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Abstract
Okadaic acid (OA), a prevalent marine biotoxin found in shellfish, is known for causing acute gastrointestinal symptoms. 
Despite its potential to reach the bloodstream and the liver, the hepatic effects of OA are not well understood, highlighting 
a significant research gap. This study aims to comprehensively elucidate the impact of OA on the liver by examining the 
transcriptome, proteome, and phosphoproteome alterations in human HepaRG liver cells exposed to non-cytotoxic OA con-
centrations. We employed an integrative multi-omics approach, encompassing RNA sequencing, shotgun proteomics, phos-
phoproteomics, and targeted DigiWest analysis. This enabled a detailed exploration of gene and protein expression changes, 
alongside phosphorylation patterns under OA treatment. The study reveals concentration- and time-dependent deregulation in 
gene and protein expression, with a significant down-regulation of xenobiotic and lipid metabolism pathways. Up-regulated 
pathways include actin crosslink formation and a deregulation of apoptotic pathways. Notably, our results revealed that OA, 
as a potent phosphatase inhibitor, induces alterations in actin filament organization. Phosphoproteomics data highlighted the 
importance of phosphorylation in enzyme activity regulation, particularly affecting proteins involved in the regulation of the 
cytoskeleton. OA's inhibition of PP2A further leads to various downstream effects, including alterations in protein translation 
and energy metabolism. This research expands the understanding of OA's systemic impact, emphasizing its role in modulat-
ing the phosphorylation landscape, which influences crucial cellular processes. The results underscore OA's multifaceted 
effects on the liver, particularly through PP2A inhibition, impacting xenobiotic metabolism, cytoskeletal dynamics, and 
energy homeostasis. These insights enhance our comprehension of OA's biological significance and potential health risks.
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Introduction

Harmful algae blooms are an event of an explosive growth 
of phytoplanktonic algae, thereby discoloring the water. 
These algae produce so-called marine biotoxins. Due to 
climate change and human industrial waste, these harmful 
algae blooms occur more often in the recent years (Van 
Dolah 2000). The marine biotoxins can enter the human 
food chain by accumulating in filter-feeding shellfish, 
thereby posing a threat to human health. The most preva-
lent marine biotoxin in European waters is okadaic acid 
(OA), which is produced by dinoflagellates of the genus 
Dinophysis and Prorocentrum (EFSA 2008). They mainly 
produce the toxin to gain a competitive advantage against 
zooplankton (Gong et al. 2021).

OA is the main causative agent for diarrheic shellfish 
poisoning (DSP), which leads to severe gastrointestinal 
symptoms like stomach pain, vomiting, or diarrhea. OA 
is very lipophilic, thereby able to accumulate in the fatty 
tissue of filter-feeding shellfish (EFSA 2008). Its structure 
was first published by Tachibana et al. in 1981, after it 
had been isolated from the marine-sponge Halichondria 
okadai (Tachibana et al. 1981). In 1988, the inhibitory 
potential of OA on protein phosphatases, mainly protein 
phosphatases 1 and 2 (PP1 and PP2A), was published 
(Bialojan and Takai 1988). OA was shown to be cytotoxic 
(Fessard et al. 1996; Le Hégarat et al. 2006; Ferron et al. 
2014) in vitro. Furthermore, it potently exerts embryo-
toxicity in vitro (Ehlers et al. 2010; Ariu et al. 2012), and 
although there has not been an evaluation in humans so far, 
it was able to pass the placental barrier in mice (Matias 
and Creppy 1996a, b). OA also shows tumor promoting 
properties (Suganuma et al. 1988; Suganuma et al. 1992; 
Fujiki and Suganuma 1993; Messner et al. 2006, Jiménez-
Cárcamo et al. 2020) and has also been associated with 
several cases of colorectal cancer in epidemiological stud-
ies (Cordier et al. 2000; Lopez-Rodas et al. 2006; Manerio 
et al. 2008). Because of the clear consumer risks, the Euro-
pean union implemented a limit of 160 µg OA equivalents 
per kg shellfish (EFSA 2008). However, this was based on 
the acute toxic effects and did not take into account long-
term effects of lower doses, especially in organs other than 
the intestine.

OA is actively transported from the intestine into the 
bloodstream (Ehlers et al. 2011). It is furthermore able 
to disrupt tight junction proteins, which may further con-
tribute to an uptake of OA into the bloodstream (Dietrich 
et al. 2019; Huang et al. 2023). There is also evidence that 
OA is distributed throughout the body, with a particularly 
long retention time in the liver (Matias et al. 1999; Ito 
et al. 2002; Louzao et al. 2021). OA can also enter the 
enterohepatic circulation (Matias and Creppy 1996a, b). 

With all this evidence, it is imperative to study the effects 
of OA on the liver.

It was recently shown that OA is able to strongly down-
regulate cytochrome P450 (CYP) enzymes at the RNA 
and protein levels in HepaRG cells. Furthermore, several 
other proteins of xenobiotic metabolism were also affected 
(Wuerger et  al. 2022). The effect on the CYP enzymes 
seems to be dependent on an activation of nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
and a subsequent activation of the Janus kinase (JAK)-sig-
nal transducer and activator of transcription (STAT) (JAK/
STAT) signaling pathway through the release of several pro-
inflammatory cytokines (Wuerger et al. 2023). However, as 
OA is a potent phosphatase inhibitor, we expect additional, 
more global effects of OA on signaling in liver. In a recent 
proteomics study, we were able to find effects of OA on 
energy homeostasis, inflammation, and signal transduction 
in HepaRG cells (Wuerger et al. 2023). However, this study 
was limited with respect to its scope and methodology. In 
this study, we used differentiated HepaRG cells and incu-
bated them with non-toxic OA concentrations for different 
time periods. The human hepatocarcinoma cell line HepaRG 
can be differentiated into hepatocyte-like cells using DMSO. 
Differentiated HepaRG cells express liver-specific enzymes 
at similar levels to primary human hepatocytes (Kanebratt 
and Andersson 2008, Tascher et al. 2019). Therefore, they 
are a fitting in vitro model for our study.

Using these cells, we here provide a more advanced and 
comprehensive characterization of the liver proteome after 
OA, exposure using an integrative multi-omics approach, 
encompassing RNA sequencing, shotgun proteomics, phos-
phoproteomics, and targeted DigiWest analysis.

Experimental procedures

Chemicals

OA (purity ≥ 98%) was purchased from Enzo Life Sciences 
GmbH (Loerrach, Germany). All other standard chemicals 
and materials were either purchased from Sigma Aldrich 
(Taufkirchen, Germany) or Roth (Karlsruhe, Germany) in 
the highest available purity.

Cell cultivation

HepaRG cells were purchased from Biopredic International 
(Saint-Grégoire, France). They were seeded in 6-well plates 
(2 × 105 cells/well) and incubated in William’s E medium 
supplemented with 10% fetal bovine serum (FBS), 5 μg/mL 
insulin (medium and both supplements from PAN-Biotech 
GmbH, Aidenbach, Germany), 50 μM hydrocortisone hemi-
succinate (Sigma Aldrich, Taufkirchen, Germany), 100 U/
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mL penicillin, and 100 μg/mL streptomycin (Capricorn 
Scientific, Ebsdorfergrund, Germany) for 14 days at 37 °C. 
Afterwards, 1% DMSO was added to the medium for 2 days 
to start differentiation. Then, DMSO content was increased 
to 1.7% for another 12 days, after which the cells were fur-
ther cultivated in serum-free medium [SFM; William’s E 
medium without phenol red (PAN-Biotech GmbH, Aiden-
bach, Germany), supplemented with 100 U/mL penicillin 
and 100 μg/mL streptomycin, 2.5 μM hydrocortisone hemi-
succinate, 10 ng/mL human hepatocyte growth factor (Bio-
mol GmbH, Hamburg, Germany), 2 ng/mL mouse epider-
mal growth factor (Sigma Aldrich, Taufkirchen, Germany), 
and 0.5% DMSO], as adapted from Klein et al. (Klein et al. 
2014) for two more days. Afterwards, the cells were incu-
bated with 33 or 100 nM OA for up to 24 h. OA concentra-
tions were chosen as previously described (Wuerger et al. 
2022; Wuerger et al. 2023). Cells were then harvested in 
ice-cold PBS and centrifuged (5 min, 2000 × g, 4 °C), and 
the cell pellets were frozen at -80 °C until use.

RNA preparation and sequencing

For transcriptomics analysis, the cells were washed with 
ice-cold PBS. Afterwards, they were lysed using ice-cold 
RLT buffer (RNeasy Mini Kit, Qiagen GmbH, Hilden, Ger-
many) containing 1% β-mercaptoethanol (Merck Schuchardt 
OHG, Hohenbrunn, Germany). The RNA was then extracted 
according to the instructions of the Rneasy Mini Kit (Qiagen 
GmbH, Hilden, Germany). Concentration and integrity of 
RNA were evaluated according to the manufacturer’s pro-
tocol using the Agilent RNA 6000 Nano LabChip kit in the 
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, USA). All 
RNA integrity numbers (RIN) were above 9.3. Next-gener-
ation sequencing was then carried out by Eurofins (Eurofins 
Scientific, Luxembourg, Luxembourg) using the Illumina 
NovaSeq 6000 platform, 2 × 150 bp. Demultiplexing of 
sequencing reads was accomplished using Illumina bcl2fastq 
(version 2.20). Depths of ~ 66 million paired-end 150 bp 
reads were generated for each sample (see Supplemental 
Table 1 for details). The raw RNA sequencing data are avail-
able from GEO under accession number GSE252563. Reads 
were classified as ribosomal RNA (rRNA) and removed by 
RiboDetector version 0.2.7 (Deng et al. 2022). Quality and 
adapter trimming was done by fastp version 0.20.0 (Chen 
et  al. 2018). Reads were aligned to the human genome 
(hg38, UCSC) using STAR version 2.7.8a (Dobin et al. 
2013) and quantified per gene ID by RSEM version 1.3.3 
(Li and Dewey 2011).

Shotgun LC–MS

For proteome analysis, proteins were prepared using the iST 
sample preparation kit (PreOmics, Planegg/Martinsried, 

Germany) according to the instruction manual, with one 
change: after lysis, the protein concentration was measured 
using the Bio-Rad protein assay according to the instruc-
tion manual (Bio-Rad Laboratories GmbH, Feldkirchen, 
Germany) against a bovine serum albumin standard curve. 
Based on the protein concentration, only 100 µg of pro-
tein was used for sample preparation. The resulting pep-
tide solution was diluted 1:20 with 5% (v/v) acetonitrile 
containing 0.1% (v/v) formic acid. For phosphoproteome 
analysis, cells harvested from three independent replicates 
were pooled prior to iST preparation and further purified 
using the High-Select™ TiO2 Phosphopeptide Enrichment 
Kit (Thermo Fisher Scientific, Bremen, Germany) accord-
ing to the manufacturer’s instructions. Resulting peptides 
were reconstituted in 100 µl 5% acetonitrile containing 0.1% 
formic acid.

LC–MS analysis was performed using 3 µl of the pep-
tides or 20 µl of the phosphopeptides on an UltiMate 3000 
RLSCnano, that was coupled on-line to a Q Exactive Plus 
mass spectrometer via Nanospray Flex Ion Source, which 
was operated using Xcalibur 4.4 (Thermo Fisher Scientific, 
Bremen, Germany). The peptides were trapped using an 
Acclaim PepMap 100 C18 nano viper column (0.75*20 mm, 
Thermo Fisher Scientific, Bremen, Germany) with a flow of 
5 µl/min with 3% aq. acetonitrile containing 0.05% (v/v) trif-
luoroacetic acid (45 °C, 5 min) and then separated using lin-
ear gradients (starting with 0.1% (v/v) formic acid in water, 
the content of 80% aq. acetonitrile containing 0.1% (v/v) 
formic acid was increased from 5 to 35% in 90 min and then 
from 35 to 50% in 5 min) on an Acclaim PepMap 100 C18 
nano viper column (0.75*500 mm, Thermo Fisher Scientific, 
Bremen, Germany; 0.3 µl/min, 45 °C). After separation, the 
eluates were evaporated and ionized using a stainless-steel 
emitter (Thermo Fisher Scientific, Bremen, Germany). Anal-
ysis was performed using data-dependent acquisition (DDA) 
mode. To maximize identification outcome, samples were 
injected once and a brief database search using SEQUEST 
HT was performed. Based on these results, a time-dependent 
(± 1 min) exclusion list, which was extended to z = 2, 3, 4, 
was generated. Afterwards, each sample was analyzed in 
triplicates.

Raw data were analyzed using the ProteomeDiscoverer 
software (Thermo Fisher Scientific, Bremen, Germany; ver-
sion 2.4.1.15). Human reference protein accessed at UniProt 
(UP000005640; date 17/09/2021) was used for identifica-
tion using SEQUEST HT as search engine with a maximum 
missed cleavage of 2, and a precursor mass and a fragment 
mass tolerance of 10 ppm. B- and y-ions were both weighted 
at 1. Oxidation, carbamidomethyl, acetylation, and phos-
phorylation were selected as dynamic modifications. Pre-
cursor ions were quantified using the Precursor Ion quanti-
fier node based on the area under the peak. The validation 
was based on the q-value. False discovery rates (FDR) for 
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peptide and protein identification were set to 1% strict and 
5% relaxed. For phosphopeptide identification, the PTM RS 
node was additionally used. Only proteins identified with at 
least two peptides were used for further analysis. The mass 
spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE (Perez-Riv-
erol et al. 2022) partner repository with the dataset identifier 
PXD048968.

DigiWest®

HepaRG cells were seeded into 25 cm2 flasks and treated 
as described above. Afterwards, cells were pelleted and 
frozen in liquid nitrogen until further use. DigiWest® was 
performed as described before (Treindl et al. 2016). Three 
independent replicates were pooled prior to the measure-
ments. The original dataset consisting of 182 entries was 
filtered by removing redundant entries and those below the 
limit of quantification resulting in 132 unique analytes.

Experimental design and statistical rationale

In this study, we aimed to integrate RNA sequencing, 
shotgun proteomics, phosphoproteomics, and a targeted 
DigiWest to gain a comprehensive picture of OA-induced 
changes in human HepaRG cells. To account for variability, 
each analysis initially used three biological replicates. Due to 
sample constraints, however, the biological replicates were 
pooled prior to the phosphoproteome and DigiWest analy-
ses. This pooling was necessary to meet the sensitivity and 
depth required for these methods. Despite this limitation, we 
attempted to mitigate the impact by ensuring comprehen-
sive coverage and reproducibility in our RNA sequencing 
and proteomic analyses using individual replicates. Samples 
were collected after 0.5, 4, 12, and 24 h. To account for 
technical variability, three technical replicates were created 
in the shotgun and phosphoproteome analyses. The detailed 
statistical rationale for each analysis is described below in 
the section “Bioinformatic analysis and statistics”.

Bioinformatic analysis and statistics

After removing genes with low expression (sum of reads 
across all samples below ten), the retained 22,122 genes 
were analyzed in R version 4.3.2 (R Core Team 2020) using 
package DESeq2 version 1.42.0 (Love et al. 2014) using 
default settings for estimation of size factors and dispersion. 
Negative Binomial GLM fitting and Wald statistics were 
applied to test for differential gene expression between each 
treatment and control conditions, respectively. False discov-
ery rate (FDR) was used to control for multiple testing (Ben-
jamini and Hochberg 1995). Only genes with an adjusted 
p value < 0.1 and |log2FC|> 1 were identified as DEGs and 

included in the further analyses. Variance stabilizing trans-
formation was applied prior to probabilistic PCA (ppca) on 
centered data by the R-package pcaMethods version 1.94.0 
(Stacklies et al. 2007).

Shotgun proteomics and phosphoproteomics data were 
filtered for common contaminants like human keratin and 
proteins with very high NA count were removed, so that 
3028 unique proteins and 674 unique peptides were retained, 
respectively. Phosphoproteomics data were filtered for pep-
tides with a phosphorylation as modification (288 unique 
entries) and log2FC was calculated relative to the negative 
control per timepoint. To calculate the actual change of 
phosphorylation upon OA treatment (in contrast to changed 
abundances), phosphopeptides were matched to peptides in 
the Shotgun proteomics dataset and the ratio of both log2FC 
values was calculated. Statistical significance of Shotgun 
proteomic changes was determined by Student’s t tests 
and FDR for multiple testing control (cutoffs: adjusted p 
value < 0.05 and |log2FC|> 0.5). However, the DigiWest and 
phosphoproteomic data included only one sample per con-
dition (three biological replicates pooled). Thus, statistical 
significance could not be estimated and |log2FC|> 1 was set 
as cutoff to define relevant changes.

OmniPathR R-package version 3.10.1 (Türei et al. 2016) 
was used to collect protein–protein and kinase interactions 
for selected proteins of interest (POI) and phosphatases, 
followed by building a network with the shortest path via 
intermediate regulators using the R-package igraph version 
1.6.0 (Csardi and Nepusz 2005). POI for actin cytoskeleton 
organization were selected based on the Gene Ontology 
(GO) terms “actin filament binding” (GO:0051015), “actin 
filament organization” (GO:0007015), “actin cytoskele-
ton” (GO:0015629), and “actin cytoskeleton organization” 
(GO:0030036).

Kinase-substrate enrichment analysis (KSEA) was per-
formed using the KSEA App (https://​casec​pb.​shiny​apps.​io/​
ksea/) using PhosphoSitePlus and NetworKIN (NetworKIN 
score cutoff = 1) as the kinase-substrate dataset. Log2FC 
ratios of phosphopeptides served as input and Z-Scores 
were used as output for further visualization (Casado 2013; 
Wiredja et al. 2017). Cytoscape version 3.10.1 was used to 
create a signaling network including selected protein kinases 
based on the apps OmniPath version 2.3, PathLinker version 
1.4.3 and Omics Visualizer version 1.3.1 where Z-Scores 
from KSEA and log2FC values are overlayed to nodes.

GO term enrichment analysis was performed using 
R-package clusterProfiler version 4.10.0 (Wu et al. 2021), 
specifically the “compareCluster” function to compare 
multiple conditions and visualized by dot-plots of the top 
enriched terms. Heatmaps were created with the R-package 
ComplexHeatmap version 2.18.0 (Gu et al. 2016) using 
default settings if not mentioned otherwise. K-means cluster-
ing was performed by the R-package stats for various omics 

https://casecpb.shinyapps.io/ksea/
https://casecpb.shinyapps.io/ksea/
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data as input with manually chosen number of centers. For 
pathway analysis, transcriptomic data were analyzed through 
the use of Ingenuity Pathway Analysis (IPA; QIAGEN Inc., 
https://​digit​alins​ights.​qiagen.​com/​produ​cts-​overv​iew/​disco​
very-​insig​hts-​portf​olio/​analy​sis-​and-​visua​lizat​ion/​qiagen-​
ipa/; IPA Winter Release December 2023).

Results

Transcriptomics

To detect gene expression changes upon okadaic acid (OA) 
treatment for 24 h in HepaRG cells, we performed RNA 
sequencing and differential gene expression (DGE) analy-
sis. As described in the Materials and methods section, raw 
counts were filtered resulting in 22,122 genes expressed 
above the threshold. After normalization and transforma-
tion of processed counts data, Principal Component Analysis 

(PCA) was used to visualize and reduce the complexity of 
the dataset. Figure 1A shows the PCA scores plot for all 
twelve samples analyzed by RNAseq. PC1 and PC2 repre-
senting most of the variance clearly separate the samples 
treated with an increasing concentration of OA from the 
negative control. This is also reflected by the number of 
differentially expressed genes (DEGs) that peaks at 4200 
down- and 3586 up-regulated upon treatment with 100 nM 
OA (Fig. 1C). We found that 184 and 513 genes were sig-
nificantly down- and up-regulated in common between all 
concentrations of OA treatment, respectively (Supplemental 
Fig. 1). Overall, there were 8181 genes that were signifi-
cantly changed in their expression in at least one condition 
which reflects 36.9% of the studied genes (Supplemental 
Table S5).

In our study, GO term enrichment analysis was per-
formed to identify significant biological processes affected 
by different concentrations of OA. In summary of the 
dot-plot in Fig.  2, the analysis highlighted that genes 

Fig. 1   Global omics data results for transcriptomics and proteom-
ics. Scores plots of principal component analysis (PCA) for tran-
scriptomics (A) and shotgun proteomics (B). Colors indicate the 
different treatments: negative control = 0  nM OA (gray), 11  nM 
OA (light green), 33  nM OA (green), 100  nM OA (dark green) for 
transcriptomics; incubation time of 0.5  h (light blue), 4  h (blue), 
24  h (dark blue) and negative control (circle), 33  nM OA (square), 

100 nM OA (diamonds) for proteomics. Bar plots for number of sig-
nificantly changed genes (C) and proteins (D). Genes with padj < 0.1 
and |log2FC|> 1 were considered as significant and proteins with 
padj < 0.05 and |log2FC|> 0.5. Venn diagrams comparing significantly 
regulated genes/proteins for treatment with 33  nM (E) and 100  nM 
OA (F)

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/


2924	 Archives of Toxicology (2024) 98:2919–2935

up-regulated at 33 nM were predominantly associated 
with cell cycle regulation and DNA replication. At higher 
concentrations (100 nM) also GO terms related to reactive 
oxygen species (ROS) and apoptosis signaling pathways 
were associated (Fig. 2). Down-regulated genes were con-
sistently enriched for fatty acid and xenobiotic metabo-
lism for both OA concentrations. The underlying CAR 
signaling pathway is depicted for OA 33 nM treatment 

based on top “canonical pathways” results from Ingenu-
ity Pathway Analysis (IPA) in Fig. 3 with key regulators, 
such as RXRA, NCOA, and CAR (NR1I3) itself show-
ing decreased gene expression. CAR-regulated targets, 
including CYPs, UGTs, and transporters (e.g., SLCO1B1, 
ABCC3), are also down-regulated leading to an inactiva-
tion of the downstream xenobiotic metabolism.

Fig. 2   Dot-plot of enriched GO terms for transcriptomics (RNAseq) 
and Shotgun proteomics. Only results for OA treatment (33, 100 nM) 
after 24  h are depicted and split by up-/down-regulated genes/pro-

teins. The color indicates the significance measured by the adjusted 
BH p value and the dot size indicates the gene ratio per GO term
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Shotgun proteomics

In addition to RNA sequencing, we also carried out Shotgun 
Proteomics analysis to identify proteins that were affected 
by OA (33 and 100 nM) in their expression. As the tran-
scriptomic analysis focused exclusively on the changes in 

signaling pathways after 24 h, we wanted to include the rel-
evant protein changes at earlier time points (0.5 and 4 h) as 
well. After processing and filtering the dataset as described 
in the Materials and methods section, 3028 unique proteins 
were detected and quantified. The PCA scores plot for all 
27 samples analyzed by Shotgun Proteomics, depicted in 

Fig. 3   Overview of xenobiotic metabolism regulated by the CAR 
signaling pathway from Ingenuity Pathway Analysis (IPA). Tran-
scriptome data (log2FC values) for treatment with 33 nM OA (24 h) 
were mapped while results for 100 nM OA (24 h) showed a similar 

picture (not shown). CAR is labeled by its synonym NR1I3. Genes 
detected in our dataset are shown in green (down-regulated) or red 
(up-regulated). Genes shown in orange or blue represent a predicted 
up- (orange) or down-regulation (blue)
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Fig. 1B, clusters the samples along PC1 and PC2 based on 
factors of concentration and time. The samples of each time 
point are separated by the increasing OA concentration, as 
the samples of 100 nM are more distant from the negative 
control than those of 33 nM. The treatment effects on the 
proteome for 0.5 and 4 h seem to be more similar to each 
other as the samples are clustering together, while those for 
24 h treatment were separated.

Subsequently, each OA treatment was compared to the 
negative control of the respective time point using Student’s 
t test, and significant protein changes were considered for 
adjusted p values < 0.05 and |log2FC|> 0.5. In general, the 
percentage of differentially expressed proteins (DEPs) was 
31.3% (947 proteins changed in at least one condition), 
which is quite similar to the mRNA level even if the abso-
lute numbers are lower.

In agreement with the PCA scores plot, the concentration-
dependent effect on the number of DEPs is also indicated 
in Fig. 1D as already observed for DEGs (Fig. 1C). When 
comparing the DEGs identified by RNAseq with deregulated 
proteins, we found an overlap of 71 and 173 molecules for 
treatment with 33 and 100 nM OA, respectively (Fig. 1E–F). 
For instance, SERPINB2, ITGA2, and SLC1A5 were com-
monly up-regulated, while CYP2E1, FABP1, and ADH1B 
were down-regulated at OA both levels. Interestingly, the 

extent of up- or down-regulation seemed to be higher at the 
transcriptomic than at the proteomic level which is apparent 
from the heatmaps in Supplemental Fig. 2. Indeed, correla-
tion analysis of log2FC values (100 nM OA) of both omics 
levels results in a correlation coefficient of 0.79 and a slope 
of 2.38 for linear model of transcriptomics in dependence of 
proteomics. Also, for 33 nM OA, a factor > 2 was derived for 
this significant relationship, as summarized in Supplemental 
Fig. 3. Besides this set of commonly regulated molecules, 
each level showed specifically deregulated genes or proteins 
that were not identified by the other method.

Next, we analyzed the overlaps between sets of DEPs and 
visualized them in Venn diagrams. For both OA concentra-
tions, they indicate rather distinct proteomic changes at the 
early stage (0.5 and 4 h) and late stage (24 h) as there are 
many specific proteins at each condition and few common 
DEPs (Supplemental Fig. 4).

To get a better understanding of the biological path-
ways affected by OA treatment over time, we performed 
kmeans clustering analysis to group all 947 DEPs into eight 
clusters. The boxplots in Fig. 4 show the different concen-
tration- and time-dependent proteomic changes and the 
enriched GO terms associated with each cluster are sum-
marized in Supplemental Table 2. Cluster 2 contains 100 
proteins, such as CYP2E1, ABCC3, and FABP1, that are 

Fig. 4   Boxplot of log2FC across eight clusters of DEPs measured by shotgun proteomics over time and per OA concentration (33 nM in green, 
100 nM in dark green) according to kmeans clustering
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mainly down-regulated after 24 h and enriched for GO terms 
related to xenobiotic and lipid metabolism (Supplemental 
Fig. 5A). However, cluster 4 reflects an early proteomic 
response including 155 down-regulated proteins that are 
associated with ribosome biogenesis and translation, e.g., 
RRP8, RPL28, and EIF5B. Multiple clusters indicate dif-
ferent patterns of up-regulated proteins, as clusters 1 and 
7 are reaching the maximum expression after 24 h, while 
clusters 3, 5, and 6 are showing early proteomic changes 
upon OA treatment. Clusters 3, 5, and 6 are mainly enriched 
for biological processes like RNA splicing and fatty acid 
metabolism; on the other hand, proteins in cluster 1 and 
7 are associated with apoptosis and mRNA stabilization, 
respectively. Moreover, proteins involved in actin filament 
organization appear in cluster 6 (early up-regulation, e.g., 
CTNNA2, PAK1, and SPTBN4) and 7 (late up-regulation, 
e.g., MARCKS, STMN1, and ZYX), as summarized in Sup-
plemental Fig. 5B.

Phosphoproteomics

As a potent phosphatase inhibitor of mainly PP1 and PP2A, 
effects of OA on the phosphorylation status of the cells were 
expected. To investigate the signaling events associated with 
OA treatment and subsequent PP1 and PP2A inhibition, we 
performed LC–MS-based profiling of enriched phosphopep-
tides. In total, we detected 288 unique phosphopeptides that 
were used as input for a PCA plot that shows a clear separa-
tion of samples according to concentration and duration of 
the OA treatment (Supplemental Fig. 6A). To distinguish 
changed phosphoprotein abundances from altered phospho-
rylation status, we performed a pairwise normalization of 
enriched phosphopeptides relative to their counterparts in 

the non-enriched shotgun proteomics dataset. From the total 
number of 288 phosphopeptides, 72 could be matched to 
peptides from the shotgun data which resulted in log2FC 
ratios.

Strikingly, OA treatment results in a global increase in 
phosphorylation status as indicated by the shift of log2FC 
ratios to the positive values in Fig. 5. This effect is even 
more pronounced for treatment with 100 nM OA compared 
to 30 nM with median values of 0.631 and 0.490, respec-
tively (see Supplemental Table 3 for details). This observa-
tion is also reflected by a higher number of phosphopeptides 
with increased log2FC ratios than decreased values (Supple-
mental Fig. 7A) peaking after 4 h of OA treatment.

To get a better understanding of the patterns in the phos-
phoproteome data, we analyzed the 72 matched phospho-
peptides by kmeans clustering (Fig. 6). The five resulting 
groups reflect similarly reacting phosphopeptides upon OA 
treatment, such as cluster 1 containing 24 molecules (e.g., 
ADD3, PLEC, and SPTBN1) that accumulated phospho-
rylations after 0.5 h and 4 h, but this effect reversed after 
24 h. Cluster 2 is also showing an increased phosphorylation 
status but not immediately, rather after 4 or 24 h with pro-
teins like MTDH, NDRG2, and EIF4B. The biggest increase 
was observed for FKBP5 and USP5 in cluster 4. Across the 
entire dataset, there is a striking overrepresentation of pro-
teins associated to actin filament organization, microtubule, 
and cadherin binding, highlighting a broad impact of OA 
treatment beyond the specific clusters identified.

Based on GO term annotation related to actin cytoskel-
eton, a subset of genes was selected for a more detailed 
inspection. Especially, after 4 h and 24 h, OA treatments 
lead to a pronounced increase of phosphorylation for 
PALLD, PLEC, AFDN, MARCKS, AHNAK, and SEPTIN9 

Fig. 5   Distribution of log2FC 
ratios for OA treatment for 
0.5, 4 and 24 h in the phos-
phoproteome dataset. The left 
side shows the density plot for 
33 nM OA (OA33) and the right 
side for 100 nM OA (OA100)
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(Fig. 7A). To get a better understanding of the signaling 
network around the proteins of interest existing knowledge 
for protein–protein interactions (PPIs) and kinase–substrate 
relationships from OmniPath utilized. The derived network 
in Fig. 7B shows the interactions between the primary OA 
targets PP1 and PP2A, selected proteins of interest (POI) 
and kinases as intermediate regulators. Among the most 

connected kinases in the network, we identified MAPK1 
(ERK2), MAPK3 (ERK1), AKT1, CDK1, CDK2, GSK3B, 
TP53, PRKCA, and PRKCB as potential key regulators for 
POI that are associated with downstream effects in the actin 
cytoskeleton organization. Then, we explored phosphopep-
tides related to microtubule and cadherin binding that par-
tially overlapped with POI for actin binding. Additionally, 

Fig. 6   Boxplot of log2FC ratio across five clusters of phosphopeptides over time and per OA concentration (33 nM in green, 100 nM in dark 
green) according to kmeans clustering

Fig. 7   Phosphoproteomic changes connected to actin cytoskel-
eton. Heatmap of selected phosphopeptides related to actin filament 
organization (A). Relevant changes with |log2FC ratio|> 1 are indi-
cated by “ + ” sign. Prior knowledge-based signaling network based 
on protein–protein interactions (PPIs) and kinase information from 
OmniPath for selected proteins (B). These proteins of interest (POI) 

were selected based on GO term annotation related to actin filament 
binding and organization. Additionally, phosphatases PP1 and PP2A 
(“primary targets”) as well as intermediate kinases are included in the 
network, and red edges indicate (de)phosphorylations in contrast to 
PPIs
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we recognized NDRG1 and DYNC1I2 as phosphorylated 
POI for microtubule organization and CTNND1 and PPL 
for cadherin binding/focal adhesion (Supplemental Fig. 8).

DigiWest (targeted proteins)

In a targeted approach, we used the targeted DigiWest 
method to complement the previous untargeted (phospho)-
proteomic methods, covering 132 analytes that correspond 
to 97 unique proteins (some with different modifications). 
Fig. 8B illustrates that the majority of those proteins (63%) 
could exclusively be detected by DigiWest. Similar to the 
phosphoproteome data, samples cluster according to OA 
concentration and treatment duration in the PCA scores plot 
(Supplemental Fig. 6B). This is also exemplified by the ris-
ing number of down- or up-regulated analytes (|log2FC|> 1) 
with increasing OA concentration and over time (Supple-
mental Fig. 7B). However, we observed an early regula-
tion at the proteome level already 0.5 h after OA treatment, 
which is in agreement with the Shotgun Proteomics data 
(Fig. 1D).

Kmeans clustering was applied to group similarly 
behaving analytes into groups as summarized by box-
plots in Fig. 8A. Cluster 2 and 5 show strong accumula-
tion upon OA treatment of 12 and 24 h, especially for 
100 nM. Among them are the phosphorylated proteins 
RPS6, JUN and RB (cluster 2) as well as MAPK/CDK 
substrates, GSK3A/B, and FOXO3 (cluster 5). In contrast, 
cluster 4 reflects a moderate down-regulation of 25 ana-
lytes after longer OA 100 nM treatment, such as CYP2B6, 

MDM2, PTEN, NFκB2, and DVL3. Early down-regulation 
of PAK1/2, FOXO1, and AKT1 is depicted in cluster 1 
and 3, while cluster 6 shows the opposite; namely early 
up-regulation of PIK3R1, ERK2, HSP27, and RICTOR 
(Supplemental Fig. 9).

A comparison of proteins detected by Shotgun Proteom-
ics and DigiWest yielded an overlap of 31 analytes that 
was explored in more detail by a heatmap (Supplemental 
Fig. 10). As expected, the similarity between DigiWest 
and Shotgun Proteomics was higher to each other than to 
RNAseq log2FC values. The protein RPS6 was detected 
in the DigiWest in the form of different phosphorylated 
variants and showed a clear up-regulation, while the cor-
responding gene was slightly down-regulated. In contrast, 
the bottom of the heatmap depicts a group of down-regu-
lated proteins (e.g., DEPTOR3, MAPK3/ERK1, IDH, and 
RAD23B), for which transcriptomic and proteomic data 
are in good agreement. Remarkably, this heatmap features 
many genes/proteins related to the NF-κB signaling path-
way, such as NFKB2, EIF4E, EIF2S1, CREB1, PDK1, 
and PAK2, as well multiple MAP kinases. All of them 
are significantly up-regulated at the transcriptomic level, 
while the proteomic level is not giving such a clear picture. 
NFKB2, EIF4E (S209), and CREB1 (S133) are increased 
after 24 h and MAPK1/ERK2 (T202/Y204) is increased 
already after 0.5 h. However, the (phospho-)protein levels 
of the other molecules are unchanged upon treatment or 
in some cases decreased after 0.5 h, e.g., PAK1/2 (S144/
S141) and EIF2S1 (S51).

Fig. 8   Overview of DigiWest results. Boxplot of ratio across six clusters of 136 analytes measured by DigiWest over time and per OA concentra-
tion (A). Venn diagram comparing the unique proteins detected by Shotgun Proteomics, Phosphoproteomics, and DigiWest (B)
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Integrative phosphorylation analysis

To identify which kinases might be responsible for down-
stream phosphorylation changes, we applied Kinase-Sub-
strate Enrichment Analysis (KSEA). The top overrepre-
sented kinases were PAK1, CAMK2A, AURKB, and CDK1 
based on the Z-Score (Supplemental Table 4). Subsequently, 
Shotgun Proteomics and DigiWest data were matched to 
KSEA results and summarized in a heatmap (Fig. 9A) of 
log2FC values and corresponding Z-Scores. Most strikingly, 
PAK1 (S144/S141) accumulated over time as measured by 
DigiWest, which is reflected by an increasing Z-Score. In 
contrast, KSEA revealed decreased activity of MAPK3 
(ERK1), which is in line with the down-regulation upon 
OA treatment according to DigiWest and Shotgun Proteom-
ics. Furthermore, DigiWest data point to a slight decrease 
of GSK3A and GSK3B protein levels, while the phospho-
rylated forms of those kinases (GSK3A-S21, GSK3B-S9) 
accumulated over time, especially at 100 nM OA. KSEA 
hints to an early inhibition of GSK3A and GSK3B but slight 
activation after 24 h.

RNAseq results were integrated with Z-Scores of KSEA 
in a knowledge-based signaling network for OA 100 nM 
treatment (Fig. 9B). Overall, this network includes many 
kinases involved in MAPK, Wnt, or NF-κB signaling, 
such as MAPK1, MAPK8, PRKCA, PRKCG, CNSK1A1, 
GSK3A, GSK3B, IKBKB, and CHUK (= IKKA) as well as 
cytoskeleton organization similar to the network in Fig. 7B. 
MAPK3 (= ERK1) and PRKG2 were down-regulated at the 

transcriptomic level and KSEA also points to an inactiva-
tion, while PRKCD and CHUK (= IKKA) were up-regulated 
and KSEA hints to the same direction. However, there are 
a number of kinases, such as CK1, PAK1, and MARK1, 
for which gene expression and predicted kinase activity are 
somewhat contradictory, probably due to other regulatory 
mechanisms which are opposing the correlation between 
mRNA and protein levels.

Discussion

The effects of OA on the liver are not very well understood 
so far. We recently published a proteomics study regard-
ing the effects of OA on HepaRG cells using 2D-PAGE 
(Wuerger et al. 2023). In this publication, we were able to 
link OA exposure of HepaRG cells to proteins involved in 
energy metabolism, oxidative stress, protein metabolism, 
and the immune response. This study, however, was limited 
due to methodological issues.

Therefore, we now conducted a much broader, more com-
prehensive study covering not only the proteome, but also 
the transcriptome of HepaRG cells after exposure to non-
cytotoxic concentrations of OA. To the best of our knowl-
edge, this study is the first of its kind regarding the human 
liver cell proteome and transcriptome after OA exposure. 
With OA being a potent inhibitor of PP2A (Bialojan and 
Takai 1988), we expected OA-induced changes in the protein 
phosphorylation of the cells and thereby changes in signal 

Fig. 9   Integrative analysis of protein kinase relationships. Summary 
of the Kinase-Substrate Enrichment Analysis (KSEA) in combination 
with kinase measurements by Shotgun Proteomics and DigiWest (A). 
KSEA (right side) results in Z-Scores where positive values indicate 
elevated kinase activity (orange) and negative values reduced activity 
(purple). The left side shows log2FC values from DigiWest (DW) and 
Shotgun Proteomics for matching protein kinases. Signaling network 

of selected protein kinases from Cytoscape using the apps Omin-
iPath, PathLinker and Omics Visualizer (B). The inner ring shows the 
log2FC values measured for OA 100 nM treatment, 24 h by RNAseq 
and the outer ring the Z-Score from KSEA for the matching condition 
and kinase. Pink edges indicate stimulation in contrast to dark grey 
edges for inhibition
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transduction. Therefore, we expanded the study to include 
the phosphoproteome as well, using an LC–MS approach 
and a targeted DigiWest analysis regarding important 
signaling pathways that are regulated by phosphorylation. 
Based on the total number of regulated genes and proteins, 
there is a clear concentration dependency of the strength of 
deregulation in genes or proteins. Furthermore, the proteome 
changes are time-dependent as well. Clustering of the pro-
teome dataset revealed a time-dependent down-regulation of 
lipid metabolism and an increasing up-regulation of proteins 
involved in actin filament organization over time.

The comparison of the GO term analysis of the tran-
scriptome and proteome datasets revealed a strong overlap 
regarding the function of the down-regulated genes and pro-
teins, with the most strongly down-regulated pathways being 
xenobiotic metabolism and lipid metabolism in both data-
sets. These data are in congruence with our previous results. 
In our previous proteomics study using the 2D-PAGE, we 
were also able to see a strong effect of OA on lipid metabo-
lism, with the majority of the deregulated proteins involved 
in lipid metabolism identified being down-regulated, as well 
(Wuerger et al. 2023). In another 2D-study regarding the 
liver proteome in mice after OA exposure, Wang et al. also 
found the deregulated proteins assigned to the lipid metabo-
lism to be down-regulated (Wang et al. 2021). Regarding 
the effect on xenobiotic metabolism, we were already able 
to show a strong down-regulating effect of OA on CYP 
enzymes, which are a very important group of enzymes 
in xenobiotic metabolism, and on their key regulators, the 
transcription factors PXR and RXRα (Wuerger et al. 2022; 
Wuerger et al. 2023). Functionally, this is related to the 
induction of inflammation by OA in liver cells. OA activates 
NF-κB, which then activates the inflammatory response by 
acting as a transcription factor for several proinflammatory 
cytokines (Wuerger et al. 2023). Induction of inflammation 
has been identified to cause changes in xenobiotic metabo-
lism (Keller et al. 2016; Tanner et al. 2018). The induc-
tion of inflammation and a subsequent down-regulation of 
CYP enzymes could be recently verified in HepaRG cells 
by us. We further recently showed an effect on the nuclear 
receptors retinoid X receptor alpha (RXRα) and pregnane 
X receptor (PXR). However, the effect on the constitutive 
androstane receptor (CAR) was not studied (Wuerger et al. 
2023). This study now shows an additional inhibitory prop-
erty of OA on the CAR signaling pathway, which supports 
previous studies (Kawamoto et al. 1999; Yoshinari et al. 
2003; Hosseinpour et al. 2006). Mechanistically, CAR acti-
vation depends on its phosphorylation state and is regulated 
by PP2A (Yoshinari et al. 2003, Shizu et al. 2017, Yokobori 
et al. 2019). Therefore, by inhibiting PP2A, OA might also 
inhibit CAR activation.

The effects of OA on the CYP enzymes and nuclear 
receptors was recently reviewed in detail by us. We were 

able to show that the majority of studies point to an inhibi-
tion of xenobiotic metabolism by OA (Wuerger et al. 2024). 
Evaluation of the top up-regulated pathways of the GO term 
analysis revealed up-regulated cell cycle regulation and, at 
higher concentrations, apoptosis signaling for the transcrip-
tomics data. A similar result regarding the up-regulation of 
apoptotic pathways on the transcriptome level by OA was 
previously described by Fieber et al. They found a stimu-
lation of apoptosis at higher OA concentrations in HepG2 
cells. They further found an up-regulation of genes involved 
in cell cycle regulation, which is congruent with our results 
(Fieber et al. 2012). The upregulation of cell cycle regulation 
on transcriptome level by OA was also observed by Huguet 
et al. in Caco-2 cells (Huguet et al. 2020).

An effect of OA on the cytoskeleton has been described 
before (Berven et al. 2001; Huang et al. 2013; Huang et al. 
2023; Dietrich et al. 2019). This study now provides deeper 
insight into the possible mechanisms involved in depolym-
erization of the polymer F-actin upon OA exposure. As seen 
in clusters 6 and 7 of the proteome analysis, the proteins 
associated with the actin filament organization are mainly 
up-regulated. As mentioned, OA is a potent phosphatase 
inhibitor and therefore able to increase the overall level of 
phosphorylation inside the cells. Therefore, phosphoryla-
tions may play a role in enzyme activity here. The ana-
lyzed phosphoproteins were also clustered according to the 
changes of the phosphorylations over time. Cluster 2 and 3 
of the phosphoproteome include proteins associated with 
actin filament organization and cell–cell junction organiza-
tion, respectively, but only the two proteins, myristoylated 
alanine-rich C-kinase substrate (MARCKS) and WASH 
complex subunit 2A (WASHC2A), were overlapping with 
the proteins associated with the cytoskeleton found regu-
lated in the overall proteome analysis. To understand the 
depolymerization of F-actin observed upon OA exposure, 
many different factors and proteins have to be considered. 
First, actin itself is phosphorylated by P21-activated kinase 
1 (PAK1), a kinase that is up-regulated in this study. This 
phosphorylation of actin can negatively influence the forma-
tion of the polymerized F-actin (Terman and Kashina 2013). 
Furthermore, F-actin is crosslinked by several different pro-
teins that also depend on phosphorylation to exert their func-
tions. One of those proteins is MARCKS, which is local-
ized at the plasma membrane in its unphosphorylated state, 
where it is able to crosslink actin filaments. Upon activation 
by the protein kinase C (PKC), phosphorylated MARCKS 
then translocates into the cytoplasm, where it does no longer 
interact with actin (Fong et al. 2017). MARCKS is a major 
target of PKC (Blackshear 1993), and there is evidence 
that OA is able to prevent MARCKS dephosphorylation by 
inhibiting PP2A (Clarke et al. 1993). Our proteome dataset 
shows a decrease in overall MARCKS protein at the earlier 
timepoints 0.5 and 4 h, but an increase of overall MARCKS 
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protein at 24 h. Furthermore, our phosphoproteome dataset 
also shows an increase of phosphorylated MARCKS depend-
ing on the time. This suggests an activation of MARCKS by 
PKC. However, the KSEA shows only a slight activation of 
the kinase activity of PKCα and β at 0.5 h and a decrease in 
PKCα and β phosphorylation at Thr641 for the other time 
points. The PKC isoforms all autophosphorylate themselves 
at this amino acid in their maturation process, and this phos-
phorylation is essential for PKC activity. Therefore, our 
results suggest an inhibition of PKC by OA. To be able to 
autophosphorylate, PKC has to be phosphorylated at Thr500 
by a kinase called PDK1, which is also down-regulated in 
our DigiWest dataset, suggesting that the inactivation of 
PKC by OA might be due to an inactivation of PDK1 (Shi-
rai and Saito 2002). However, the isoform PKCδ does not 
need the initial phosphorylation to autophosphorylate and be 
active. Furthermore, there is evidence that PKCδ is activated 
by reactive oxygen species (ROS). An increase in ROS upon 
OA exposure was previously reported in several studies, but 
seems to be dependent on the cell type (Túnez et al. 2003; 
Jayaraj et al. 2009; Valdiglesias et al. 2011). As the induc-
tion of ROS was detected as one of the top up-regulated 
pathways of the proteome dataset in the GO term analysis 
of this study, an activation of PKCδ by OA-induced ROS is 
possible. Therefore, because of this PKC isoform, MARCKS 
might be phosphorylated, even though most of the PKC iso-
forms are not activated.

Another important protein for F-actin crosslinking is zyxin 
(Crawford and Beckerle 1991). This protein was found up-
regulated in cluster 7 of the shotgun dataset (Fig. 4), as well as 
in the previous 2D-study (Wuerger et al. 2023). Zyxin binds to 
vasodilator-stimulated phosphoprotein (VASP), a protein that 
is responsible for F-actin bundling and crosslinking (Bach-
mann et al. 1999). By binding to VASP, zyxin can act as a 
regulator of VASP-mediated actin regulation. There are two 
distinct binding sites of VASP to zyxin. While binding to one 
site alone cannot alter VASP activity, binding to both sites 
strongly reduces VASP-mediated actin regulation. This bind-
ing of VASP to zyxin can be regulated by phosphorylation of 
VASP (Grange et al. 2012). Furthermore, phosphorylation of 
VASP can, depending on the localization of the phosphoryla-
tion, alter VASP activity. While a phosphorylation at S157, 
mediated through protein kinase A (PKA), controls subcel-
lular VASP distribution, phosphorylation at S239, mediated 
by protein kinase G (PKG) and to a lesser extent by PKA, and 
T278, mediated by AMP-activated protein kinase (AMPK), 
impair F-actin accumulation (Benz et al. 2009). There is evi-
dence that exposure to OA leads to an activation of PKA by 
inhibiting PP2A (Sidhu and Omiecinski 1997). This activa-
tion in itself leads to an interference with actin polymerization 
(Ohta et al. 1987). Furthermore, OA is also able to activate 
AMPK (Samari et al. 2005), which we can confirm in HepaRG 
cells by our DigiWest dataset, where we see a clear increase 

in phosphorylated AMPK over. As PP2A inhibition also leads 
to AMPK activation (Dai et al. 2017), it can be assumed that 
AMPK activation by OA occurs through PP2A inhibition. This 
points to an inhibition of VASP activity by OA. Given the 
results of this study, the negative effect of OA on actin polym-
erization and crosslinking is mainly due to a dysregulation 
of phosphorylation patterns of the proteins involved in actin 
polymerization, which is a direct result of OA-induced PP2A 
inhibition.

The results obtained for several other proteins can also 
be directly traced back to PP2A inhibition. For exam-
ple S6 kinase (RSK), a protein involved in translation, is 
directly dephosphorylated and thereby deactivated by PP2A 
(Wlodarchak and Xing 2016). This protein was found phos-
phorylated in our DigiWest dataset, while its primary target, 
ribosomal protein S6 (RPS6) (Ruvinsky and Meyuhas 2006), 
was found heavily phosphorylated in the same dataset. Fur-
thermore, OA is a direct regulator of mitogen-activated pro-
tein kinase kinase (MEK) and extracellular-signal regulated 
kinase (ERK), two kinases of the MAPK signaling pathway 
(Millward et al. 1999). MEK1/2 and ERK2 were found phos-
phorylated at the earlier time points in our DigiWest dataset. 
Some proteins are connected to multiple functions within 
the cell. One example is AMPK, a protein that is activated 
by OA through PP2A inhibition (Samari et al. 2005; Dai 
et al. 2017). As already mentioned, AMPK plays a role in 
the destabilization of the cytoskeleton. However, its primary 
function is in energy metabolism. AMPK plays a key role 
in detecting adenosine monophosphate (AMP), which leads 
to AMPK activation and thereby to a regulation of several 
downstream factors to increase adenosine triphosphate 
(ATP) production and control ATP use. This leads to an inhi-
bition of biosynthesis and an up-regulation of processes like 
lipolysis and gluconeogenesis (Herzig and Shaw 2018). As 
already mentioned, one of the top-down-regulated pathways 
of the GO term enrichment analysis of the transcriptome and 
proteome datasets is lipid metabolism. While some proteins 
that are part of lipid metabolism are indeed down-regulated, 
others show an up-regulation. Examples include acetyl-
coenzyme A acyltransferase 1 (ACAA1) and peroxisomal 
acyl-coenzyme A oxidase 1 (ACOX1). However, those two 
are part of the peroxisomal β-oxidation, which is a process 
activated by AMPK (Herzig and Shaw 2018). We thereby 
hypothesize that the activation of AMPK by OA plays a key 
role in the observed alterations of lipid metabolism-related 
proteins.

Conclusion

Overall, this study is the first of its kind to comprehensively 
decipher metabolic and signaling changes in human liver 
cells after exposure to OA, using a multi-omics approach. 
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The results confirm the previous results regarding the down-
regulation of xenobiotic metabolism by OA (Wuerger et al. 
2022) and the negative effects on cytoskeleton polymeriza-
tion (Dietrich et al. 2019). More importantly, however, they 
substantially expand our understanding of the underlying 
effects of these outcomes. In line with the phosphatase-
inhibiting properties of OA, many observed effects include 
changes in the phosphorylation pattern of different proteins. 
This study now directly connects many of the previously 
observed effects by OA to its property to inhibit PP2A. It 
furthermore provides, for the first time, a multi-omics analy-
sis of the effects of OA on human liver cells, revealing tran-
scriptomic effects of OA, which had not been reported so far.
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