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Abstract
Childhood interstitial lung disease (chILD) is a large and heterogeneous group of disorders characterized by diffuse lung 
parenchymal markings on chest imaging and clinical signs such as dyspnea and hypoxemia from functional impairment. 
While some children already present in the neonatal period with interstitial lung disease (ILD), others develop ILD during 
their childhood and adolescence. A timely and accurate diagnosis is essential to gauge treatment and improve prognosis. 
Supportive care can reduce symptoms and positively influence patients' quality of life; however, there is no cure for many 
of the chILDs. Current therapeutic options include anti-inflammatory or immunosuppressive drugs. Due to the rarity of 
the conditions and paucity of research in this field, most treatments are empirical and based on case series, and less than a 
handful of small, randomized trials have been conducted thus far. A trial on hydroxychloroquine yielded good safety but a 
much smaller effect size than anticipated. A trial in fibrotic disease with the multitargeted tyrosine kinase inhibitor nintedanib 
showed similar pharmacokinetics and safety as in adults. The unmet need for the treatment of chILDs remains high. This 
article summarizes current treatments and explores potential therapeutic options for patients suffering from chILD.

Key Points 

No specific therapy is approved yet for childhood inter-
stitial lung disease (chILD).

Improved understanding of disease pathogenesis is 
instrumental to the development of novel therapies.

The disease course is highly heterogeneous, and when 
treatment is required, immunosuppressive and anti-
inflammatory drugs are often the first-line therapies.

Multi-stakeholder collaboration is key to develop novel 
drugs and move the field of chILD forward.

1  Introduction

The term childhood interstitial lung disease (chILD) was 
coined to collect a large and heterogeneous group of rare 
and ultra-rare entities manifesting during childhood. Despite 
being uncommon, the burden of chILD is high for both car-
egivers and the health system [1, 2]. Indeed, chILD has a 
high morbidity and mortality rate, and a global prevalence 
of 1.6–46 per million [3–6]. Interstitial lung disease (ILD) 
in children is approximately ten times rarer and, at the same 
time, 100 times less studied and published than adult ILD 
[7]. The diagnosis of chILD should be suspected if at least 
three of the following four elements are present for more 
than 4 weeks in the absence of a respiratory tract infection: 
(1) symptoms like exercise intolerance, tachypnea, (dry) 
cough; (2) respiratory signs including dyspnea, crackles on 
lung auscultation, failure to thrive; (3) respiratory insuffi-
ciency with hypoxia/low oxygen saturation; and (4) diffuse 
parenchymal lung abnormalities on chest computed tomog-
raphy (CT) scan or chest X-ray [8].

When chILD is suspected, a detailed anamnesis and 
family history (with emphasis on siblings/relatives with a 
history of ILD or early death from lung disease), clinical 
examination searching for potential rheumatological, immu-
nological, or dermatological manifestations, and a chest 
X-ray should be performed, before referring the patient to 
an expert center. Additional clinical signs may include wall 
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deformity or pectus excavatum (for example, in patients with 
surfactant disorders), or digital clubbing.

As with adult ILD, the diagnostic algorithm includes 
non-invasive (i.e., pulmonary function tests, assessment of 
ventilation and oxygenation, and chest imaging) and invasive 
procedures (i.e., bronchoscopy, and lung biopsy). Moreover, 
genetic testing has been implemented in most expert cent-
ers, thus improving diagnostic accuracy and reducing the 
need for invasive diagnostic modalities. Despite consider-
able progress in recent years, disease pathogenesis remains 
unknown in many of the chILDs, making the development 
of efficacious treatments challenging [9, 10]. Moreover, the 
rarity of each condition and the fact that patients are often 
living in geographically dispersed areas represent additional 
important hurdles when planning clinical trials among many 
other obstacles [11]. In this regard, the importance of col-
laboration among expert centers with the aim of establishing 
patient registries and databases cannot be overemphasized 
[12]. In this review, we explore the landscape of pharmaco-
logical treatment of chILD.

2 � ChILD Classification

Although the term chILD has the advantage of allowing easy 
communication and is popular, it has several disadvantages, 
including lumping together many conditions with com-
pletely different presentations, treatments, and outcomes, 
even including conditions involving the lung interstitium 
only indirectly or very mildly, like in patients with persis-
tent tachypnea of infancy [13]. Thus, the need for a simple 
classification system emerged over the years. In 2004, a 
task force conducted by the European Respiratory Society, 
which included respiratory physicians and basic scientists, 
reviewed 185 cases of chILD and classified them with a sys-
tem similar to that used for adult disease [14]. A few years 
later, a new classification scheme based on lung histology 
was proposed for ILD in children < 2 years of age [15, 16]. 
This classification system was later extended to all pediat-
ric age groups [17]. Recently, an etiological classification 
system combining pediatric and adult lung ILD in a single 
system was proposed [18]. The system differentiates four 
main categories, i.e., lung‐only (native parenchymal) dis-
orders, systemic disease‐related disorders, exposure-related 
disorders, and vascular disorders. Of particular importance 
are those conditions closely linked to lung development and 
thus representing the majority of “typical” chILD, such as 
those in children not surviving into adulthood, those infre-
quently diagnosed at adult age, and those that transition 
into adulthood, as is now being seen more and more [19]. 
They include “Diffuse developmental disorders (A1),” usu-
ally resulting in death within the neonatal period; “Growth 
abnormalities with deficient alveolarization (A2),” such as 

lung hypoplasia, chronic lung disease of prematurity (bron-
chopulmonary dysplasia [BPD]), and others with a some-
what better prognosis; and “Infant conditions of undefined 
etiology (A3),” comprising the overall most frequent diag-
noses in these children, i.e., neuroendocrine cell hyperplasia 
of infancy (NEHI) (or more correctly labeled as persistent 
tachypnoea of infancy [PTI]) [13, 20, 21]. Lastly, “ILD 
related to the alveolar surfactant region (A4)” includes sur-
factant dysfunction disorders [22] and pulmonary alveolar 
proteinosis (PAP) [23]. Patients with the latter diagnosis 
now often reach adulthood or are diagnosed at adult age 
[24–26]. Many other conditions, in particular “ILD related 
to systemic disease processes (B1),” with examples like sar-
coidosis [27] and connective tissue diseases [28], are ILDs 
with increasing frequency in adulthood.

Recently, the Children's Interstitial and Diffuse Lung Dis-
ease Research Network (chILDRN) published data regard-
ing a prospective registry including 683 individuals enrolled 
from different centers in the United States. NEHI was the 
most frequent diagnosis (23%), the second being ILD associ-
ated with connective tissue or immune‐mediated disorders 
(16.5%). Notably, 11% of cases of chILD remained “unclas-
sified” (Table 1) [29].

3 � Genetic Background

Despite intrinsic peculiarities, chILDs often share similar 
clinical and radiological manifestations and may be difficult 
to differentiate from one another. Genetic testing can iden-
tify disease-causing mutations, thus reducing the need for 
invasive diagnostic procedures (Table 2) [30]. The number 
of genetic etiologies identified as causes of ILD in children 
continues to grow and includes genes involved in surfactant 
production (SFTPB, SFTPC, ABCA3, and NKX2-1) [31–35] 
and catabolism (CSF2RA and CSF2RB) [36, 37], immune 
regulation (COPA) [38, 39], and lung development (FLNA 
and TBX4, among others) [40, 41]. Some chILDs are asso-
ciated with high mortality, whereas others have a favorable 
outcome. For instance, surfactant protein B (SP-B) defi-
ciency has the worst prognosis, whereas variants within 
SFTPC may lead to a range of phenotypes and prognoses 
(Fig. 1) [42]. On the contrary, most but not all children with 
PTI/NEHI tend to experience a favorable prognosis; there-
fore, a limited follow-up to 10 or 15 years of age needs to 
be considered [43].

4 � Current Therapeutic Options for ChILD

Corticosteroids, hydroxychloroquine, and azithromycin are 
the most common pharmacological treatments for patients 
with chILD [44]. Less frequently used medications include 
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azathioprine, cyclophosphamide, and colchicine [45]. Acute 
exacerbations in chILD were treated with β-lactam antibi-
otics (54%), systemic glucocorticosteroids (25%), inhaled 
bronchodilators (24%), or macrolides (19%) [46].

Intravenous pulse methylprednisolone (10–30 mg/kg) is 
used in critical patients or those needing ventilation [47]. 
Chronic treatments with oral glucocorticosteroids in children 
are done rarely, and the frequency and (potential) severity 
of side effects of corticosteroids must always be considered 
[48]. Consequently, close clinical monitoring is mandatory, 
including bone density, periodic complete blood count, and 
growth measurements [49].

Hydroxychloroquine is an antimalarial drug used in sev-
eral autoimmune diseases, including arthritis [50]; histori-
cally, it has been used also in some chILDs, although its 
role in this disease remains controversial. Between 1984 
and 2013, 85 case reports and small case series reported 
on children with different forms of ILD who were treated 
with chloroquine or hydroxychloroquine. In 35 cases, the 
effect was beneficial, while in the remaining, the results were 

Table 1   Distribution of chILD diagnoses and subgroups [29]

ChILD childhood interstitial lung disease, ILD interstitial lung dis-
ease, NEHI neuroendocrine cell hyperplasia of infancy, PAP pulmo-
nary alveolar proteinosis

Diagnosis/categories Percentage 
of patients

NEHI 23%
Connective tissue disease-related/immunomediated
 Systemic juvenile idiopathic arthritis
 Systemic sclerosis
 Systemic lupus erythematosus
 Other

16.5%

Surfactant dysfunction 12%
Bronchiolitis obliterans 11%
Alveolar hemorrhage 9.2%
Alveolar growth disorders 4.8%
Others (including PAP, environmental/toxic/drug-

related, pulmonary interstitial glycogenosis)
13%

Unclassifiable ILD 11%

Table 2   Overview of genes involved in chILD

AD autosomal dominant, AR autosomal recessive, ATP adenosine triphosphate, chILD childhood interstitial lung disease, ILD interstitial lung 
disease, NK natural killer

Gene Position Inheritance Clinical presentation Treatment

Surfactant protein disorders
SFTPB Surfactant protein B 2p11.2 AR Neonatal respiratory distress, 

poor prognosis
Symptomatic; lung transplanta-

tion
SFTPC Surfactant protein C 8p21.3 AD Variable presentation Corticosteroids and hydroxy-

chloroquine; lung transplanta-
tion

ABCA3 ATP-binding cassette-family A 
member 3

16p13.3 AR Neonatal and poor prognosis or 
late presentation with good 
prognosis

Hydroxychloroquine; azithromy-
cin; lung transplantation

Pulmonary alveolar proteinosis
CSF2RA Colony stimulating factor 2 

receptor alpha
Xp22.32 X-linked Infancy or adult presentation Whole lung lavage

CSF2RB Colony stimulating factor 2 
receptor beta

22q12.3 AR Infancy or adult presentation Whole lung lavage

MARS Methionyl–transfer RNA syn-
thetase

12q13.3 AR ILD, anemia, hypothyroidism Symptomatic; whole lung lavage

General disorders
COPA Coatomer associate protein 

subunit alpha
1q23.2 AD ILD or hemorrhage, inflamma-

tory arthritis
Janus kinase inhibitors; lung 

transplantation
NKX2-1 NK2 homeobox 1 14q13.3 AD Congenital hypothyroidism, 

chorea and lung disease
Symptomatic; lung transplanta-

tion
FLNA Filamin A Xq28 X-linked recessive Severe manifestations and res-

piratory failure
Symptomatic; lung transplanta-

tion
TBX4 T-box transcription factor4 17q23.2 AD Acinar dysplasia and pulmonary 

hypertension
Lung transplantation
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unsatisfactory or inconclusive [51]. Hydroxychloroquine is 
generally safe, but its chronic use may be associated with 
visual loss, making regular visual assessment mandatory 
[52]. The effect of hydroxychloroquine in patients with 
chILD has been recently evaluated in a phase 2a, rand-
omized, double-blind, placebo-controlled, multinational 
study [53, 54]. The primary endpoint of presence or absence 
of response to treatment as assessed by oxygenation (cal-
culated from a change in transcutaneous O2 saturation of 
≥ 5%, respiratory rate ≥ 20%, or level of respiratory sup-
port) did not differ between hydroxychloroquine and pla-
cebo. Acknowledging major limitations such as the small 
study population (n = 26), the heterogeneity of included 
patients, the treatment duration (12 weeks followed by an 
open observation period of 12 weeks), and the lack of lung 
function data below the age of 6 years, the authors warned 
that prescription of hydroxychloroquine in daily practice 
needs to be reassessed. It is very likely that the beneficial 
effect of hydroxychloroquine is mutation specific, particu-
larly in ABCA3 deficiency [55].

Azithromycin is an anti-inflammatory and immunomodu-
latory antibiotic that is used in a range of respiratory dis-
eases; however, the evidence favoring its utility in chILD is 
limited to less than a handful of case reports [56]. Although 
widely used, no clinical trial of azithromycin has been con-
ducted in chILD, and its role remains marginal and empiri-
cal; the potential risk of microbial resistance to azithromycin 
should also be considered [57]. Although prospective data 
are needed, several case reports have reported improvements 
of adult ILD associated with ABCA3 deficiency following 
azithromycin treatment, suggesting a possible benefit to be 
evaluated in selected chILDs [24, 58].

Whole lung lavage (WLL) is the standard treatment in 
PAP, but this procedure is available only in specialized 
centers. Indeed, special techniques are necessary in infants, 
due to the small airway dimensions [59–61]. In addition, 
although safe and efficacious, WLL is invasive and time-
consuming [62].

Specific therapies with a mechanistically plausible role 
exist, but they are applicable only in a minority of conditions 

(biologics [i.e., rituximab], immunomodulatory therapies in 
connective tissue disorders, or stem cell transplant in alveo-
lar proteinosis) [63, 64].

5 � Non‑pharmacological Treatments

Supportive care is similarly important for children with ILD. 
As with adult disease, chILD patients with gas exchange 
impairment may benefit from supplemental oxygen, whereas 
children with severe respiratory failure may benefit from 
invasive or non-invasive ventilation [65]. Patients with 
chILD may display poor somatic growth, thus needing spe-
cific nutritional support. Lessons learned from BPD and 
cystic fibrosis (CF) suggest that growth should be closely 
monitored also in patients with chILD.

Similar to adult ILD patients, preventing further dam-
age to the lung is critically important. Pneumonia and 
other infections impart an important morbidity and mor-
tality burden on children with ILD. Therefore, vaccination 
(pneumococcal and annual influenza), avoidance of harmful 
environmental exposures (such as second-hand smoke), and 
appropriate personal hygiene (both for children and caregiv-
ers) are strongly recommended [16].

Gastroesophageal reflux disease (GERD), a common 
comorbidity in adult ILD patients, has been investigated 
also in chILD. In a study by Dziekiewicz and colleagues, 
the prevalence of GERD among children with ILD (n = 18) 
aged 0.2–11.6 years was 50% [66].

Lung transplantation is rarely indicated but has been suc-
cessfully performed in cases of SP-B and SP-C deficiency, in 
patients carrying variants within ABCA3 and NKX2-1, and 
in children with chronic pneumonitis of infancy. In compari-
son with adolescents, children are more often transplanted 
for ILD and precapillary pulmonary hypertension than for 
respiratory diseases, but with a similar in-hospital mortality 
[67]. A single-lobe lung transplantation has been success-
fully performed from a living donor to a patient with ABCA3 
disorder [68].

Fig. 1   Seventeen-year-old girl 
with SP-C deficiency and inter-
stitial lung disease. CT scans 
show extensive ground glass 
opacity and traction bronchiec-
tasis throughout both lungs. CT 
computed tomography, SP-C 
surfactant protein C
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6 � Treatment of Specific Conditions

To date, there is no therapy specifically approved for chILD. 
However, in 2015, the chILD-EU collaboration created 
standard operating procedures and protocols for a staged 
investigation of chILD. In addition, participating centers 
across Europe developed a Delphi consensus process with 
the aim of harmonizing treatment protocols such as the use 
of intravenous and oral corticosteroids, and add-on therapies 
such as hydroxychloroquine and azithromycin [17]. Thus, 
the development of efficacious and well-tolerated drugs 
is a particularly urgent need [69]. Because of the rarity of 
these diseases, many barriers exist to drug development for 
chILD, including the low economic benefits for the pharma 
industry and limited funding for researchers. Yet, the burden 
of chILD on the healthcare system is very high [1]. At pre-
sent, the management of patients with chILD largely relies 
on case series investigating the effect of anti-inflammatory 
and immunomodulatory drugs to prevent the development 
of lung fibrosis. In this regard, most of the drugs used for 
chILD derive from the treatment of adult disease [70].

6.1 � Fibrosing ILD

Two drugs with pleiotropic antifibrotic effects (pirfenidone 
and nintedanib) can reduce the rate of functional decline—as 
assessed by forced vital capacity (FVC)—and disease pro-
gression in adult patients with idiopathic pulmonary fibrosis 
(IPF) [71, 72] and ILD that progress despite appropriate 
treatment (nintedanib) [73]. The similarities between child-
hood and adult diseases provided the rationale for assess-
ing the efficacy of antifibrotic drugs approved for adult 
diseases also in chILD. In a recent phase 2, double-blind, 
randomized, placebo-controlled trial (NCT04093024—
InPedILD trial) [74], 39 patients aged 6–17 years with 
fibrosing ILD on chest CT and clinically significant disease 
were randomized 2:1 to receive nintedanib (n = 26) or pla-
cebo (n = 13) for 24 weeks. Co-primary endpoints were the 
area under the plasma concentration–time curve at steady 
state at weeks 2 and 26 and the proportion of patients with 
treatment-emergent adverse events at week 24. Two patients 
(7.7%) discontinued nintedanib because of adverse events. 
As with adult patients, diarrhea was the most frequent 
adverse event associated with nintedanib, being reported in 
38.5% of cases (compared to 15.4% in the placebo group). 
Mean change in FVC % predicted at week 24 was 0.3% in 
the nintedanib group versus −0.9% in the placebo group. A 
stabilization of peripheral oxygen saturation (SpO2) at rest 
over 24 weeks in the nintedanib group was also observed; 
both results were not statistically significant, although the 
study was not powered to assess efficacy. Overall, in children 
and adolescent with fibrosing ILD, a weight-based regimen 

resulted in exposure to nintedanib similar to adult patients, 
with an acceptable safety and tolerability profile. An open-
label extension to assess long-term safety and tolerability of 
nintedanib in children and adolescents with ILD is currently 
recruiting (NCT05285982) [75].

6.2 � Telomere‑Related Diseases

Similar to adult disease, short telomeres and variations in 
telomere-related genes can manifest as ILD also in chil-
dren [76, 77]. A phase 1/2 study has shown that danazol, 
a synthetic sex hormone with androgenic properties, leads 
to telomere elongation in patients with telomere diseases 
(NCT01441037) [78]. A multicenter, phase 2, double-blind, 
placebo-control trial that is currently ongoing will assess the 
safety and efficacy of danazol (in combination with stand-
ard of care) in adults and pediatric patients with pulmo-
nary fibrosis associated with short telomeres. With regard 
to the pediatric population (age < 16 years), enrollment in 
the trial is limited to patients with a diagnosis of dyskerato-
sis congenita who will receive danazol 2 mg/kg/day, while 
adult patients will receive a dosage of 4 mg/kg/day (TELO-
SCOPE—NCT04638517) [79]. The primary endpoint is the 
annual change in absolute telomere length from baseline. 
The efficacy of danazol is also investigated in the French 
ANDROTELO study (NCT03710356). The results should 
be available soon, but without the chILD population.

6.3 � Disorders of Surfactant Dysfunction

Ivacaftor and genistein, two drugs approved for CF, have 
been evaluated as potential treatments in patients carrying 
ABCA3 variants, the rationale being that the ABCA3 gene 
has some degree of homology with CFTR, with the cystic 
fibrosis transmembrane conductance regulator (CFTR) also 
being an ABC transporter (Fig. 2). In CF, both ivacaftor and 
genistein increase CFTR channel opening, which translates 
to several beneficial effects, including lung function, sur-
factant function, weight gain, and fertility. Disorders related 
to ABCA3 dysfunction lead to respiratory distress syndrome, 
early death, and chronic ILD in children and adults [24]. 
Kinting and colleagues have shown that disease-causing 
misfolding ABCA3 variants can be rescued in vitro by the 
bithiazole correctors C13 and C17 as well as by the chemi-
cal chaperone trimethylamine N-oxide and low temperature 
[80]. Moreover, in A549 cells expressing ABCA3 variants, 
the same authors demonstrated that ivacaftor and genistein 
can rescue variants N568D, F629L, and G667R [81]. These 
observations make CFTR potentiators a potential therapeu-
tic option for patients suffering from surfactant deficiency 
caused by ABCA3 variants. Other genes involved in sur-
factant production include SFTPA, SFTPB, and SFTPC, with 
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variants within these genes leading to abnormal surfactant 
production and clearance [82]. Cyclosporine A (CsA), a 
calcineurin inhibitor, has recently been suggested as a new 
potential candidate for ABCA3-specific molecular correc-
tion using high-content screening [83] and was used in asso-
ciation with pirfenidone in a child suffering from systemic 
lupus erythematosus ILD. An improvement in symptoms, 
pulmonary function, and chest CT images was observed 
after 2 years of treatment [84]. Granulocyte-macrophage 
colony-stimulating factor (GM-CSF) is a cytokine with a key 
role in surfactant physiology, and GM-CSF−/− mice display 
defective clearance of surfactant by alveolar macrophages, 
leading to PAP [85]. The safety and efficacy of inhaled sar-
gramostim, a recombinant human GM-CSF, were assessed 
in children with hereditary PAP caused by bi-allelic variants 
in CSF2RA or CSF2RB (NCT01511068). However, the study 
was prematurely discontinued because of slow recruitment. 
The effect of inhaled sargramostim in patients with PAP 
was also assessed in a phase 2, multicenter, randomized, 
double-blind, placebo-controlled trial conducted in Japan 
(NCT02835742). The study enrolled 64 patients, including 
patients aged 16–18 years [86]. The frequency and severity 
of the adverse events did not differ significantly between 
the sargramostim and placebo groups. The mean change in 
the alveolar–arterial oxygen gradient between baseline and 
week 25, the primary endpoint, was significantly better in 
the GM-CSF group than in the placebo group (− 4.50 ± 9.03 
mmHg vs. 0.17 ± 10.50 mmHg; p = 0.02). However, inhaled 
GM-CSF provided no clinical benefits. On the other hand, in 
a more recent double-blind, placebo-controlled trial in adult 
patients with autoimmune PAP, molgramostim (an Escheri-
chia coli-produced recombinant GM-CSF formulated as 
a nebulizer solution) resulted in greater improvements in 
pulmonary gas transfer and functional health status than 
placebo, with similar rates of adverse events [87]. Inhaled 
GM-CSF has also been used in pediatric patients with auto-
immune PAP, among other treatments [88].

Following anecdotal case reports [89, 90], methionine 
has recently been evaluated in patients with PAP carrying 
pathogenic variants within MARS (NCT03887169) [91]. 

MARS encodes the methionyl–transfer RNA synthetase 
(MetRS), and the addition of methionine to the culture 
medium restores MetRS function in mutated yeast [92]. 
The study enrolled four children who were evaluated for 
respiratory, hepatic, and inflammation-related outcomes. 
For all patients, methionine supplementation was associ-
ated with respiratory improvement, reduced liver dysfunc-
tion, and reduced need for WLL. While encouraging, these 
data need to be validated in prospectively enrolled, larger 
populations of patients.

6.4 � SAVI and COPA Disorders

STING-associated vasculopathy with onset in infancy 
(SAVI) is a genetic autoinflammatory disease secondary to 
perpetual STING (STimulator of INterferon Genes) activa-
tion. The disease, which is characterized by small vessel 
inflammation, generally has a neonatal or infantile-onset 
[93]. Recently, a phase 2/3 multicenter, open-label study 
(NCT04517253) [94] investigated the role of baricitinib, 
a Janus kinase (JAK)-1/2 inhibitor, in adult and pediatric 
Japanese patients with SAVI and other diseases, such as 
Nakajo–Nishimura syndrome (NNS) and Aicardi-Goutières 
syndrome (AGS). Nine patients were enrolled, including 
three with SAVI. At the end of the maintenance period (52 
weeks), all patients experienced an improvement in their 
symptoms, and one patient reported a serious drug-related 
adverse event. COPA syndrome is a rare, genetic autoim-
mune disorder that is caused by dysfunctional coatomer 
associate protein subunit alpha (COPα), a protein that func-
tions in the retrograde transport from the Golgi to the endo-
plasmic reticulum [39]. COPA syndrome can affect multiple 
organs, especially the lungs, joints, and kidneys [39]. Recent 
data have linked COPA mutations to STING-dependent 
interferon signaling. The JAK inhibitors baricitinib and rux-
olitinib have recently been suggested as promising therapeu-
tic options for patients with COPA syndrome, but additional 
data are needed to corroborate these preliminary findings 
[95–97].

Fig. 2   Seven-year-old boy 
ABCA3-related interstitial lung 
disease. CT scans show bilateral 
ground glass opacity. CT com-
puted tomography
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7 � Emerging Therapies

7.1 � Gene Transfer Therapies

Gene transfer may allow the application of recent advances 
in molecular biology to clinical practice [98]. Synthetic gene 
transfer vectors have been tested in experimental models both 
in vitro and in vivo in patients with chILDs, including those 
related to dysfunctional SFTPC, SFTPB, and ABCA3. Viral 
vectors (i.e., retroviral vectors, lentiviral vectors, adeno-
associated viral [AAV] vectors, or adenoviral [Ad]-based 
vectors) have shown great potential in gene modulation, par-
ticularly for SP-B deficiency [99–101]. Nuclease-encoding, 
chemically modified mRNA is able to deliver site-specific 
nucleases in a mouse model of SP-B deficiency and improve 
survival of the animals. Kang and co-workers have recently 
shown that an AAV vector can restore surfactant activity and 
improve survival in SP-B knockout mice [102]. However, 
the development of a delivery vector requires knowledge 
of the precise disease target(s), transgene expression, and 
vector design. For instance, Ad-based vectors provide robust 
expression and a relatively large carrying capacity (~ 10 kb). 
Conversely, lentiviral vectors have a packaging capacity of 
at least 7.5 kb. Moreover, Ad-based vectors transduce both 
dividing and non-dividing cells with good tissue tropism and 
flexibility. Viral vectors have been evaluated in a range of 
diseases, including hereditary PAP with CSF2RA mutations. 
Hetzel and colleagues have shown that a lentiviral vector 
was able to induce Csf2ra complementary DNA (cDNA) 
expression in Csf2ra−/− macrophages, leading to restoration 
of GM-CSF signaling in hereditary PAP macrophages. The 
lentiviral vector had no adverse effects in the intended target 
cells, supporting testing lentivirus-mediated gene transfer 
therapy in hereditary PAP in humans [103].

7.2 � Mesenchymal Stromal Cells

Cell therapy has fueled significant interest as a treatment 
for a range of respiratory diseases. Due to their low immu-
nogenicity, easy isolation, and fleet differentiation in mul-
tiple lineages, mesenchymal stem cells (MSCs) are attrac-
tive therapeutic strategies also for chILD [104]. MSCs can 
be easily obtained from various fonts, including amniotic 
fluid, bone marrow, skeletal muscle, spleen, and lung. Pre-
vious studies in vitro and in vivo have explored the abil-
ity of MSCs to differentiate into alveolar epithelial cells, 
with the aim of assessing their potential utility in human 
lung disease [105]. Ahn and colleagues [106] conducted a 
phase 2, double-blind, placebo-controlled trial to assess the 
efficacy of intratracheal transplantation of human umbilical 
cord blood-derived MSCs (hUC-MSCs) (NCT01828957) 
in patients with BPD, a chronic lung disease limited to 

infants, typically caused by prolonged ventilation [107]. The 
study enrolled 66 premature infants aged between 23 and 
28 gestational weeks. After 1 week, hUCB-MSC therapy 
significantly reduced the levels of several pro-inflammatory 
cytokines (i.e., interleukin [IL]-1, IL-6, IL-8, tumor necrosis 
factor [TNF]α, and matrix metallopeptidase [MMP]-9) in 
the tracheal aspirate fluid compared to placebo. However, the 
primary outcomes of survival and disease progression were 
not significantly improved by MSC transplantation. Based 
on a subgroup analysis suggesting that the secondary out-
come of severe BPD was significantly improved in the 23–24 
gestational week group, a larger phase 2 study is under-
way, focusing on infants in this age range (NCT03392467 
– PNEUMOSTEM). Several clinical trials are currently 
evaluating the safety and efficacy of MSCs in BPD (Clini-
calTrials.gov). MSCs are administered either intratracheally 
or intravenously. Induced pluripotent stem cells have been 
used in a mouse model of PAP induced by CSF2RB defi-
ciency [108]. In addition, Wu and colleagues have shown 
that hUC-MSCs combined with low-dose pirfenidone reduce 
bleomycin-induced pulmonary fibrosis in mice more than 
the two therapies individually [109]. As with other thera-
peutic approaches, the safety and efficacy of MSCs in chILD 
need to be validated in larger studies.

7.3 � Future Perspectives

In the past few years, genetic testing and whole genome 
sequencing (WGS) have increased both our ability to diag-
nose chILD and our understanding of disease pathobiology 
[110]. New insights have also emerged regarding disease-
associated biomarkers. For example, unique protein signa-
tures are shown in the bronchoalveolar lavage fluid (BALF) 
of NEHI patients and in other surfactant disorders [111]. 
Moreover, a number of blood biomarkers deeply investi-
gated in adult ILD, including mucin-5B (MUC-5B) and 
Krebs von den Lungen-6 (KL-6), could also be useful in 
chILD to predict the risk of disease development and pro-
gression [112, 113]. However, research focused on gene-
to-protein translation is also needed. Because of the limited 
availability of human lung tissue (especially in children) 
and with animal models of lung fibrosis recapitulating only 
partially the complexity of human disease, lung “organoids” 
of varying cellular components have recently emerged as 
novel strategies to model, among other organs, the lung 
and airway [114]. Organoids are promising tools for study-
ing complex cellular interactions, thus mimicking disease 
environments; indeed, they arise from colonies generated 
by single cells and maintain the genomic profile of the par-
ent tissue. However, current organoid models cannot repro-
duce in toto the physiological repertoire of their respective 
organs [114].
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8 � Conclusion

The interest in childhood ILD has increased substantially in 
recent years, fueled mainly by genetic discoveries and the 
development of large national and international registries 
collecting rare and ultra-rare cases (Europe: chILD-EU; 
France: Respirare; USA: children; Australia: chILDRN). 
These consortia have also disseminated new knowledge 
on the management of these diseases and have improved 
the care for these children. Controlled studies of accepted 
but unproven treatments and novel treatments are urgently 
needed. To this end, participation of children in adult drug 
evaluation programs, the obligate implementation of pedi-
atric investigational plans for all drugs introduced in adults, 
and the set-up of trials for conditions mainly prevalent in 
pediatrics must be realized. Continuing the build-up of inter-
national collaborations between expert centers and large 
databases of phenotypically well-defined patients is instru-
mental to any progress in these rare conditions.
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