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Abstract
Accurate and timely reporting of adverse events (AEs) in clinical trials is crucial to ensuring data integrity and patient 
safety. However, AE under-reporting remains a challenge, often highlighted in Good Clinical Practice (GCP) audits and 
inspections. Traditional detection methods, such as on-site investigator audits via manual source data verification (SDV), 
have limitations. Addressing this, the open-source R package {simaerep} was developed to facilitate rapid, comprehensive, 
and near-real-time detection of AE under-reporting at each clinical trial site. This package leverages patient-level AE and 
visit data for its analyses. To validate its efficacy, three member companies from the Inter coMPany quALity Analytics 
(IMPALA) consortium independently assessed the package. Results showed that {simaerep} consistently and effectively 
identified AE under-reporting across all three companies, particularly when there were significant differences in AE rates 
between compliant and non-compliant sites. Furthermore, {simaerep}’s detection rates surpassed heuristic methods, and 
it identified 50% of all detectable sites as early as 25% into the designated study duration. The open-source package can be 
embedded into audits to enable fast, holistic, and repeatable quality oversight of clinical trials.

Keywords  Quality assurance · Open-source · Analytics · GCP · Validation · Transparency

Background

Adverse Events in Quality Assurance of Clinical Trials

The quality of clinical trial data is crucial to ensure patient 
safety and compliance to Good Clinical Practices, GCP [1, 
2]. Adverse events (AEs) are collected during clinical trials 

to assess the drug’s safety profile, and therefore it is critical 
that AEs are reported timely to the sponsor. Detecting qual-
ity risks related to AE under-reporting is a key component 
of quality assurance (QA) oversight of clinical trials [1–3]. 
Inadequate reporting of adverse events (AEs) from investiga-
tor sites is one of the GCP inspection findings [4–6]. In some 
cases, AE under-reporting has caused delays in regulatory 
submissions or the non-approval of new drugs [6, 7]. Cur-
rent clinical QA practices heavily rely on on-site audits to 
identify issues, including AE under-reporting. However, the 
increasing number of trials and sites, as well as the complex-
ity of study designs, makes it difficult to detect AE under-
reporting. Current site monitoring strategies, such as on-site 
source data verification (SDV) and risk-based approaches, 
attempt to address this issue [8]. Nevertheless, AE under-
reporting remains a common finding during audits and 
inspections [4, 5]. Over the last few years, the industry has 
been exploring modern developments in data management 
and IT systems to facilitate cross-analysis of clinical stud-
ies [9, 10]. In this analytical report, we aim to focus on the 
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validation and reproducibility of an open-source analytics 
package that could be used across the ecosystem to tackle 
the issue of AE under-reporting.

Bootstrap Resampling Algorithm

The bootstrap resampling open-source R package 
{simaerep} was initially developed and deployed within 
one of the member companies [11, 12]. The open-source 
code was publicly shared and reviewed by IMPALA 
members. Based on the reviews, new features were 
collaboratively added and version 0.4.3 is currently 
available on CRAN [13]. Its algorithm employs a 
resampling methodology to predict AE under-reporting 
at clinical trial sites. The method assumes that all patients 
follow the same visit schedule and that the probability for 
having an AE at a specific visit is the same for all patients. 
It reshuffles patients between sites of one study and then 
experimentally determines how often any observed AE 
reporting behavior randomly occurs. It requires only AE 
and subject visit data of the study of interest and does not 
need any specific AE, site, or subject characteristics apart 
from the cumulative AE and visit counts on the study and 
site levels. As patients join the trial at different calendar 
times, not all of them will be under observation for the 
same duration. To include as many patients covering the 
same reasonably high visit count, we determine a site-
specific evaluation point by determining the median of 
all maximum consecutive visit counts of all patients 
multiplied by 0.75 (visit_med75). All patients that have 
not reached the visit_med75 will be excluded from the 
evaluation. While patients are progressing in the study, 
the visit_med75 will increase and finally 100% of all 
patients completing the study will be included. Then the 
average number of AEs per patient at the visit_med75 at 
site is calculated and it is then measured how often we can 
experimentally obtain a value that is equal or lower if we 
reassign random patients from the study pool to that site. 
To control for multiplicity, the resulting probabilities can 
be corrected using the Benjamini–Hochberg method [14].

This method is non-parametric and does not require 
any assumptions about the statistical distribution of 
occurrences of adverse events. But it makes the strong 
assumption that all sites have access to the same patient 
pool (of all patients in the study), which is not necessarily 
realistic as it has already been demonstrated that sites from 
central and eastern Europe may report on average a lower 
number of AEs [11].

IMPALA: Cross‑Industry Implementation

The IMPALA (Inter coMPany quALity Analytics) group 
was formed in July 2019 and launched as a non-profit 
consortium in October 2022 [15, 16]. One of its goals is 
to address the limitations of traditional QA approaches 
by co-developing advanced analytics and best practices 
that can help detect and mitigate issues faster, reduce the 
burden of retrospective, time-consuming traditional QA 
activities, and ultimately accelerate approval and patient 
access to innovative drugs [15, 16].

Three pharmaceutical sponsor companies which are 
members of IMPALA (Roche, Merck Sharp & Dohme 
LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, 
USA, Boehringer Ingelheim) tested and then implemented 
the {simaerep} open-source package in order to evaluate 
its suitability for broader adoption, i.e., by multiple 
sponsors but also by health authorities’ inspection teams.

Methods

IMPALA members had been tasked to independently 
evaluate the usage of the {simaerep} algorithm for the 
detection of AE under-reporting sites.

The evaluation exercise provided several challenges that 
each company resolved differently in their approach:

–	 Evaluation Data Set there was no standardized test data 
set for AE under-reporting, and therefore a realistic 
study data set or simulation thereof needed to be 
selected.

–	 Evaluation Endpoint it was not defined which quantity 
of unreported AEs qualified as AE under-reporting. The 
{simaerep} algorithm assumes that under-reporting is 
quantitatively distinguishable from compliant reporting. 
These quantitative under-reporting scenarios needed 
to be clearly defined by the study under-reporting ratio 
(Study-UR) which we define as the ratio of sites within a 
study that under-report AEs; and the site under-reporting 
ratio (Site-UR) which defines the ratio of unreported 
AEs at a site. Additionally, a classification cut-off for 
the under-reporting probability as returned by the 
{simaerep} package needed to be determined.

–	 Site Heterogeneity AEs are reported by several sites 
which are often spread around the globe each with access 
to a unique patient population with different cultural 
traits of AE reporting [17]. The {simaerep} algorithm 
does not account for site heterogeneity.

–	 Study Heterogeneity AE rates and volume are highly 
dependent on the study protocol and design (including 



593Therapeutic Innovation & Regulatory Science (2024) 58:591–599	

1 3

Ta
bl

e 
1  

M
et

ho
do

lo
gy

 o
f {

si
m

ae
re

p}
 V

al
id

at
io

n 
A

pp
ro

ac
he

s.

Ro
ch

e
B

oe
hr

in
ge

r I
ng

el
he

im
M

er
ck

D
at

a 
Se

t
Si

m
ul

at
ed

 d
at

a 
se

t b
as

ed
 o

n 
cu

rr
en

t s
tu

dy
 p

or
tfo

lio
 

sn
ap

sh
ot

 m
ea

su
rin

g 
si

te
 p

at
ie

nt
 a

nd
 v

is
it 

co
un

ts
 

an
d 

stu
dy

 A
E 

ra
te

s

Si
m

ul
at

ed
 d

at
a 

se
t c

on
si

sti
ng

 o
f o

ne
 la

rg
e-

 a
nd

 o
ne

 
m

ed
iu

m
-s

iz
e 

tri
al

H
ist

or
ic

 st
ud

ie
s w

ith
 A

E-
re

la
te

d 
pr

ot
oc

ol
 d

ev
ia

tio
ns

Ev
al

ua
tio

n 
En

dp
oi

nt
D

et
ec

tio
n 

of
 si

ng
le

 u
nd

er
-r

ep
or

tin
g 

si
te

s w
ith

 
va

ry
in

g 
Si

te
-U

R
s:

 0
.1

, 0
.2

5,
 0

.5
, 0

.7
5,

 1
D

et
ec

tio
n 

of
 u

nd
er

-r
ep

or
tin

g 
si

te
s i

n 
tw

o 
sc

en
ar

io
s

La
rg

e 
sc

en
ar

io
:

St
ud

y-
U

R
: 0

.1
63

3
Si

te
-U

R
: 0

.2
5–

0.
75

M
ed

iu
m

 S
ce

na
rio

:
St

ud
y-

U
R

: 0
.0

52
3

Si
te

-U
R

: 0
.2

5

D
et

ec
tio

n 
of

 si
te

s w
ith

 A
E-

re
la

te
d 

pr
ot

oc
ol

 
de

vi
at

io
ns

C
la

ss
ifi

ca
tio

n 
C

ut
-o

ff
95

%
Th

e 
cu

t-o
ff 

w
as

 d
et

er
m

in
ed

 e
m

pl
oy

in
g 

th
e 

Yo
ud

en
 m

et
ho

d 
fo

r e
ac

h 
ex

pe
rim

en
ta

l c
on

di
tio

n 
m

ax
im

iz
in

g 
TP

R
 a

nd
 F

PR

50
%

Ti
m

e 
D

im
en

si
on

Sn
ap

sh
ot

 in
cl

ud
es

 e
ar

ly
-, 

m
id

-, 
an

d 
la

te
-s

ta
ge

 tr
ia

ls
Th

e 
A

E 
re

po
rti

ng
 w

as
 si

m
ul

at
ed

 o
ve

r t
im

e
A

ss
es

sm
en

t o
n 

th
e 

da
y 

an
 A

E-
re

la
te

d 
pr

ot
oc

ol
 

de
vi

at
io

n 
ha

d 
oc

cu
rr

ed
Si

te
 H

et
er

og
en

ei
ty

Si
te

s d
iff

er
ed

 b
y 

nu
m

be
r o

f v
is

its
 a

nd
 p

at
ie

nt
s

Si
te

s d
iff

er
ed

 b
y 

nu
m

be
r o

f p
at

ie
nt

s, 
da

te
 o

f e
nt

ry
 

in
to

 th
e 

stu
dy

 (d
iff

er
en

t a
cr

os
s r

eg
io

ns
), 

an
d 

A
E 

re
po

rti
ng

 ra
te

 (d
iff

er
en

t a
cr

os
s r

eg
io

ns
)

Re
al

ist
ic

 si
te

 h
et

er
og

en
ei

ty
 th

at
 c

an
 b

e 
fo

un
d 

in
 

cl
in

ic
al

 tr
ia

l d
at

a 
se

ts
. S

ite
s m

ig
ht

 d
iff

er
 b

y 
nu

m
be

r 
of

 p
at

ie
nt

s a
nd

 v
is

its
, d

at
e 

of
 st

ud
y 

en
try

, r
eg

io
na

l 
A

E 
ra

te
s, 

an
d 

ac
ce

ss
 to

 u
ni

qu
e 

pa
tie

nt
 p

op
ul

at
io

ns
St

ud
y 

H
et

er
og

en
ei

ty
Po

rtf
ol

io
-b

as
ed

 tr
ia

l h
et

er
og

en
ei

ty
St

ud
ie

s w
ith

 le
ss

 th
an

 1
00

 p
at

ie
nt

s a
nd

 le
ss

 th
an

 1
0 

si
te

s w
er

e 
ex

cl
ud

ed

Tw
o 

si
ze

s o
f t

ria
l: 

la
rg

e 
(7

00
0 

pa
tie

nt
s o

ve
r 4

90
 

si
te

s)
 a

nd
 m

ed
iu

m
 (1

54
5 

pa
tie

nt
s o

ve
r 1

72
 si

te
s)

 
si

ze
 sc

en
ar

io
s

Po
rtf

ol
io

-b
as

ed
 tr

ia
l h

et
er

og
en

ei
ty

St
ud

ie
s w

ith
 le

ss
 th

an
 1

00
 p

at
ie

nt
s a

nd
 le

ss
 th

an
 1

0 
si

te
s w

er
e 

ex
cl

ud
ed

U
ni

qu
en

es
s o

f t
he

 A
pp

ro
ac

h
C

om
pa

re
s p

er
fo

rm
an

ce
 to

 st
an

da
rd

 h
eu

ris
tic

 u
nd

er
-

re
po

rti
ng

 m
et

ho
ds

 b
as

ed
 o

n 
bo

xp
lo

t o
ut

lie
rs

 a
nd

 
ra

nk
 o

f A
E 

ra
te

s

B
lin

de
d 

ex
pe

rim
en

ta
l a

pp
ro

ac
h 

se
pa

ra
tin

g 
da

ta
 

si
m

ul
at

io
n 

an
d 

da
ta

 e
va

lu
at

io
n

A
im

ed
 to

 d
et

ec
t t

he
 e

ar
lie

st 
tim

e 
po

in
t a

t w
hi

ch
 

un
de

r-r
ep

or
tin

g 
ap

pe
ar

s

D
oe

s n
ot

 re
ly

 o
n 

si
m

ul
at

io
ns

 b
ut

 u
se

s r
ea

l d
at

a

{s
im

ae
re

p}
 P

ar
am

et
er

 S
et

tin
gs

A
dj

us
te

d 
vs

. u
na

dj
us

te
d 

vi
si

t_
m

ed
75

, A
Es

 p
er

 d
ay

 
vs

. A
Es

 p
er

 v
is

it
W

ith
 m

ul
tip

lic
ity

 c
or

re
ct

io
n 

an
d 

w
ith

ou
t

D
ef

au
lt 

(w
ith

 m
ul

tip
lic

ity
 c

or
re

ct
io

n)



594	 Therapeutic Innovation & Regulatory Science (2024) 58:591–599

1 3

studied population, therapeutic indication, study and 
comparator drug). The more AEs have been reported, 
the easier it is to distinguish between compliant and non-
compliant low AE rates.

–	 Time Dimension in practice, it is necessary to detect 
under-reporting as early as possible during a trial. 
Evaluation should include ongoing trial data.

The evaluation strategies are summarized in Table 1 and 
details can be found in the Supplementary Materials.

Performance was evaluated using the true positive rate 
(TPR) which measures the proportion of actual under-
reporting sites that are correctly identified. A higher TPR 
is desirable, with the ideal value being 1, indicating perfect 
identification of all positive cases. The false positive rate 
(FPR) quantifies the proportion of sites with compliant 
AE reporting that are falsely flagged as under-reporting. 
The FPR should be as close to 0 as possible, indicating no 
incorrectly flagged sites.

The Roche approach measured {simaerep} performance 
across a simulated data set based on a snapshot of an entire 
portfolio of ongoing studies. Each study was simulated to 
have only one under-reporting site for which under-reporting 
probabilities for Site-URs of 0.1, 0.25, 0.5, 0.75, 1 were 
calculated. This was iteratively repeated for each site in 
the study. A classification cut-off of 95% would determine 
whether it was flagged for under-reporting. TPR and FPR 
were also compared to standard heuristic methods.

The approach chosen by Boehringer Ingelheim was to 
select two simulated trials mirroring studies that could 
have occurred. Two data sets, one large trial with high AE 
reporting rates (Study-UR: 0.25, Site-URs 0.25–0.5) and a 

medium-sized trial with lower AE reporting rates (Study-UR 
0.0523, Site-UR 0.25) were generated also accounting for 
differences in AE reporting rates across geographic regions. 
To define the classification cut-off, the Youden method [18], 
which maximizes TPR and FPR, was employed for each 
experimental condition.

Merck’s approach calculated AE under-reporting 
probabilities with {simaerep} for sites in historical trials 
with AE-related protocol deviations. Among those, a 
classification cut-off of 50% was chosen to calculate the 
TPR. AE under-reporting probability was reported for 
sites with AE-related protocol deviations calculated using 
a snapshot of the entire study data. AE under-reporting 
probabilities for sites without protocol deviations were not 
reported and hence no FPRs could be calculated.

As these approaches are very different, the resulting per-
formance metrics were difficult to compare. We therefore 
categorized the different scenarios tested by each approach 
by how challenging it was to detect AE under-reporting 
under these conditions. It is to be expected that the detection 
of AE under-reporting will be more successful the higher 
the quantitative difference is between AEs reported by com-
pliant and non-compliant sites. The total volume of AEs 
depends on the three factors: (i) total number of patients, (ii) 
the number of visits or the time spent in the trial, and (iii) the 
time-adjusted AE rate. Based on the reported parameters, we 
classified each experiment either into a high AE volume sce-
nario or a medium AE volume scenario (see Fig. 1; Table 2).

Figure 1   Different Validation Approaches Show Efficient Detection of AE Under-reporting Sites Using {simaerep}.
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Results

The adequacy of the {simaerep} algorithm has been 
independently evaluated by three different companies. Two 
companies took a simulation-based approach in which they 
simulated study data based on real ongoing or completed 
studies with subsequent introduction of under-reporting. 
Another approach was to detect sites for which AE-related 
protocol deviations were recorded.

In order to compare the performance metrics of each 
approach, we have categorized the different scenarios into 
either a high volume AE scenario or a medium volume AE 
scenario. The main findings are summarized in Fig. 1. Under 
high AE volume conditions, the detection of under-reporting 
is easier and we can detect 50–75% of all sites with AE 
under-reporting. With a medium AE volume in a trial, we 
can still detect 20–50% of all under-reporting sites.

These results depend on various other scenario 
parameters that are summarized in Table 2 and more details 
can be found in the Supplementary Materials.

For the high AE volume scenario, the “optimal study 
conditions” scenario included in the evaluation of the Roche 
approach was picked. It was not based on any study in the 
portfolio but a scenario with fixed simulation parameters that 
emulates a study with high AE rates. From the Boehringer 
Ingelheim approach, the large simulated trial provides a 
similar scenario. Merck stratified their reported results by the 
number of patients on site and the selected evaluation visit 
point (visit_med75) which was determined by the median 
of the maximum visit count of each patient multiplied by 
0.75. Both numbers of patients and visits directly correlate 
with the total AE count expected at that site. Hence, the 
Merck analysis including only sites with visit_med75 ≥ 10 
was selected as the high AE volume scenario.

Maximum TPRs were 1.000 (Roche), 0.875 (Boehringer 
Ingelheim), and 0.714 (Merck). In the Roche scenario, with 
its many similar sites each hosting 10 patients and frequent 
visits, detecting under-reporting is relatively easy. However, 
in the scenarios from Boehringer Ingelheim and Merck, the 
sites vary more and also include sites with fewer patients 
and visits, which makes detecting under-reporting harder. 
Collectively, this showed that under conditions with high 
AE rates high TPRs can be obtained using the algorithm. 
Decreasing the number of patients in the Merck scenario 
(or the rate of under-reporting in the other scenarios) 
increased the detection difficulty and reduced the TPR. 
Roche’s ideal scenario reported a very low FPR of 0.002, 
while Boehringer Ingelheim’s more heterogeneous scenario 
reported a fairly high FPR of 0.1488. Depending on the 
subsequent action, the Boehringer Ingelheim TPR would 
need to be reduced in order to bring the FPR down to a more 
practical level. We can try to combine these empirical results 

into likely performance estimates for the future application 
of {simaerep}. These estimates are not universal as they are 
dependent on the volume of AEs, the tolerable FPR, and the 
rate at which non-compliant sites are under-reporting AEs. 
They represent estimated averages from all three results. 
Altogether, this suggests for high volume AE scenarios and a 
targeted FPR < 0.01 the results suggest a TPR > 0.5 (Site-UR 
0.25–0.5) or a TPR > 0.75 (Site-UR 0.5–0.75).

For studies with medium AE volume, we compared 
the portfolio-based results of the Roche and the Merck 
approach with the medium trial scenario of the Boehringer 
Ingelheim approach. Merck reported a TPR of 0.2, 
Boehringer Ingelheim reported a TPR of 0.889 at the cost 
of a very high FPR of 0.405 for a fixed under-reporting 
rate of 0.25, and Roche reported TPR of 0.213, 0.493, and 
0.695 for Site-URs of, respectively, 0.25, 0.5, and 0.75. We 
can combine these results into the following estimates as 
we did for the high AE volume scenarios. For medium AE 
volume scenarios, sites with a Site-UR of 0.25 can expect 
a TPR of approximately 0.25. Sites with higher Site-URs 
of 0.5–0.75 can expect a TPR of greater than 0.5. For these 
TPR rates for medium volume AE scenarios, the expected 
FPR rate is approximately 0.025. When higher FPR rates 
can be tolerated, higher TPR rates can be obtained (see 
Boehringer Ingelheim approach).

These statements expect that the Study-UR in a medium 
AE volume trial is low and does not exceed the highest 
ratio tested in the Boehringer Ingelheim experiments of 
0.16.

Each evaluation approach included some features that 
generated unique insights. The Roche approach compared 
{simaerep} against heuristic detection methods and found 
that the {simaerep} flagging pattern followed a similar 
pattern as flagging by boxplot outlier statistics of site AE 
rates. However, flagging on the basis of {simaerep} under-
reporting probability provided more favorable TPR and 
FPR. Moreover, it was found that the algorithm’s default 
settings provided the best performance. Roche also tried 
to detect under-reporting for low levels of under-reporting 
(Site-UR 0.1) resulting in TPR lower than 0.07 which is 
too low to be relevant. This implies that Site-UR should 
be greater than 0.25 to effectively detect under-reporting. 
In the context of the Boehringer Ingelheim approach, it 
was found that the Benjamini–Hochberg [14] multiplicity 
correction offered by {simaerep} was too conservative and 
reduced overall classification performance expressed by 
the receiver operating characteristics area under the curve 
(ROC AUC), a metric independent of classification cut-off 
threshold [19]. Additionally, we noted that approximately 
50% of all sites with accurately detectable under-reporting 
were identifiable as early as when 25% of the study time 
had elapsed following the first visit in the medium trial, 
and 32% in the large trial.
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Merck has reported that performance varied between 
therapeutic areas and that therapeutic areas with high 
enrollment such as vaccine trials had the highest TPR 
rates. Merck also noted that in 30% of the sites with 
AE-related PD, the average AE reported by the site at 
visit_med75 was higher than the site-level average AE 
reported by the study. These instances cannot be detected 
by the algorithm because it only identifies sites with a 
(significantly) lower average than the study.

Discussion

The {simaerep} R package uses a bootstrap-resampling-
based algorithm to calculate AE under-reporting 
probability in order to detect AE under-reporting sites in 
clinical trials [11, 12]. The performance of the package 
has been independently evaluated by three different 
companies using different strategies. By the separation of 
the individually obtained results into scenarios with high 
and medium AE reporting rates, we could make combined 
estimates about expected performance metrics. We could 
also show that adequate detection of under-reporting sites 
can be already obtained after roughly 30% of the allocated 
study time has passed. When compared to more simple 
heuristic-based strategies, the results obtained by using 
{simaerep} allowed for more accurate detection of AE 
under-reporting. A limitation of the independent validation 
approach is that these ‘additional observations’ could not 
be verified by the approaches of the other companies. On 
the other hand, this flexible validation approach allowed 
for more ‘additional observations’ to be made in the first 
place. Furthermore, only the Boehringer Ingelheim team 
was able to resource independent teams to their validation 
approach to control for internal biases.

Various classification cut-off thresholds were tested. In 
general, it was demonstrated that lowering the cut-off for 
classification of under-reporting will increase the TPR but 
will increase the FPR at the same time. In general, it should 
be recommended to set the cut-off based on the desired FPR 
which depends on how the algorithmic results are connected 
to business processes. Usually quality activities are very 
costly and resource intensive [20] and it is advisable to lower 
the expected FPR rate as much as possible.

In clinical trials, AE under-reporting is currently either 
detected by on-site personnel and filed as a self-identified 
protocol deviation or it is detected during an audit or 
inspection [1, 4]. The root cause is usually that single AEs 
have not been entered from the patients’ source record 
into the clinical database. This often only affects a small 
number of AEs and hence does not change the quantitative 
volume of AEs reported by a site. Merck has shown that 
this was the case for 30% of all AE under-reporting-related 

protocol deviations in their portfolio. AE under-reporting 
issues that are detectable by {simaerep} need to affect the 
overall AE volume at a site and thus need to be systemic 
and reoccurring. The root cause for these issues can be 
numerous: patients not being questioned for AEs, AEs 
not entered into the source files, AEs not entered into the 
clinical database, cultural differences in AE reporting [17], 
patients clusters that are healthier than the study average.

All three evaluation strategies have addressed the 
potential heterogeneity of studies that {simaerep} was 
suitable for. In general, adequate detection rates could 
be obtained for all studies with medium to high AE 
rates. Studies with a low volume of AE reporting can 
nevertheless be analyzed and under-reporting can be 
detected. Should the cut-off for classification of under-
reporting be lowered to accommodate for the weaker 
statistical signal, a higher FPR should be expected.

There are potential root causes that can affect the 
volume of AEs reported that can be categorized as 
compliant site behavior, for example, cultural differences 
in AE reporting or a cluster of healthier than average study 
participants. This creates some heterogeneity across sites 
that cannot be accounted for by {simaerep} algorithm. The 
Boehringer Ingelheim approach has taken this into account 
and addressed this in their simulations. The {simaerep} 
open-source analytics package can be integrated into the 
framework of an ‘analytics-based audit’ and represents a 
significant advancement in the ability to conduct rigorous 
audits of clinical trials, focusing on safety reporting 
and sponsor oversight [21]. It allows auditors to depart 
from traditional, limited sampling methods and instead 
scrutinize an entire program (of multiple clinical trials) 
comprehensively. By employing {simaerep}, audits may 
gain a substantial boost in efficiency and increase the 
probability of identifying potential issues or anomalies of 
safety reporting. This comprehensive approach may also 
enable fast, holistic, and repeatable quality oversight of 
clinical trials. This integration fundamentally transforms the 
audit process, enhancing its accuracy and effectiveness, and 
ultimately contributes to the goal of improving the safety 
and quality of clinical trials.

Conclusion

Cross-industry collaboration is pivotal for developing new 
standards for quality analytics. Here, we demonstrated 
how IMPALA members could collaborate to evaluate 
and improve innovative QA analytics packages. IMPALA 
currently has other work products and packages that are 
being co-developed [16] and will continue to proactively 
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and transparently share these to accelerate innovation for 
clinical QA.

Using {simaerep}, we could consistently flag sites with 
lower than expected AE reporting rates, which allows us 
to manage, target, and focus QA activities to minimize 
quality risks. This package enables early decision-
making to maximize clinical trials’ quality, which can 
accelerate the development of new medicines and improve 
patient outcomes. Through open-source publishing and 
collaboration, we aim to set new standards for advanced 
analytical methods for QA while being transparent on how 
new methods and algorithms were developed and validated.
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