Download
12936_2024_Article_4879.pdf 2,69MB
WeightNameValue
1000 Titel
  • Application of advanced very high-resolution radiometer (AVHRR)-based vegetation health indices for modelling and predicting malaria in Northern Benin, West Africa
1000 Autor/in
  1. Gbaguidi, Gouvidé Jean |
  2. Idrissou, Mouhamed |
  3. Topanou, Nikita |
  4. Filho, Walter Leal |
  5. Ketoh, Guillaume K. |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-15
1000 Erschienen in
1000 Quellenangabe
  • 23(1):78
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12936-024-04879-1 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943795/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Vegetation health (VH) is a powerful characteristic for forecasting malaria incidence in regions where the disease is prevalent. This study aims to determine how vegetation health affects the prevalence of malaria and create seasonal weather forecasts using NOAA/AVHRR environmental satellite data that can be substituted for malaria epidemic forecasts.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Weekly advanced very high-resolution radiometer (AVHRR) data were retrieved from the NOAA satellite website from 2009 to 2021. The monthly number of malaria cases was collected from the Ministry of Health of Benin from 2009 to 2021 and matched with AVHRR data. Pearson correlation was calculated to investigate the impact of vegetation health on malaria transmission. Ordinary least squares (OLS), support vector machine (SVM) and principal component regression (PCR) were applied to forecast the monthly number of cases of malaria in Northern Benin. A random sample of proposed models was used to assess accuracy and bias.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Estimates place the annual percentage rise in malaria cases at 9.07% over 2009–2021 period. Moisture (VCI) for weeks 19–21 predicts 75% of the number of malaria cases in the month of the start of high mosquito activities. Soil temperature (TCI) and vegetation health index (VHI) predicted one month earlier than the start of mosquito activities through transmission, 78% of monthly malaria incidence.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>SVM model D is more effective than OLS model A in the prediction of malaria incidence in Northern Benin. These models are a very useful tool for stakeholders looking to lessen the impact of malaria in Benin.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Towards malaria elimination
lokal Africa, Western/epidemiology [MeSH]
lokal Malaria/epidemiology [MeSH]
lokal Vegetation health
lokal Humans [MeSH]
lokal Benin
lokal Animals [MeSH]
lokal Forecasting
lokal Research
lokal Malaria
lokal Mosquito Vectors [MeSH]
lokal AVHRR
lokal Weather [MeSH]
lokal Benin/epidemiology [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/R2JhZ3VpZGksIEdvdXZpZMOpIEplYW4=|https://frl.publisso.de/adhoc/uri/SWRyaXNzb3UsIE1vdWhhbWVk|https://frl.publisso.de/adhoc/uri/VG9wYW5vdSwgTmlraXRh|https://frl.publisso.de/adhoc/uri/RmlsaG8sIFdhbHRlciBMZWFs|https://frl.publisso.de/adhoc/uri/S2V0b2gsIEd1aWxsYXVtZSBLLg==
1000 Hinweis
  • DeepGreen-ID: 5af30f8045824265b5e5799d70c110bd ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6501949.rdf
1000 Erstellt am 2025-02-05T15:16:06.282+0100
1000 Erstellt von 322
1000 beschreibt frl:6501949
1000 Zuletzt bearbeitet 2025-09-13T22:06:38.186+0200
1000 Objekt bearb. Sat Sep 13 22:06:38 CEST 2025
1000 Vgl. frl:6501949
1000 Oai Id
  1. oai:frl.publisso.de:frl:6501949 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source