. Differences of rms errors between the altimeter-derived
(Alti) and SR currents: (a) zonal flow and (b) meridional flow. Red
areas express an improvement with respect to standard altimetry.

19 May 2019. Among the features of interest, we notice a sig-
nificant intensification of the circulation north of the Balearic
Islands, along the Algerian currents and in the Strait of Sicily,
as well as a sharpening of the mesoscale features populating
the southern Tyrrhenian Sea.

The SR currents, compared to standard altimeter-derived
mapping, reduce the rms by about 2 to 8 cm s−1 in the ma-
jority of the basin for both the zonal and meridional flow
(Fig. 13). Degradations with respect to the altimeter (Alti)
currents mainly occur in coastal areas and are particularly
pronounced in the eastern tip of the Levantine Basin. The
basin-scale rms errors of the Alti and SR currents, reported
in Table 1, evidence an improvement of the SR currents pre-
sented here, with basin-scale reduction of the rms error up
to ' 1 cm s−1.

Improvements with respect to the BBN22 results are also
observed. This is expressed by the overall rms reduction of
the new SR currents reported in Table 1 and is supported by
the spatial distribution depicted in Fig. 14, in which red ar-
eas indicate an improvement of the current CNN formula-
tion compared to BBN22. Such improvements cover 70 %
of our study area for the two components of the flow and
suggest an overall enhancement of the CNN performances
mainly in the central and eastern Mediterranean, with oc-
currences of weak degradations (≤ 1 cm s−1) limited to the
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Figure 14. Differences of rms errors between the BBN22 and the
current CNN architecture: (a) zonal flow and (b) meridional flow.
Red areas express an improvement of the current CNN compared to
BBN22.

Table 1. The rms of the altimeter-derived (Alti) and super-resolved
(SR) surface currents, computed in 2°× 2° boxes against in situ-
measured currents. SR-BBN22 and SR refer to the CNN ADT map-
ping described in Buongiorno Nardelli et al. (2022) and the one em-
ployed in the present study, respectively. U and V stand for zonal
and meridional currents, respectively.

MAPPING Alti SR-BBN22 SR

rms U (cm s−1) 12.34 12.30 11.90
rms V (cm s−1) 12.81 12.80 11.85

western basin. Local occurrences of significant performance
reduction with respect to BBN22 can be observed in coastal
areas and indicate a worsening of the present-day SR current
rms by about 5 cm s−1 for the meridional flow. Nonetheless,
an overall basin-scale improvement is found.

Specific spectral analyses were carried out to inter-
compare the surface kinetic energies derived from standard
altimeter (up-sized to the 1/24° grid) and super-resolved
ADTs to have insight into the effective spatial resolution
of the two datasets. This analysis was performed estimat-
ing PSD via FFT analysis over the time range 2008–2019 in
two land-free areas of the Mediterranean Basin: (i) one area
across the Central and Aegean Basin and (ii) one area across

the Algerian Basin and Sardinian Channel, both depicted in
Fig. 15c, similarly to the analyses presented for the OSSE.

Both regions are known as dynamically active areas in the
Mediterranean Basin (Pujol and Larnicol, 2005). In particu-
lar, the KE spectra were inter-compared against the theoreti-
cal predictions of two-dimensional turbulence (Vallis, 2006),
i.e., the k−3 and k−5/3 slopes.

In the Central and Aegean area (Fig. 15a), the spectral
analysis confirms the improvement brought by the CNN re-
construction. The SR and altimeter KE spectra are super-
imposed for small wavenumbers, indicating a similar de-
scription of the large mesoscale motions, and are aligned
with the predictions of energy and enstrophy transfer, fol-
lowing the k−3 slope for larger wavenumbers and the k−5/3

slope for smaller ones.
The improvement of our methodology with respect to

standard altimetry processing is evidenced by overall higher
PSDs at larger wavenumbers and by a closer alignment with
the k−3 slope for wavenumbers ≥ 4 per degree, i.e., scales
≤ 30 km (although not fully recovered through the entire
range). This reflects a more efficient representation of the
small mesoscale features due to our reconstruction. For the
Algerian and Sardinian area, the analyses are depicted in
Fig. 15b and led to similar conclusions as for the Central
and Aegean area, although both KE estimates (altimeter and
SR) show less agreement with the k−5/3 at wavenumbers≤ 3
per degree. For both areas the SR KE spectra drop at scales
around 30 km (wavenumbers ' 3 per degree), which can be
considered the scale at which mesoscale features are fully
characterized.

4 Discussion and conclusions

In recent years, CNNs for super resolution have provided
benefits for oceanographic applications, exploiting single-
variable and multi-variate approaches (Ducournau and Fa-
blet, 2016; Lima et al., 2017; Buongiorno Nardelli et al.,
2022; Wang and Li, 2023; Fanelli et al., 2024a). Here, we
present a CNN-based, multivariate approach to jointly re-
construct ocean surface currents and SST from EU Coperni-
cus satellite data. We trained a CNN model from numerical
model outputs and then applied the CNN model to satellite-
derived data collected over the Mediterranean area.

With respect to previous similar exercises, we relied
here on a new OSSE approach/CNN training architecture,
also simulating and integrating issues/artifacts found in the
present-day L4 SST satellite products (e.g., Ciani et al.,
2020), as pointed out in Sect. 2. As such, this study pro-
vides a more realistic implementation of the CNN for esti-
mating satellite-derived surface currents from ADT and SST
and includes the possibility to simultaneously predict ADT
and SST fields (although we mostly focused on the recon-
struction of ADTs and geostrophic currents).
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Figure 15. Comparative spectral analyses of the KE maps derived from standard altimeter (blue) and SR (red) ADTs. Panels (a) and (b) refer
to the Central and Aegean (Cen/Aeg) and Algerian and Sardinian (Alg/Sar) areas, respectively, depicted in panel (c).

The OSSE study also addressed potential overfitting issues
of the CNN training strategy previously adopted by BBN22.
Here, the neural network validation is performed system-
atically, excluding tiles observed in a typical late autum-
n/early winter period, so that CNN prediction capabilities are
tested in a worst-case scenario. In other words, the CNN is
pushed to predict ocean circulation features in periods of en-
hanced small mesoscale and submesoscale activity (e.g., Cal-
lies et al., 2015) never seen during training. The OSSE re-
sults indicate that the CNN improves the characterization of
ocean circulation patterns, intensities, and spectral proper-
ties even for periods excluded during the training phase, al-
though showing weaker performance with respect to the rest
of the year (Figs. 8 and 9). This is likely justifying the over-
all reduced improvement of the OSSE results compared to
the BBN22 formulation (Fig. 7). However, it should also be
kept in mind that the degraded synthetic SE-SST employed
in our study is surely impacting these statistics as well, while
previous tests were based on an excessively optimistic setup.

The application of the dADR-SR model to satellite-
derived data is assessed by deriving the ocean surface
currents from the CNN-derived ADTs, relying on the
geostrophic approximation. Such currents are then inter-
compared with standard altimeter-derived currents using
(i) in situ measurements as a benchmark and relying on rms
errors as validation metrics and (ii) spectral analysis to quan-
tify the gain in the description of the mesoscale features. The
CNN-derived currents presented here, compared to standard
altimetry products and to previous findings of BBN22, are

able to reduce the rms error by approximately 1 cm s−1 for
the meridional flow and 0.5 cm s−1 for the zonal one. This
is likely due to the adoption of an upgraded CNN, which
is now trained at OSSE level, considering realistic observ-
ing system characteristics for both ADT and SST, and in-
cludes a physics-informed constraint on the LF. Degrada-
tions of the CNN-derived currents with respect to the al-
timetry products mostly occur in near-shore areas, poten-
tially highlighting the limitation of employing L4 SSTs to
super-resolve the surface coastal circulation. In coastal areas
it is generally harder to interpret or model land contamina-
tion effects or to capture small-scale, fast coastal processes,
thus affecting the quality of optimally interpolated SST prod-
ucts. Also, the physics-informed constraint on the LF may
fail in coastal environments, where small-scale SST features
do not necessarily evolve due to geostrophic advection but
can result from ageostrophic processes as, e.g., coastal up-
welling (particularly pronounced in the Gulf of Lion, Strait
of Sicily, and south of Crete). The characterization of the
mesoscale features from standard altimetry and SR-ADTs
was done via spectral analysis. It confirmed an enhancement
of the mesoscale activity obtained via the neural network ap-
proach. However, the representation of the 2D geostrophic
motion was not fully achieved. The KE spectra obtained from
the SR-ADTs depicted by Fig. 15 do not fully recover the
theoretical energy KE spectrum at all scales. The use of an
optimally interpolated SST is certainly a major limit for our
reconstruction methodology. OI SSTs are indeed known to
smooth/distort some oceanic features as a drawback of the
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interpolation algorithm (as pointed out recently by González-
Haro et al., 2024). In addition, under prolonged cloud cover
(although the neural network is fed with the information on
the SST mapping error) the extraction of features becomes
questionable, as the SST fields tend to a daily climatology.

Future studies on the application presented here could in-
clude the following.

i. Modifying the training strategy for the CNN struc-
ture, in which the OSSE could consider ADT- and SST-
derived quantities and SST as predictors and surface
currents (instead of high-resolution ADTs) as targets.
This would have the main advantage to go even be-
yond the prediction of purely geostrophic motions, as
achieved in the present study, where surface currents are
derived from the geostrophic approximation equations.

ii. Testing a new prediction of super-resolved surface
currents from satellite-derived data (as presented in
Sect. 3.2), upon provision of improved L4 SSTs over
long time series (i.e., at least decadal). Examples of im-
provements for SST L4 satellite products were recently
presented by Sunder et al. (2020), Jung et al. (2022),
and Fanelli et al. (2024a) and mainly propose an en-
hancement of feature resolution for the reconstructed
L4 fields. This is thus expected to improve the descrip-
tion of dynamical features both in SST and, as in the
present study, in L4 fields enriched with dynamical in-
formation extracted from the gap-free SST maps. The
dynamical coherence of such fields could also be quan-
tified by employing recently published metrics based on
the multi-fractal theory of turbulence (González-Haro
et al., 2024).

iii. Reproducing the OSSE discussed in Sect. 2.6 over time
series longer than 1 year. Exploiting 1 full year for
training, validation, and test would make our results
more robust and discard any CNN overfitting issue. Re-
cent works on the SSH mapping based on neural net-
works pointed out that training based on increasingly
larger time series significantly improves the network
prediction performances (Archambault et al., 2024).

Finally, our approach could be adapted to directly learn an
end-to-end mapping between present-day operational ADTs
obtained from constellations of nadir-looking altimeters and
higher-resolution observations from the SWOT wide-swath
instrument. Operational L4 ADTs are presently optimally in-
terpolated from along-track observations and achieve effec-
tive resolutionsO(100 km) at mid-latitudes (Ballarotta et al.,
2019; Pujol et al., 2016). With SWOT, SSH can be observed
with resolutions down to 20 km (Fu and Ubelmann, 2014;
Le Guillou et al., 2021), with the additional advantage of be-
ing native 2D over a ' 120 km wide swath. As such, poten-
tial misrepresentations of the upper-ocean dynamics by the
numerical models used for the OSSE would be bypassed by

directly training on high-resolution observations. In all cases,
a successful implementation of dADR-SR would allow us
to carry out a full reprocessing of standard ADT time series
back to the start of the satellite radar altimetry era and a po-
tential application to near-real-time processing.

Appendix A: Customization of the loss function for
super resolution

A1 Determination of the loss function
hyper-parameters

We show the rationale behind the choice of the hyper-
parameters for the LF appearing in Eq. (2). This is shown
here for the first two terms of Eq. (2), leading to the deter-
mination of the α and β parameters. Figure A1 shows the
behavior of the training and validation loss curves for the
CNN employing the loss function given in Eq. (2) consider-
ing only the ADT or SST term, separately. This is shown for
the first three epochs, as those curves converge quite quickly
afterwards.

Figure A1. Training and validation losses employing a loss function
built from ADT (red and orange, respectively) and SST (blue and
cyan, respectively) separately.

The ratio between the ADT and SST training and valida-
tion loss curves can be quantified by comparing the curves,
and from epoch 3 onward it is around 4. As such, considering
we impose α = 1, β is set to 0.25 in order to equally weight
ADT and SST contributions. Such an exercise has been re-
peated for all the other terms of the loss function, leading to
the hyper-parameters appearing in the LF.

A2 Tuning of the physics-informed term

The physics-informed term LossPhy in Eq. (2) was shaped
according to the following findings. In a first attempt, such a
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term was expressed by Eq. (A1),

LossPhy =
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pred
−
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+
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The reader is referred to Sect. 3.1 for further details on the
equation. Minimizing such LossPhy term equals asking the
predicted SST and ADT to obey the horizontal geostrophic
SST advection. During the determination of the LF hyper-
parameters (as explained in Sect. A1) we obtained δ = 1.38.
After training the neural network and reconstructing the
ocean currents with satellite-derived data, the comparison to
in situ-measured currents yielded the rms errors detailed in
Table A1 (linear LossPhy type).

Interestingly, in order to get a further rms error reduc-
tion, we had to decrease the δ factor manually, which made
the approach rather empirical. We, however, noticed that the
LossPhy term given by Eq. (A1) was linear, unlike the ADT,
SST, and ∂tSST terms appearing in Eq. (2), for which the
minimization is given in a least squared sense. We thus de-
cided to homogenize all the terms contributing to the loss
function, modifying LossPhy as follows:
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In this way, the weighting factor δ = 1.38 automatically ad-
justed to δ = 0.025, and the effect on the reconstructed sur-
face currents was an improvement for both components of
the surface motion (i.e., a lower rms error compared to in
situ-measured currents), as expressed by Table A1. We thus
decided to adopt the quadratic formulation for the LossPhy
term of the LF.

Table A1. The rms error computed by means of in situ-measured
currents for the two formulations of the LossPhy term. U and V
stand for zonal and meridional currents, respectively.

rms rms
LossPhy type U (cms−1) V (cms−1)

Linear (Eq. A1) 12.18 12.09
Quadratic (Eq. A2) 11.90 11.85
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