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Abstract

Estimating a patient’s disease trajectory as defined by clinical measures is an essential
task in medicine. Given multiple biomarkers, there is a practical choice of whether to esti-
mate the joint distribution of all biomarkers in a single model or to model the univariate
marginal distribution of each marker separately ignoring the covariance structure among
measures. To fully utilize all trajectory-relevant information in multiple longitudinal mark-
ers, a joint model is required, but its complexity and computational burden may only be
warranted when joint estimates of trajectories are substantially more efficient than sepa-
rate estimates. This paper derives general expressions for the inefficiency of univariate or
“separated” estimates of population-average trajectories and individual’s random effects
as compared to the fully efficient multivariate or “combined” estimates. Then, in two set-
tings: (1) a general bivariate case; and (2) our motivating clinical case study with 5 mea-
sures, we find that separated estimates of fixed effects are nearly fully efficient. However,
joint estimates of random effects can be meaningfully more efficient for measures with
substantial missing data when other strongly correlated measures are observed more fre-
quently. This increased efficiency of the joint model derives more from joint shrinkage of
random effects in multivariate space than from improved estimates of the subject-specific
trajectories obtained when accounting for correlations in measurements. These findings
have application to a diverse array of chronic diseases where biomarkers’ trajectories
guide clinical decisions.

Introduction

Estimating a patient’s trajectory in a space defined by multiple clinical measures is an essential
task in medicine. In some problems, a goal is to find a lower-dimensional summary of mea-
sures that parsimoniously represents the trajectory. But in the autoimmune disease applica-
tion that motivates this work, each of the original measures is important to clinical decisions
and must be retained.
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Systemic sclerosis (scleroderma) is an autoimmune disease characterized by dysregulation
of the immune system and damage to multiple organ systems, including the skin, heart, lungs,
kidneys, gastrointestinal tract, and blood vessels [1]. Although relatively rare, scleroderma is
a one of 80 related autoimmune diseases that, in aggregate, comprise the third most preva-
lent set of chronic diseases after cancer and heart disease [2]. All organs must be monitored
to determine appropriate treatment for an individual [3,4]. There is heterogeneity among
patients in their clinical manifestations, response to treatment, rate of disease progression,
and survival [5]. Therefore, clinicians seek to accurately measure each patient’s current disease
state and rate of progression or “trajectory” for each organ.

From a statistical perspective, we obtain multivariate longitudinal measures at irregularly-
observed times for a cohort of patients. Some measures are easily obtained; others demand
considerable resources. Joint and univariate, marker-specific models are widely used to esti-
mate disease trajectories [6,7]. This paper focuses on quantifying the efficiency in estimat-
ing fixed and random effects of the joint or “combined (C)” model in comparison to marker-
specific or “separated (S)” models. We ask under what circumstances the additional compu-
tational and statistical burden of the combined model add substantial value when estimating
individual patients’ trajectories for all biomarkers. Although the combined models can result
in slower convergence and greater challenge in obtaining reliable parameter estimates, it esti-
mates across-measure correlations which is a key scientific question in some applications and
cannot be estimated by fitting the separated models. We derive general formulae measuring
the relative efficiency for fixed effects, random effects and for predicted values. We quantify
the inefficiency of separated models for the individual patient and describe its association
with patient’s pattern of observations.

The scientific focus on biomarker trajectories implies that the main predictors for both the
fixed and random effects are smooth basis functions of time and/or their interactions with
baseline patient characteristics. As is well known in other efficiency studies, sharing predic-
tors across regressions has important implications for the efficiency of separated relative to
combined models as discussed below.

Statistical models of trajectory

The linear mixed model (LMM) is widely used to describe changes in a single approximately-
Gaussian longitudinal outcome over time. LMMs yield valid inferences about trends by
accounting for the autocorrelation among repeated measures of the same subject; they sup-
port estimation of subject-specific random effects while naturally handling irregularly spaced
or/and unbalanced data [7,8]. Harville (1976) and Harville (1977) [9,10] first applied the
Gauss-Markov theorem [11] to the statistical framework for the LMM and showed that its
random effects estimators are the best unbiased linear predictors (BLUP) when the covariance
parameters are known. The multivariate linear mixed model (MLMM) is an extension of the
LMM for the analysis of multiple outcomes [12-15]. Given multivariate longitudinal obser-
vations measured for individuals, fitting a separate LMM for each outcome or fitting a single
MLMM are both common [16-19]. The separated LMMs approach estimates the population
and individual trajectories of each outcome independently of the others, while the MLMM
additionally captures the between-measure correlations induced by correlated random effects
and random error terms.

Inefficiency when ignoring correlation

In the time series context, Bloomfield and Watson [20] derived expressions for the maximum
inefficiency of ordinary compared to general least squares as a function of the design matrix
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and residual variance matrix. A similar idea was explored much earlier by Tukey [21] who
quantified the maximum inefficiency caused by using a misweighted mean as compared to the
optimally weighted mean.

The gain in efficiency from using a joint model has also been studied for cross-sectional
data under the “seemingly unrelated regressions” (SUR) framework [22]. A SUR comprises
a set of linear regressions where each equation describes the relationship between a differ-
ent outcome and its associated predictor variables. Zellner showed that joint coefficient esti-
mation by general least squares (GLS) is asymptotically more efficient compared to separate
regressions by ordinary least squares (OLS) and that the efficiency increases as the error terms
from different equations become more cross-correlated and as the predictor variables in dif-
ferent equations become less correlated. An important special case is that estimates from sep-
arate regressions by OLS are fully efficient when the predictors for each outcome are the same,
regardless of the degree of correlation among the outcomes [22]. Oliveira and Teixeira-Pinto
further investigated the case in which some predictors are shared across the outcomes while
others are outcome-specific and showed that the estimates for the regression parameters of
the shared predictors are fully efficient while those of outcome-specific predictors have greater
efficiency when a joint model is fit [23].

Objectives

In this paper, we study the inefficiency of separated LMMs relative to the combined MLMM
in the longitudinal data setting. As in previous work on multivariate regression and on time
series, we consider the inefficiency in estimating regression coefficients of separated models.
However, motivated by our clinical application, an additional focus of this paper is on indi-
vidual’s trajectories as represented by the random effects in the mixed models. We work under
the assumption that missing data are missing at random (MAR) [24]. For estimation of the
fixed effects parameters, we first consider whether the SUR conditions under which OLS is
tully efficient can be satisfied by a MLMM. We then derive expressions for the inefficiency
of the outcome-specific LMM estimates relative to the MLMM ones. Focusing on the ran-
dom slopes (trajectories), we examine the cause and degree of imprecision in two cases: (1)
a general two-biomarker problem and (2) our motivating clinical case study of scleroderma
trajectories with five biomarkers.

Efficiencies of separated versus combined models
Notation

Let Yjj be the observed value for the kth measure for person i = 1, ..., m at the jth visit
j=1,...,ny, at time since onset t;;. Let Yj; be the vector of Yiy for j = 1,..., ny, Xj and Zj
are (nyx X pr)and (ngx X qx) known matrices of full rank, and i and by are pr X 1and
qk X 1 measure-specific vector of parameters for the fixed and random effects. Let n; = ZkK=1 Nik
be the total number of observations for person i and let e;; be the measure-specific, within-
subject error term.

With these definitions, the multivariate linear mixed effects model is written as Y; =
XiB+Zibi+e,i=1,...,mwhere §= (B7,... 5)7, Yi= (Y5, ... YO I, Xi = D, Xirs
Zi =@y, Zi> and @ denotes the Kronecker sum. We assume b; = (b7, ..., bk)” o Nk, (0,D),
ei=(e],...el)T N, (0,%;). Letting Y = (Y7,.., Y2)T, X = (XT,... X2)T, Z= @), Zinb =
(of,..bI)T, e=(ef,..el)", =1, @Dand = =@, =;, we can write the above model more
compactly in the standard linear mixed model form Y=X3 + Zb + e, where Y~ G(X8,V),
V=2IZ" +Zand b~ G(0,T), e~ G(0,X).
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Defining combined (joint) and separated models

In the specification above, D and X; are (Kg X Kg) and (n; X n;) positive definite matrices,
respectively. The K (q X g) and (nj X n;) measure-specific block diagonal matrices for D and
%, represent within-measure covariance of random effects and random errors, respectively.
The off-block diagonals of D and X; represent the covariances of random effects and random
errors across measures. If the off-diagonal submatrices are set equal to zero, then the mixed
effects model of K measures reduces to K univariate mixed effects models. We call this the
“separated” model in contrast with the model with the unrestricted D and Z; that is called the
“combined” model.

For the separated model, Y; = X;8s + Z;bs; + e;, i = 1,..., m where bs; ~ Gg4(0, Ds),
e ~ G, (0,Zg;) so that Y ~ G(XBs, Vs), Vs = ZI'sZ" + Zg, T's =1, @ Ds, and =g = . | Zs;.

For the combined model, Y; = Xifc + Zibei + e, i=1,..,m where bgi ~ Ggq(0, Dc),
ei ~ Gn(0,2¢), Y~ G(XBe, Ve), Ve=2IcZ" + Z¢,Tc=1,@ Dc,and Ec =P, Zci. To
simplify the notation, let Wy = Vi', We = V' and W, = V!, We, = V! in following sections.

Separated models and seemingly unrelated regressions (SUR)

The fixed effects estimates ¢ from the combined model are generalized least squares (GLS)
estimates first described in Aitken [25]. They are therefore the best linear unbiased estima-
tor (BLUE) so that the variance of B s is greater than or equal to the variance of ,éc- There are,
however, two situations where the separated models’ fixed effects estimates are fully efficient
as originally discussed in Zellner [22], summarized in S1 Supporting materials. The first is a

trivial case when the cross-measure covariances of error terms are zero, where the combined
model is equivalent to the separated models. The other case is when the measure-specific
design matrices Xj; are the same across all k = 1,...K measures.

The question is whether, for multivariate linear mixed effects models, the separated models
can be fully efficient as occurs on the SUR case? In Supporting Materials S1, we show that the
separated models always lose efficiency relative to the multivariate model except when: (1) the

cross-measure covariances of error terms and random effects are all zero; (2) X;; are the same
for all k and Z;, a sub-matrix of X, are the same for all k.

So, the question remains, how inefficient are the separated models for multivariate cross-
sectional responses? Is the inefficiency sufficient to warrant the burden of jointly modeling the
outcomes in situations like tracking disease progression where the separated models meet the
clinical objectives?

Comparing estimates of combined and separated models

Our interest lies in quantifying the improvement in efficiency of the combined model rela-
tive to the separated model when both can provide valid inferences that address the clinical
question in estimating: (1) fixed effects coefficients that represent population average trajec-
tories [§ ; (2) an individual’s estimated random effects b; that represent his estimated deviations
from the average trajectories; and (3) an individual patient’s estimated trajectories y; that are a
linear combination of 8 and b;.

We compute the following ratios of mean squared error (MSE) for each of B , b;, and Pi
from the combined and separated model.

MSE Ratio of 8 = MSE(f¢, 8)/MSE(Ss, B) (1)
MSE Ratio of b; = Ey, {MSE(bc;, b;) }/Ey, {MSE(bs;, b;)} )
MSE Ratio Ofyl = Eb!{MSE()A/CI, E()A/,|bl))}/Ebl {MSE(}A/S,, E(j’,lb,))} (3)
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Formulae for the MSE, variance, and squared bias are presented in Supporting Materi-
als S2.

Case studies

In two case studies, we examine the inefliciencies resulting from fitting separate LMM:s rather
than a single MLMM, derived from the general expressions. As detailed below, the first is

the general bivariate case with fixed predictors, covariance matrices, degrees of missing data,
and simulated missing data patterns in which we can examine the entire space of correlations
between the two measures. In this first case, we focus on the inefliciency of the random effects
because the fixed effects estimates are close to fully efficient. The second is the motivating scle-
roderma study in which there are 5 distinct measures where we consider the inefficiency of
both the fixed and random effects.

Bivariate case study

Consider two measures Y;; of length n;; and Y}, of length n;, for subject i. Let b; and b, be
the measure-specific vectors of random effects for Y;; and Y;,. With little loss of generality, we
simplify the problem by assuming that population regression coefficients 5 are known for the
following reasons. First, the separated model is fully efficient in estimating (5 if Z; is a part of
X; and if Xy, is the same across measures and subjects (see S1 Supporting materials). In other
cases, we observe that the degree of inefficiency in estimating random effects are numerically
similar when estimating 8 as compared to known §.

When both measures are fully observed, we expect little benefit from fitting the combined
model. The real value of fitting the combined model is when one of the variables is poorly
determined, either due to missing data or noise in the measurements. We let Y;; be fully
observed and Y;, be missing in various degrees to measure efficiency gains for the random
effects b, by fitting the combined model. Our primary interest in this case study is estimating
bi, as jointly modeling would only have marginals effects on b;;, which is already well deter-
mined. We calculate MSE Ratio of b;;, MSE ratio that corresponds to the random effects of the
second measure, by taking sub-matrices of MSEs in the equation 2. MSEs for the separated
and combined models with known (3 are derived in S3 Supporting materials.

Using the formulae in S2 Supporting materials, we investigate the relative contributions to
improved efliciency of (1) the degree of missingness, (2) measurement error, (3) heterogeneity
in individual trajectories, and (4) across-measure correlations.

Degree of missingness. With complete data, the random effects design matrix
Z=Z; €D Z;, comprises the constant vector for the intercept and a vector of equally spaced
times, scaled to range from -1 to 1, for the trajectory. We assume Z;; is fully observed, while
a portion p;ss of Zj; is randomly missing. When p,iss = 0, Zi1 = Zjp, and nj1 = nyp; when pyiss =
33%, nj; = %nil. In applications, such a pattern is observed when one measure is more fre-
quently collected than the other. We also consider the case where Z;; is missing in a drop-out
pattern, such that we only observe the first n;, observations of the second measure and the
rest is lost to follow up.

Degree of measurement error and heterogeneity in trajectories. To investigate under

which scenario the combined model borrows most strength in estimating b;,, we consider
three cases based on relative sizes of the variance components.

The random effects covariance matrix D and measurement error covariance matrix R are
defined by four correlation variables. Let
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D Dr, T2
D: = ;R: 5 (4)
( Dy Dy ) dy dx dy dy ( 21 T2 )

where Dy = Var(by)andD,,+ = Cov(bi, b ).

Case A: equal-sized random effect and measurement error variances;
din=dp=dy=du=rm=rp=1

Case B: unequal measurement errors; variance components of the random effects and
measurement errors are as in Case A except that r,, = 4, representing greater measure-
ment error for Y,.

Case C: heteroskedastic random effects and equal measurement error variances; vari-
ance components of the random effects and measurement errors are as in Case A
except that ds4 = 4. Greater variances are assumed for the random slope variance for Y,
to produce substantial heterskedasticity in Y;, across time.

We assess the degree to which greater measurement error in Y, (Case B) or increased hetero-
geneity in trajectories of the second measure (Case C) results in greater efficiency gains for the
joint model compared to our reference case of equal-sized random effect and measurement
error variances (Case A).

Evaluation of efficiency at different combinations of within and across-measure corre-
lations. For each case, we explore the entire range of across-measure correlation between the
random effects pj, across-measure correlation of measurement errors p,, and within-measure
correlations of random intercept and slope for the two measures p; and p;. For simplicity, we
report results only for the case p} = pi. The general formulae in the Supporting Materials S3
can be used when p; # p?.

When exploring the range of correlations and variances summarized above, we ensure
the resulting random effects covariance matrix D is positive-semi-definite using a slightly
modified version of the spectral decomposition method introduced in Rebonato and Jackel
(2001) [26].

Gains in efficiencies. Fig 1 shows the relative efficiencies for b, for the combined ver-
sus separated models. We see that the greater the absolute values of pj, and p,, the higher the
efficiency gain for the combined model. We observe greater gains when p;, and p, are less sim-
ilar, that is when the two sources of variability introduce correlations of opposing signs. How-
ever, in practice, large values with opposite signs for ppandp, are highly unlikely. Hence, the
efficiencies are close to one in most practical situations.

In the complete Y, case (first row of Fig 1), the separated model is nearly full efficient when
Py is similar to p, regardless of their magnitude, a result reminiscent of the SUR case. With no
missing data, Z; = Z,, the situation in the SUR model where OLS is fully efficient. The ineffi-
ciency of the separated model increases as p,,;s;, the fraction of missing data for Y, increases.
In fact, pss affects the efficiency more than the correlation parameters over their realistic
ranges. This pattern is consistent across different combinations of n;1, p;, 0;-

The effects of varying oy, o, px on efficiency gain by n;1, pmiss» and case are presented in
Fig 2. The result illustrates that fitting the combined model is particularly advantageous when
missingness in Y}, is large. For those with complete Y;, data, the average gains across individ-
uals are minimal, especially for case A. On the individual level, however, we observe combi-
nations of p, and p, with decreased MSE ratios. Assuming greater variance for random mea-
surement error for Y, 25th percentiles of ratios have greater than 15% decrease in MSE by

PLOS ONE | hitps://doi.org/10.1371/journal.pone.0320414  April 21, 2025 6/ 15



https://doi.org/10.1371/journal.pone.0320414

PLOS ONE

Separated or joint models of repeated multivariate data to estimate individuals’ disease trajectories

Pr
33% Y, missing

Complete Y,

66% Y, missing

bbbbboooo0o
ONOIW=_2 2 WOINO

Case A

76183 .88 .92 .96 .98 1

89.94 .97 .99 1 .99.
.88.94 .97 .99 1 .99.96.85
85.93.97 .99 1 .99 .97 .91
1.97 .99 1 .99 .97 .93.85088
6.99 1 .99 .97 .94 8878
9 1 .99 .97 .94 .89.82
.99 .97 .94.89
.98 .96 .92.88/.83|

£)
.9
.9
1

-0.9-0.7-0.5-0.3-0.10.10.30.50.7 0.9

0.9 0.9 .89(86/
0.7 0.7 .96 .96
0.5 0.5 .99 .98
0.3 0.3 .99 .95
0.1 0.1 .96 .89
-0.1 0.1
-0.3 0.3
-0.5 05
0.7 0.7
-0.9 0.9
0.9 0.9
0.7 0.7 Comb/Sep ratio
0.5 0.5 86 . 9 .89. 10
0.3 0.3 1.88 .92 95.96 .96 .96 .93 .85 ’
0.1 0.1 |.74.88.94 .98 .99 1 .99 .97 .92 .81
-0.1 0.1 .81.92.97.99 1 .99.98.94 .88.74 0.9
-0.3 0.3 .85.93.96 .96 .96 .95 .92 .88 .81 66
-0.5 05 .85.89 .9 .9 .88 .86 .8 54
-0.7 07 79 8 76.74
09 09 62.62.621.6/58156.52 47 39 23
-0.9-0.7-0.50.3-0.10.1 0.3 0.5 0.7 0.9
0.9
0.7
0.5
0.3 86.91 .95 96 .95 91 8468
0.1 .91 .96 .99 .99 .98 .93 .84 .66
0.1 .93 .98 .99 .99 .96 .91 .81 162
0.3 .91 .95 .96 .95 .91 .86 .75 156
0.5 8 8 87 87 .86 .82 .76 1661148
-0.7 7 .67/162153.37
-0.9 43.39.32.21

-0.9-0.7-0.5-0.3-0.10.10.30.50.7 0.9

-0.9-0.7-0.5-0.3-0.10.10.30.50.7 0.9

Pb

Fig 1. MSE Ratio of b;; by varying piss» 0 and o, under scenarios A, B, and C when n;; = 6, o) = 0 for randomly missing case. Cells representing unlikely
combinations of 0, andp, are colored in grey.

https://doi.org/10.1371/journal.pone.0320414.9001

fitting the combined model even with 0% missingness. Additionally, in a special case of the
model specification in which we assume random effects are the only source of across-measure
correlations, we can still expect greater efficiency gains when | o] is high.

The gains are much larger when we increase p,,iss to 33% and 66%. There is heterogeneity
in MSE ratios ranging from 0.3 to 1. The variability is more closely related to values of p, and
pr than n;1, the absolute number of observations. When between-measure correlation is weak,
the separated model can be fully efficient even with large p,uss. The gains are slightly greater
in the drop-out missing pattern, but the findings are qualitatively similar (see S4 Supporting
materials, S1 Fig, and S2 Fig).

From these results, we conclude that the available information in the measure itself and
other correlated measures together determines the benefit from fitting the combined model to
estimate individual trajectories. Individuals with rich Y}, data can obtain reasonable trajectory
estimates by only modeling Y;,, while individuals with sparse Y}, data can achieve substantial
reduction in MSE by fitting the combined model if the two measures are highly correlated.
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common Py that takes three values.

https://doi.org/10.1371/journal.pone.0320414.9002

Scleroderma case study

Sclerodema data. The Johns Hopkins Scleroderma Center Cohort comprises over 4,000
patients, providing a unique opportunity to study trajectory-focused prediction tools rele-

vant to any chronic disease that manifests in many biomarkers. In scleroderma, clinicians

track: pulmonary function measured by the standardized percent predicted forced vital
capacity (pFVC) and standardized percent predicted diffusing capacity for carbon monox-
ide (pDLCO); cardiac function measured by left ventricular ejection fraction (EF) and right
ventricular systolic pressure (RVSP); and skin measured by the modified Rodnan skin score
(mRSS). Disease onset is defined by the earlier of the onset of Raynaud’s phenomenon,
reduced blood flow to the fingers, and first non-Raynaud’s symptom. In this paper, we study
581 patients who have at least 4 repeated observations for each of the 5 measurements within

40 years since disease onset.

Some measures are collected more frequently than other measures. On average, we see
greater numbers of skin and pulmonary measures compared to those of cardiac measures.
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This is because pFVC and pDLCO from pulmonary function tests and mRSS from routine
clinical visits are more easily collected compared to EF and RVSP from echocardiograms. The
summary statistics of the number of observations by measure are shown in Table 1.

All five measures were quantile normalized by mapping their empirical marginal distri-
butions to the Gaussian distribution. Let Y be a vector of the observed values from measure
k=1,..,5. The quantile-normalized vector is obtained by ®' o  Gy(Yx), where Gy Y; and
@' is the inverse of the standard Gaussian distribution. RVSP and mRSS are transformed
by multiplying them by -1 so that an increase in all five measures indicates improved disease
status.

Estimating the separated and combined models. Because the clinical focus is on patient
trajectories, the fixed effects of our model included natural splines of time with 3 degrees of
freedom, age of onset, race, sex, skin type, presence of three common autoantibodies, and
the interactions of each of the baseline covariates listed above with the natural spline of time.
Patient specific intercept and linear time are included as random effects. Standard linear
mixed model software including R packages Ime4 [27] and nlme [28] can easily fit the sep-
arated models. However, in this case-study, the algorithms failed to converge when fitting
the combined model despite substantial efforts to tailor the starting values and convergence
tuning constants. The combined model with saturated random effects and residual covari-
ances requires estimation of 40 + 10 additional parameters in the random effects and residual
covarjance matrices, respectively, compared to those of the separated model.

We therefore fit the combined model using the R package MCMCglmm|[29]. For the fixed
effects of both models, we used a diffuse independent Gaussian prior centered around zero
with a large variance (10%). Weakly informative inverse-Wishart priors are placed on ran-
dom effects and residual covariance matrices. Specifically, we set the prior distribution of the
random intercepts to have a mode of one and those of random slopes to have the mode of
0.005, with 10 degrees of freedom. The prior distribution of the residual covariance matrix
also had mode of one for each measure with 5 degrees of freedom. The degrees of freedom
are chosen to make the distributions as diffuse as possible while guaranteeing they are valid
inverse-Wishart distributions.

An alternative to fitting the combined model is to estimate the cross-measure covariance
parameters using within-measure variance estimates obtained by fitting separated models.
Jackson et al. [30] and Chen et al. [31] extended DerSimonian and Laird’s univariate method
of moments estimator [32] to a multivariate setting to estimate the cross-measure covariance
matrix in the random effect model from the measure-specific models. Using such methods
and our formulae, we can compute the inefficiency of fitting the separated models without
directly fitting the combined model and evaluate whether the combined model should be fit.

Scleroderma covariances within and across-biomarker. We compare the assumed
covariance structures of the combined and separated models with the estimated covariance
matrices. In Fig 3, we show that the combined model captures the within and across-measure

Table 1. Summary statistics of 581 patients’ number of observations

pFVC pDLCO EF RVSP mRSS
Mean 12.83 12.40 9.13 7.47 19.09
Standard deviation 6.20 6.01 3.71 3.28 7.61
Total number of Obs 6136 5789 4281 3281 9055

https://doi.org/10.1371/journal.pone.0320414.t001
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correlation patterns quite well; the separated model only captures within-measure correla-
tions. We display the correlations of yearly average values for the first 10 years of follow-up
within and among the five measures.

We observe high positive correlation for the two lung measures which suggests that there
could be gains in efficiency when modeling the measures jointly. We observe positive corre-
lation between RVSP, mRSS, and the two lung measures; the EF observations appear to be
uncorrelated with any other measure including RVSP, the other cardiac measure.

Comparing bias and efficiency. Using the formulas derived in Supporting Materials S2,
we compare MSE, bias and variance of: (1) the fixed effects estimates BC and Bs; (2) random
effects estimates b; and bg;; and (3) the predicted values y¢; and Js;. All three estimands of
interest are functions of the design matrices (X and Z) and covariance matrices (D¢, Ds, Zs;,
and Z,). We construct design matrices for each individual using observed times at which the
five measurements are taken based on the model described above. From the model, we also
estimate the population covariance of the random effects D¢ and population residual covari-
ance Z¢;. In this section, we use the finite sample posterior estimates of the variances obtained
by taking the posterior mean of the MCMC estimates of D¢ and Z¢;. The variances Dg and Zg;
for the separated model are constructed by setting the off- diagonal terms of D¢ and Z; to be
zero.

Population average trajectory estimation. In Table 2, we present overall and measure-
wise MSE Ratio of § obtained from Equation 1. Assuming known variance parameters, the
overall MSE in estimating fixed effects is reduced by only 3% when using the combined model
compared to fitting the separated model. Since both fixed effect estimates for the separated
and combined models (33 and ﬁc) are unbiased (see S2 Supporting materials), the reduction
in MSE solely comes from variance reduction.

Data Combined model Separated model

pFVC
pFVC

pFVC

pDLCO
pDLCO
pbDLCO

Correlation
1.00
0.75
0.50
0.25
0.00
-0.25

EF
EF
EF

RVSP

RVSP
RVSP

mRSS

mRSS
B0~ BN OB D08 ON £LN -+ OD OB LI O DO BN 5N+ OS OB~ 1 AN

mRSS

012345678910012345678910012345678910012345678910012345678910 012345678910012345678910012345678910012345678910012345678910 012345678910012345678910012345678910012345678910012345678910

pFVC pDLCO EF RVSP mRSS pFVC pDLCO EF RVSP mRSS pFVC pDLCO EF RVSP mRSS

Fig 3. Pairwise correlations of observations from all patients for 11 years (years 0,...,10 since the disease onset) are calculated and plotted (left) using range of col-
ors from red, white, and blue each representing correlation of 1, 0, and -1, respectively. The 11 by 11 block matrices on the diagonals shows the degree of correlation
in patients’ repeated observations over time for each of the five measures. Looking along the block-diagonal, one observes that the two lung measurements and mRSS are
highly correlated with their respective past observations, while observations of the two heart measures have less serial correlation. The empirical correlation matrices of
the combined and separated models (middle and right) are plotted using the covariance estimates from the two models. The combined model allows correlation among
the five measures, while the separated model does not.

https://doi.org/10.1371/journal.pone.0320414.g003
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Table 2. Ratio of MSE of overall and measure-wise fixed effects of the combined model to the separated model

Overall pFVC pDLCO EF RVSP mRSS
MSE ratio of 8 |0.97 0.98 0.97 0.99 0.95 0.99

https://doi.org/10.1371/journal.pone.0320414.t002

Estimating random effects and individual patients’ prediction. Patients’ deviations in
the level and trend from the average population trajectory is captured by the random inter-
cept and slope estimates. Table 3 presents subject-average MSE ratios from Equation 2 for
random effects (MSE Ratio of b;), random intercepts only (MSE Ratio of bimm‘? ‘
dom slopes only (MSE Ratio of b;%). Equation 3 is a similar expression for predicted values
(MSE Ratio of y;). Estimating random effects and predicted values from the combined model
is most advantageous for RVSP. Overall, the mean gains in MSEs are minimal.

), and ran-

Heterogeneity in bias and efficiency gains by patient. Random effects estimates are a
linear combination of patient-specific level and trajectory estimates and their population
analogues. Hence, depending on the amount and characteristics of individuals’ data, we can
expect variation among patients in the MSEs. In Fig 4, we show the measure-specific MSE for
estimators of individual patient’s fixed effects, random effects, random slope only, and pre-
dicted values. The MSEs are transformed onto the log scale; a positive value indicates that the
separated model has smaller errors and a negative value indicates that the combined model
does.

In panel (a), the five points marking the measure-specific log ratios of MSE are equivalent
to the MSE Ratio of 8 in Table 2 transformed to the log scale. The box plots in panels (b)-(d)
show the patient-level log ratios for the random effects, random slope estimates, and predicted
values for the 581 patients.

The most notable result is that there is sizable heterogeneity for the patient-specific log
ratios, especially for pDLCO and RVSP. For RVSP, most patients benefit from fitting the
combined model. The gains in pDLCO are substantial for only 25 percent of the patients.

The stretched out left tails of the pDLCO MSEs indicate that a small fraction of patients are
estimated to have over 20% efficiency gains.

Ethics approval and consent to participate. Data analyzed in this study were obtained
from consenting participants in the Johns Hopkins Scleroderma Center Research Registry
accessed on February 10th, 2020. This study was approved by the Johns Hopkins Medicine
Institutional Review Board (IRB00251593 and IRB00226995). Participants provided written
informed consents, and the authors have permission to identify patients during and after data
collection for additional data collection. All methods were performed in accordance with the
relevant guidelines and regulations.

Table 3. Average MSE ratios of random effects, random intercept only, random slope only, and predicted values
of the combined model to the separated model

pFVC pDLCO EF RVSP mRSS
MSE Ratio of b; 0.98 0.96 0.98 0.95 0.99
MSE Ratio of b}"“"*** 0.98 0.96 0.98 0.95 0.99
MSE Ratio of b} 0.97 0.95 0.98 091 0.98
MSE Ratio of y; 0.99 0.97 0.9 0.97 0.99

https://doi.org/10.1371/journal.pone.0320414.t003
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Fig 4. Log ratio of MSEs of the combined model to the separated model for estimators of individual patient’s fixed effects, random effects, random slope only,

and predicted values.

https://doi.org/10.1371/journal.pone.0320414.9004

Discussion

In our application, a patient’s disease state is reflected in multiple irregularly spaced longi-
tudinal measures. By selecting and estimating multivariate Bayesian hierarchical models,

we estimated smooth individual and population trajectories for each measure/organ sys-
tems using noisy and, for many individuals, sparse data. This analysis can further clinicians’
understanding of the disease by representing disease progression in multiple dimensions for
clinically-defined subpopulations and by quantifying the correlations across measures and
time.

We addressed the statistical question of whether, in a simple bivariate case and in our
motivating scleroderma example with five biomarkers, fitting a more complex multivari-
ate hierarchical model (“combined model”) produces substantially more efficient estimates
compared to fitting a set of “separated models,” one for each measure. In regression analy-
sis, this question was raised by Zellner [22]. He showed that the coefficient estimation using
the GLS [25] is asymptotically more efficient compared to the OLS, and that the efficiency
increases as the error terms from different equations become more cross-correlated and as
the predictor variables in different equations become less correlated. The OLS estimates are
fully efficient when either there is no cross-measure correlation or when the predictors are
the same in the regression model for each measure. We show that multivariate linear mixed
models are not separable into individual equation systems without efficiency loss except
for restrictive special cases. We derived equations to quantify this loss of efficiency for fixed
effects, and in one general and one specific case study showed the inefficiency is negligible.

With mixed effect models, there is an additional question of how inefficient are estimates
of random effects using separated as compared to combined models. We derived a set of gen-
eralized formulae to compare the relative efficiency of individual-level estimates from the fully
efficient combined model and the simpler separated models. We defined the MSE for the esti-
mated random effects as the average conditional MSE over the distribution of b;. The condi-
tional MSE is defined as the conditional expected squared difference between the predicted
values above and the true value of the random effect.

There is little advantage of the combined model for estimating the fixed effects, when
multiple outcome measures are observed at similar or common times. Such patterns are fre-
quently observed in longitudinal studies, including our own case study. The five measures are
captured at the same or similar times, making the fixed and random effects design matrices
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similar, resulting in separated models being almost fully efficient. For the random effects esti-
mates, however, the degree of advantage of the combined model can be substantial for some
individuals. There are sizable gains for those individuals for whom the relative number of
observations in the measure of interest is smaller than those in other correlated measures. The
degree of efficiency gain increases with the degree of cross-measure correlations.

The increased efficiency of the combined model estimates of individual trajectories derive
mainly from multidimensional shrinkage toward the population mean trajectory instead of
shrinking in each dimension separately as occurs in separated models. The population aver-
age trajectories for the five measures are estimated with near full-efficiency with the separated
model. However, the combined model is advantageous as it shrinks the subject-specific mea-
surements towards the population average trajectories in a multivariate space, whereas the
separated model shrink within each univariate space. The rate of shrinkage depends on cross-
measure correlations and missingness, producing different efficiency loss across subjects.

In terms of bias and variance, the efficiency gain, or the reduction in MSE for the random
effects mostly results from reduced bias. For individuals who have only a few data points for
a given measure, the data for the measure alone cannot accurately reflect the underlying dis-
ease state of the individual. Hence, fitting the separated models results in greater shrinkage
towards the measure-specific mean and results in larger bias. The bias is reduced when fitting
the combined model, where the random effects estimator borrows strength from data-rich
measures.

This framework for comparing the performances of the combined and separated models
for the population and individual level estimates can be applied to any setting where the indi-
viduals’ and population trajectories in higher dimension space need to be estimated. How-
ever, it should be noted that the results are drawn assuming Gaussian responses after trans-
formation and missingness at random. The effects of non-Gaussian and non-ignorable miss-
ingness on the results are topics for further studies. The results in this paper describe the effi-
ciency costs of misspecifying the covariance structure among the random effects and/or resid-
ual errors. Another form of misspecification is by omitting key predictors. In our particu-
lar application, this might involve assuming a smooth trajectory for a biomarker when the
changes are more acute or immediate. The efficiency results presented in this paper assumed
that linear predictors are correctly specified. When the models are misspecified, there is no
a priori reason to believe that the effects of misspecification would be more or less for the
combined versus separated models.

Software

Software in the form of R code, together with a sample input data set and complete documen-
tation is available on request from the corresponding author.
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squared error and bias-variance decomposition of random effect estimates with known pop-
ulation parameters S4 Efficiency gains for the random effects in the case of drop-out missing
pattern.
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S1 Fig. MSE Ratio of by, by varying puiss» P and p, under scenarios A, B, and C when
ni1 = 6, px = 0 for drop-out missing case. Cells representing unlikely combinations of
Py and p, are colored in grey.

(TIF)
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pr=-0.9,-0.7,...,0.7,0.9, pp = -0.9,-0.7, ...,0.7,0.9, pi. = -0.5,0, 0.5 under cases A, B, and C
for drop-out missing pattern. Only the “likely combinations” of p, and p, illustrated are used
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so we only present the case of common py that takes three values.

(TIF)

Author contributions
Conceptualization: Ji Soo Kim, Ami A. Shah, Scott L. Zeger.

Data curation: Ami A. Shah, Laura K. Hummers.
Formal analysis: Ji Soo Kim, Scott L. Zeger.
Funding acquisition: Ji Soo Kim, Ami A. Shah, Laura K. Hummers, Scott L. Zeger.
Investigation: Scott L. Zeger.

Methodology: Ji Soo Kim, Scott L. Zeger.
Project administration: Ami A. Shah.
Resources: Laura K. Hummers.

Software: Ji Soo Kim.

Supervision: Scott L. Zeger.

Visualization: Ji Soo Kim.

Writing - original draft: Ji Soo Kim.

Writing - review & editing: Ji Soo Kim, Ami A. Shah, Scott L. Zeger.

References
1. Pattanaik D, Brown M, Postlethwaite AE. Vascular involvement in systemic sclerosis (scleroderma).
J Inflam Res. 2011;4:105-25. https://doi.org/10.2147/jir.s18145 PMID 22096374

2. Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a
pathological perspective. Am J Pathol. 2008;173(3):600-9.
https://doi.org/10.2353/ajpath.2008.071008 PMID 18688037

3. Steen VD. The many faces of scleroderma. Rheum Dis Clin North Am. 2008;34(1):1—15;v.

4. Shah AA, Wigley FM. My approach to the treatment of scleroderma. Mayo Clin Proc.
2013;88(4):377-93. https://doi.org/10.1016/j.mayocp.2013.01.018 PMID 23541012

5. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat
Rev Dis Primers. 2015;1(1):1-21. https://doi.org/10.1038/nrdp.2015.2 PMID 27189141

PLOS ONE | hitps://doi.org/10.1371/journal.pone.0320414  April 21, 2025 14/ 15



https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0320414.s002
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0320414.s003
https://doi.org/10.2147/jir.s18145
https://doi.org/10.2353/ajpath.2008.071008
https://doi.org/10.1016/j.mayocp.2013.01.018
https://doi.org/10.1038/nrdp.2015.2
https://doi.org/10.1371/journal.pone.0320414

PLOS ONE

Separated or joint models of repeated multivariate data to estimate individuals’ disease trajectories

10.

1.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

Verbeke G, Fieuws S, Molenberghs G, Davidian M. The analysis of multivariate longitudinal data: a
review. Stat Methods Med Res. 2014;23(1):42-59. https://doi.org/10.1177/0962280212445834
PMID 22523185

Diggle P, Heagerty P, Liang KY, Zeger S, Zeger. Analysis of longitudinal data. Oxford: OUP; 2002.
Brown H, Prescott R. Applied mixed models in medicine. Wiley; 1999.

Harville DA. Extension of the Gauss-Markov theorem to include the estimation of random effects.
Ann. Statist. 1976;4(2):384-95. https://doi.org/10.1214/a0s/1176343414

Harville DA. Maximum likelihood approaches to variance component estimation and to related
problems. Journal of the American Statistical Association. 1977;72(358):320-338.

Graybill FA. Theory and application of the linear model. North Scituate, MA: Duxbury Press; 1976.

Reinsel G. Estimation and prediction in a multivariate random effects generalized linear model. J
Am Stat Assoc. 1984;79(386):406—14. https://doi.org/10.2307/2288283

Sammel M, Lin X, Ryan L. Multivariate linear mixed models for multiple outcomes. Stat Med.
1999;18(17):2479-92. hitps://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18

Fieuws S, Verbeke G. Joint modelling of multivariate longitudinal profiles: pitfalls of the
random-effects approach. Stat Med. 2004;23(20):3093—-104. https://doi.org/10.1002/sim.1885 PMID
15449333

Wang WL, Fan TH. Bayesian analysis of multivariate t linear mixed models using a combination of
IBF and Gibbs samplers. J Multivar Anal. 2012;105(1):300-10.
https://doi.org/10.1016/j.jmva.2011.10.006

Shah A, Laird N, Schoenfeld D. A random-effects model for multiple characteristics with possibly
missing data. Journal of the American Statistical Association. 1997;92(438):775-9.
https://doi.org/10.2307/2965726

Verbeke G. Linear mixed models for longitudinal data. In: Linear mixed models in practice.
Springer; 1997. p. 63—153.

Sammel M, Lin X, Ryan L. Multivariate linear mixed models for multiple outcomes. Stat Med.
1999;18(17-18):2479-92. https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18

Pantazis N, Touloumi G, Walker A, Babiker A. Bivariate modelling of longitudinal measurements of
two human immunodeficiency type 1 disease progression markers in the presence of informative
drop-outs. J R Stat Soc Ser C Appl Stat. 2005;54(2):405—-23.
https://doi.org/10.1111/j.1467-9876.2005.00491.x

Bloomfield P, Watson GS. The inefficiency of least squares. Biometrika. 1975;62(1):121-8.
https://doi.org/10.1093/biomet/62.1.121

Tukey JW. Approximate weights. Ann Math Stat. 1948;19(1):91-92.

Zellner A. An efficient method of estimating seemingly unrelated regressions and tests for
aggregation bias. J Am Stat Assoc. 1962;57(298):348—68. hitps://doi.org/10.2307/2281644
Oliveira R, Teixeira-Pinto A. Analyzing multiple outcomes: is it really worth the use of multivariate
linear regression? J Biom Biostat. 2015;6(4). http://dx.doi.org/10.4172/2155-6180.1000256

Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581-92.

Aitken AC. On least squares and linear combination of observations. Proc R Soc Edinb.
1934;55:42-48.

Rebonato R, Jackel P. The most general methodology to create a valid correlation matrix for risk
management and option pricing purposes. J Risk. 2001;2.

Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models using Ime4. J Stat
Softw. 2015;67(1):1-48.

Pinheiro J, Bates D, DebRoy S, Sarkar D. The Nime package: linear and nonlinear mixed effects
models. R Core Team; 2019.

Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCgimm
R package. J Stat Softw. 2010;33(2):1-22.

Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform
multivariate random effects meta-analyses. Stat Med. 2010;29(12):1282—-97.
https://doi.org/10.1002/sim.3602 PMID 19408255

Chen H, Manning AK, Dupuis J. A method of moments estimator for random effect multivariate
meta-analysis. Biometrics. 2012;68(4):1278-84. https://doi.org/10.1111/1.1541-0420.2012.01761.x
PMID 22551393

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-88.
https://doi.org/10.1016/0197-2456(86)90046-2 PMID 3802833

PLOS ONE | hitps://doi.org/10.1371/journal.pone.0320414  April 21, 2025 15/ 15



https://doi.org/10.1177/0962280212445834
https://doi.org/10.1214/aos/1176343414
https://doi.org/10.2307/2288283
https://doi.org/10.1002/(sici)1097-0258(19990915/30)18
https://doi.org/10.1002/sim.1885
https://doi.org/10.1016/j.jmva.2011.10.006
https://doi.org/10.2307/2965726
https://doi.org/10.1002/(sici)1097-0258(19990915/30)18
https://doi.org/10.1111/j.1467-9876.2005.00491.x
https://doi.org/10.1093/biomet/62.1.121
https://doi.org/10.2307/2281644
http://dx.doi.org/10.4172/2155-6180.1000256
https://doi.org/10.1002/sim.3602
https://doi.org/10.1111/j.1541-0420.2012.01761.x
https://doi.org/10.1016/0197-2456(86)90046-2
https://doi.org/10.1371/journal.pone.0320414

	Separated or joint models of repeated multivariate data to estimate individuals' disease trajectories with application to scleroderma
	References




