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Potential of pre-diagnostic metabolomics
for colorectal cancer risk assessment or
early detection
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Hermann Brenner 1,3

This systematic review investigates the efficacy of metabolite biomarkers for risk assessment or early
detection of colorectal cancer (CRC) and its precursors, focusing on pre-diagnostic biospecimens.
Searches in PubMed, Web of Science, and SCOPUS through December 2023 identified relevant
prospective studies. Relevant data were extracted, and the risk of bias was assessed with the
QUADAS-2 tool. Among the 26 studies included, significant heterogeneity existed for case numbers,
metabolite identification, and validation approaches. Thirteen studies evaluated individual
metabolites, mainly lipids, while eleven studies derived metabolite panels, and two studies did both.
Nine panels were internally validated, resulting in an area under the curve (AUC) ranging from 0.69 to
0.95 for CRC precursors and 0.72 to 1.0 for CRC. External validation was limited to one panel
(AUC = 0.72). Metabolite panels and lipid-based biomarkers show promise for CRC risk assessment
and early detection but require standardization and extensive validation for clinical use.

Colorectal cancer (CRC) is the second leading cause of cancer-related death
worldwide, with an estimated 1.9 million incident cases and 904,000 deaths
in 20221. CRC often progresses slowly from precancerous to malignant
neoplastic lesions, offering opportunities for prevention and enhanced
prognosis by early detection and removal of precancerous lesions or
detection and treatment of cancer at an earlier stage2. Various screening
modalities have been developed for early detection of CRC and its pre-
cursors, including colonoscopy or fecal blood tests3. While colonoscopy is
considered the gold standard for early detection of CRC and its precursors
due to its high sensitivity and specificity, it is invasive, carries a risk of
complications, andhas lowadherence4. Fecal blood tests arenoninvasivebut
have limited sensitivity for early-stage CRC and precursors of CRC and are
recommended every one to three years5–7. Despite the availability of these
screeningmodalities, the development of further noninvasivemethodswith
enhanced acceptability, accessibility, and performance would be highly
desirable.

In recent years, metabolomics has emerged as a promising approach
for cancer screening, including CRC. Metabolomics involves the sys-
tematic study of small molecule metabolites in biological fluids, cells, and
tissues, and research on its potential application in the field of cancer
biomarker discovery is rapidly expanding8,9. Previous studies using

metabolomics have shown promise in differentiating individuals with
and without CRC10. However, most studies have assessed metabolomics
after CRC diagnosis and were carried out in clinical settings, which may
limit their relevance for general population screening since it may reflect
secondary changes in the metabolome after the onset of symptoms and
diagnosis of CRC11. Studies conducted to identify and validate metabolite
biomarkers for CRC risk based on pre-diagnostic biospecimensmay help
identify more effective and less invasive screening methods for CRC.
Therefore, the aim of this systematic review is to evaluate the existing
evidence onmetabolite biomarkers for CRC or its precursors, whichwere
identified in pre-diagnostic samples, such as in prospective cohorts or in a
screening setting.

Results
Literature search result
The comprehensive literature search across the specified databases
using the predefined search terms resulted in a total of 2,484 records. A
detailed overview of the selection process is depicted in the PRISMA
flow diagram shown in Fig. 1. After applying the eligibility criteria, 140
articles were chosen for an in-depth full-text review. Among these
articles, 27 were excluded due to inadequate study design, 79 were
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excluded as the individuals were already diagnosed with CRC or a
precursor at the time of biospecimen collection, five were excluded due
to studied biospecimens others blood, urine, or stool, and three were
excluded due to insufficient statistical data. The references of the studies
excluded are listed in Supplementary Table 3. In the end, 26 studies
focusing on the predictive performance of metabolite biomarkers,
published up to December 30, 2023, were incorporated into this sys-
tematic review.

Study characteristics
Details on study characteristics are summarized in Table 1. The investigated
outcomes comprised CRC in a total of 14 studies12–25, colon cancer in two
studies26,27, adenomas in two studies28,29, polyps in four studies30–33, a com-
bination of adenomas and polyps in two studies34,35, and a combination of
adenomas and CRC in two studies36,37. The studies reviewed focused on
individualmetabolites (13 studies12–15,17–19,24,26,27,34,35,37) andmetabolite panels
(eleven studies20,22,23,25,28–33,36) for differentiating CRC or its precursors from
controls. The studies reporting on individualmetabolites utilized a variety of
designs: two were screening trials35,37, six were nested case-control
studies12,13,15,18,19,26, three were prospective cohort studies17,24,34, and two
articles reported on both a cohort and a screening study14,27. Studies
reporting on metabolite panels included nine screening studies22,23,25,29–33,36,
one prospective cohort28, and one nested case-control study20. Additionally,
twonested case-control studies investigated both individualmetabolites and
metabolite panels16,21.

Besides four studies from China12,21,25,31, all studies were conducted in
predominately white populations. Six studies were conducted in the United
States13,16,17,29,34,35, four inCanada28,30,32,33, and 12 in European countries—five
spanned several European countries14,19,20,26,27, and seven took place in single
European countries, including Italy23, Sweden18,24, Spain22, France36,
Austria37, and Germany15.

Two studies exclusively included females12,34 while one study focused
solely onmales35. Themale to female proportion among cases varied across
studies, with three reporting more female cases18,19,26, 18 reporting more
male cases13–17,20,21,23–25,27,28,30–33,36,37, one reporting an equal proportion of
males and females22, and one not specifying the sex distribution of
participants29.

The number of CRC cases varied widely, ranging from 18 cases37

to 1608 cases20. For adenoma cases, the range was from 23 cases29 to
586 cases34, while for polyps, the range extended from of 20 cases35 to
355 cases32. Matching of cases and controls was employed in 13 stu-
dies, incorporating criteria such as age, sex, ethnicity, year of ran-
domization, season of blood draw, recruitment time point, time
period of endoscopy, fasting status, study cohort, smoking status, and
menopausal status12–14,16–21,24,26–28,34.

The biospecimens utilized in the investigations included mainly
blood (serum in seven studies13,16,19,23,28,29,37, plasma in ten
studies14,15,17,18,21,24,26,27,34,35, combination of serum and plasma in one
study20), urine in five studies12,30–33, and stool in three studies22,25,36.
Technologies used for metabolomics analyses were mainly liquid
chromatography–mass spectrometry (LC–MS), which was used by
9 studies12,16,17,22,24,26,27,30,34, and other mass-spectrometry (e.g., flow
injection analysis–tandem mass spectrometry, isobaric labeling mass
spectrometry)14,23,25,28,29, or a combination ofmass spectrometry with a
different technology13,15,18,20,21,37. Other techniques used were gas
chromatography (GC)35, nuclear magnetic resonance (NMR)31–33,36,
and ELISA assay19.

Validation techniques to address overoptimism
Validation efforts to mitigate overoptimism in model predictions
were reported by 14 out of the 26 studies, with methodologies out-
lined in Table 1. These studies employed various validation

Fig. 1 | Preferred reporting items for systematic
reviews andmeta-analyses (PRISMA) flow diagram.
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techniques to enhance the reliability of their findings. Split-sampling
method was utilized in five different studies22,23,30,33,37. More advanced
techniques, including different types of cross-validation24,28,29,32,36 and
bootstrapping18 were used by six studies. External validation was
performed by three studies, two evaluated individual metabolites14,27,
and one focused on a metabolite panel31.

Performance of individual metabolites and metabolite panels
Potential metabolite biomarkers for prediction or diagnosis of CRC were
found in different biospecimen types (blood, urine, stool) and varied in their
biochemical classes. Half of the included studies reported on the perfor-
mance of individual metabolites (13 out of 26), eleven studies reported on a
panel of metabolites, and two reported on the performance of individual

Table 1 | Details of included studies reporting on the prediction of the presence or occurrence of CRC using metabolomics

First author, Year ref. Study type country Study group Time to diagnosisa (mean) Population Validation approach

N Age (mean, SD) Female (%) IV EV

Individual Metabolites

Cai (2006) 12 Nested case-control
China

CRC, CC, RC 30m 150 60.3 (8.3) 100 - -

Cn - 150 60.1 (8.5) 100

Cross (2014) 13 Nested case-control
USA

CRC 7.8 y med 254 64.3 (5.1) 44.1 - -

Cn - 254 64.3 (5.1) 43.7

Kühn (2016) 15 Nested case-control
Germany

CRC 6.57 y med 163 55.8 (6.4) 37.4 - -

Cn ♀ - 348 52.3 (7.1) 100

Cn ♂ - 426 49.1 (8.5) 0

Myte (2017) 18 Nested case-control
Sweden

CRC 8.2 (4.7–11.9) y med, IQR 613 59.3 (40.1–67.8) med, IQR 59 Boot-
strapping

-

Cn - 1190 59.7 (40.0–67.8) med, IQR 59

Pickens (2017) 35 Screening
USA

A N/A 37 58 (53–60) med, IQR 0 - -

HPP - 20 58 (53–60) med, IQR 0

Cn - 69 57 (53–61) med, IQR 0

Geijsen (2019) 14 Prospective cohort/
screening
Germany and Austria

CRC N/R 180 66.0 (58.0–73.0) med, IQR 36.7 - Yes

Cn - 153 51.0 (42.0–63.0) med, IQR 61.4

CRC (EV) N/R 88 70.0 (60.0–76.0) med, IQR 31.8

Cn (EV) - 200 64.0 (57.0–74.0) med, IQR 35.0

Kühn (2020) 26 Nested case-control
Europe

CC N/R 569 57.5 (36.7–74.3) med, range 62.6 - -

Cn - 569 57.5 (36.7–74.3) med, range 62.6

McCullough (2021) 17 Prospective cohort
USA

CRC N/R 517 70.2 (5.5) 44.3 - -

Cn - 517 70.2 (5.5) 44.3

Papadimitriou
(2021) 27

Prospective cohort/
screening
Germany and Austria

CC (ColoCare) N/R 110 65 (13) 39 - Yes

Cn (ColoCare) - 153 51 (15) 61

CC (CORSA) N/R 46 69 (14) 28

Cn (CORSA) - 390 63 (13) 35

CC (EPIC) 6.6 (3.5) y 456 56 (7.8) N/R

Cn (EPIC) - 456 56 (7.7) N/R

Tevini (2022) 37 Screening
Austria

CRC N/A 18 67 (12) 38.9 Split sampling -

AA - 28 60 (10) 50

Cn - 36 53 (8) 50

CRC (IV) N/A 48 69 (10) 35.4

Cn for CRC (IV) - 29 68 (7) 89.7

AA (IV) - 48 66 (10) 45.83

Cn for AA (IV) - 28 66 (5) 0

Hang (2022) 34 Prospective cohort
USA

A N/A 586 53.6 (7.8) 100

Cn for A - 1141 53.8 (7.8) 100

SP N/A 509 52.9 (7.5) 100

Cn for SP - 993 53.1 (7.5) 100

Pham (2022) 19 Nested case-control
Europe

CRC 4.8 (2.7) y 1,293 58.1 (7.0) 52.7 - -

Cn - 1,293 58.1 (7.0) 52.7

Vidman (2023) 24 Nested case-control
Sweden

CRC 10.3 y 902 56.2 (7.4) 48.8 Cross-
validation

-

Cn - 902 56.2 (7.4) 48.8
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metabolites as well as the performance of a panel. Table 2 shows the indi-
vidual metabolite biomarkers for CRC and their precursors, identified by
different analytical approaches. Six studies used an untargeted approach to
discover the metabolites13,14,17,21,24,34, while the other nine studies used a
targetedapproach tomeasurepredefinedmetabolites12,15,16,18,19,26,27,35,37. Three
of the 15 studies reporting on individual metabolites did not find any sig-
nificant associations between the metabolites studied and CRC13,15,19. The
remaining twelve studies reported significant associations for a total of 101
metabolites (Fig. 2). Among the 59 metabolites inversely associated with
CRC, two-thirds (n = 45, 76%) were lipids or lipid-like molecules. Orga-
noheterocyclic compounds and organic acids and derivatives accounted for
10% (n = 6) and 7% (n = 4) of these inversely associated metabolites,

respectively.Out of 42 identified individualmetabolites positively associated
with CRC, 28 (67%) were lipids and lipid-like molecules. The rest included
organic acids and derivatives, organoheterocyclic compounds (each
accounting for 14 and12%, respectively). The remaining categories included
nucleosides, nucleotides and their analogs, organic oxygen compounds, and
benzenoids (each accounting for 2%, n = 1). While the lipids and lipid-like
molecules with the positive association were mainly bile acids and fatty
acylcarnitines, inverse associations were seen with alkylacyl-lysopho-
sphatidylcholines, phosphatidylcholines, and sphingomyelins. Among the
wide range ofmetabolites identified, only a select few appeared inmore than
one study. Specific plasma bile acids, including glycocholic acid, taurocholic
acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid,

Table 1 (continued) | Details of included studies reporting on the prediction of the presence or occurrence of CRC using
metabolomics

First author, Year ref. Study type country Study group Time to diagnosisa (mean) Population Validation approach

N Age (mean, SD) Female (%) IV EV

Metabolite panels

Eisner (2013) 32 Screening
Canada

P N/A 355 58.9 (8.2) 44.79 Cross-
validation

-

Cn - 633 56.2 (8.1) 57.5

Wang (2014) 33 Screening
Canada

AP N/A 422 55.7 (0.4) 41 Split sampling -

Cn - 162 59.1 (0.6) 57

AP (IV) N/A 211 56.1 (0.6) 38

Cn (IV) - 81 60.4 (0.8) 58

Amiot (2015) 36 Screening
France

AA/CRC N/A 33 59.4 ( ± 6.9) med, IQR 24 Cross-
validation

-

Cn 22 52.0 ( ± 12.0) med, IQR 32

Farshidfar (2016) 28 Prospective cohort
Canada

A N/R 31 59.5 (5.9) 32 Cross-
validation

-

Cn - 31 60.5 (6.7) 28

Deng (2017a) 30 Screening
Canada

AP N/A 155 59.9 (7.4) 38.7 Split sampling -

Cn - 530 56.1 (8.2) 58.1

Deng (2017b) 31 Screening
China

AP (EV) N/A 345 65.1 (6.6) 43 - Yes

Cn (EV) - 316 61.8 (7.4) 74

Troisi (2022) 23 Screening
Italy

CRC N/A 100 66.2 (11.3) 36 Split sampling -

BCT N/A 50 62.8 (7.1) 41

Cn - 50 61.6 (7.0) 44

Rothwell (2022) 20 Nested case-control
Europe

CRC 7.7 (4.4) y 1,608 56.9 (7.5) 45.4 - -

Cn - 1,608 56.8 (7.5) 45.4

Telleria (2022) 22 Screening
Spain

CRC N/A 40 73.0 (11.3) 50 Split sampling -

AA - 40 70.4 (10.8) 50

Cn - 40 66.2 (14.1) 50

Liu (2023) 29 Screening
USA

CTC N/A 23 N/R N/R Cross-
validation

-

Cn - 20 N/R 50

Xie (2023) 25 Screening
China

CRC N/A 35 57 (37–81) med, range 45.7 - -

Cn - 30 45 (23‑67) med, range 60.0

Individual metabolites & metabolite panels

Shu (2018) 21 Nested case-control
China

CRC ♀ N/R 122 56.9 (8.4) 100 - -

Cn ♀ - 122 57.0 (8.4) 100

CRC ♂ N/R 123 56.2 (6.8) 0

Cn ♂ - 123 56.5 (6.6) 0

Loftfield (2022) 16 Nested case-control
USA

CRC ♀ 10 y 233 64.2 (5.3) 100 - -

Cn ♀ - 233 64.1 (5.3) 100

CRC ♂ 10 y 262 64.0 (5.0) 0

Cn ♂ - 262 64.0 (5.1) 0

(A)A (advanced) adenoma, AP colonic adenomatous polyps, BCT benign colorectal tumor, Cn controls, CC colon cancer, CTC colonic tumor carriers, CRC colorectal cancer, SP serrated polyps, HPP
hyperplastic polyps, P polyps, RC rectal cancer, SD standard deviation, med median, IQR interquartile range, y years,mmonths, N/A not applicable, N/R not reported, IV internal validation, EV external
validation, ♀ female, ♂ male.
aonly applicable for cohort studies and for the outcome CRC/CC.
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Table 2 | Individual metabolites associated with the presence or occurrence of CRC in blood, urine, and stool samples

First author Year Platform Biospecimen Number of
metabolites
identified/
Metabolite
identification
approachc

Outcome Associated metabolites with outcome a

Inverse association Positive association

Screening

Pickens (2017) 35 GC Plasma 24
fatty acids

A ♂ - ω−6 polyunsaturated fatty
acid
Trans-fatty acid

HPP ♂ C18:2-c linoleic acid -

Tevini (2022) 37 FIA and LC-MS/MS Serum 188
AbsoluteIDQ® p180
kit

AA Glycine methionine sulfoxide/
methionine ratio
SM C18:1

CRC Glycerophospholipids
(LysoPC a C17:0, LysoPC a C18:0,
LysoPC a C18:2, LysoPC a C26:0,
LysoPC a C28:0, LysoPC a C28:1,
PC aa C28:1, PC aa C30:0, PC aa
C32:2, PC aa C32:3, PC aa C34:3,
PC aa C34:4, PC aa C36:2, PC aa
C36:6, PC aa C38:0, PC aa C38:1,
PC aa C42:6, PC ae C30:0, PC ae
C34:0, PC ae C34:2, PC ae C34:3,
PC ae C36:1, PC ae C36:2, PC ae
C36:3, PC ae C38:0, PC ae C38:3,
PC ae C40:1, PC ae C40:6)
Sphingomyelins (SM (OH) C22:1,SM
(OH) C22:2, SM (OH) C24:1, SM
C16:1)
Histidine
Total AC-DC/Total AC
Total PC ae
Total SM (OH)
Total SM (OH)/ total SM (non-OH)

Acylcarnitines (C7-DC, C12,
C12:1, C14:1, C16:2, C18:1)

Cohorts

Hang (2022) 34 LC–MS Plasma 207
Untargeted

A ♀ C36:3 phosphatidylcholine
plasmalogen

SP ♀ Phenylacetylglutamine C54:8 triglyceride

Kühn (2020) 26 LC–MS Plasma 17
Bile acids

CC Glycocholic acid
Taurocholic acid
Glycochenodeoxycholic acid
Taurochenodeoxycholic acid
Glycohyocholic acid
Glycodeoxycholic acid
Taurodeoxycholic acid

Papadimitriou
(2021) 27

LC–MS Plasma 3
Tryptophan
metabolites

CC Tryptophan
Kynurenine

Kynurenine
Serotinin
Kynurenine−to
−tryptophan ratio

Cai (2006) 12 LC–MS Urine 1
Prostaglandin E2
Metabolite (PGE-M)

CRC, CC,
RC ♀

PGE-M

Cross (2014) 13 LC–MSandGC-MS Serum 278
Untargeted

CRC - b

Kühn (2016) 15 LC-MS/MS and
FIA-MS/MS

Plasma 120
MetaDisIDQTM Kit

CRC - b

Myte (2017) 18 LC-MS/MS and
GC-MS,
Lactobacillus casei
and Lactobacillus
leichmannii

Plasma 14
One-carbon
metabolites

CRC Riboflavin
Ppyridoxal 5-phosphate

Shu (2018) 21 UPLC-QTOFMS
and GC-TOFMS

Plasma 167
Untargeted

CRC 2-methyl-4-phenyl-2-butyl
2-methylpropanoate
PE(20:0/18:2)
PC(22:6/18:0)
Ethyl 4-(methylthio)butyrate
PE(p-16:0/20:4)
5,6–8,9-diepoxyergost-22-ene-
3,7beta-diol

Picolinic acid
Selenocystine
2,3-epoxymenaquinone

Geijsen (2019) 14 UHPLC-QTOF-MS Plasma CRC
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glycodeoxycholic acid, and taurodeoxycholic acid, were reported in two
large cohort studies to be positively associated with CRC. These bile
acids were noted by Kühn et al.26 in the EPIC cohort focusing on colon
cancer, and by Loftfield et al. 16 in the PLCO cohort, with Loftfield et al.16

reporting these findings specifically in women. Similarly, amino acids
such as valine and tryptophan were identified in multiple studies,
though the direction of their associations with CRC varied. Tryptophan
was positively associated with CRC in findings by Vidman et al.24, while
two cohorts studied by Papadimitriou et al.27 showed a reverse trend.
For the CRC precursors, significant inverse and positive associations
were reported for four (i.e., C18:2-c linoleic acid, glycine, C36:3
phosphatidylcholine plasmalogen, and phenylacetylglutamine) and
five metabolites (i.e., omega-6 polyunsaturated fatty acid, trans-fatty
acid, methionine sulfoxide/methionine ratio, C18:1 sphingomyelin,
and C54:8 triglyceride), respectively, of which two and four metabolites
belonged to the group of lipids and lipid-likemolecules. The three other
metabolites belonged to the group of organic acids and derivatives.

Out of 15 studies that examined metabolites individually, only
three conducted internal validation18,24,37 and two performed external
validation14,27. Papadimitriou et al. 27 examined three metabolites of

tryptophan in three different samples. However, they found incon-
sistent directions of association for two of the metabolites, tryptophan
and kynurenine, and their ratio, between the three studies. Geijsen
et al. 14 applied an untargeted approach and identified 15 metabolites
that differed significantly between cases and controls of CRC in both
their discovery and replication sets. However, whether these meta-
bolites were of predictive or prognostic value was not identified.
Except for the studies by Tevini et al. 37 and Cai et al. 12, all the other
studies that investigated metabolites individually adjusted for several
covariates in their analyses, such as age, smoking status, or BMI (see
Supplementary Table 5).

Tables 3 and 4 present the metabolite biomarker panels developed for
detection CRC and its precursors. Among the 13 studies that reported on
these panels, one conducted an external validation31, while eight performed
internal validations22,23,28–30,32,33,36. The remaining four studies did not con-
duct any form of validation16,20,21,25.

Table 3 displays the efficacy of blood-based biomarker panels, with the
most effective panel achieving an AUC of 1.0, and 100% sensitivity and
specificity23. This panel consisted of 26 metabolites and used a machine-
learning approach.

Table 2 (continued) | Individual metabolites associated with the presence or occurrence of CRC in blood, urine, and stool
samples

First author Year Platform Biospecimen Number of
metabolites
identified/
Metabolite
identification
approachc

Outcome Associated metabolites with outcome a

Inverse association Positive association

28
Untargeted

LysoPC(16:1)
LysoPC(P-16:0)
LysoPC(15:0)
LysoPC(16:0)
LysoPC(16:0) isomer
LysoPC(17:0)
LysoPC(18:0)
Leucine
Valine
Bilirubin
1-Methylnicotinamide

LysoPE(20:4)
LysoPE(22:6)
Taurine
Hypoxanthine

McCullough
(2021) 17

LC-MS/MS Plasma 886
Untargeted

CRC 3-methylxanthine Guanidinoacetate
Vanillylmandelate
2’-O-methylcytidine
Bilirubin (E-E)
N-palmitoylglycine

Loftfield (2022) 16 LC-MS/MS Serum 21
Bile acids and short-
chain fatty acids

CRC ♀ - Glycochenodeoxycholic acid
Taurochenodeoxycholic acid
Glycocholic acid
Taurocholic acid
Deoxycholic acid
Glycodeoxycholic acid
Taurodeoxycholic acid
Glycholithocholic acid
Taurolithocholic acid

CRC ♂ Cholic acid -

Pham (2022) 19 ELISA assays Serum 1
Resistin

CRC - b

Vidman (2023) 24 LC–MS Plasma 5015
Untargeted

CRC Sebacic acid
Pyroglutamic acid
Hydroxytigecycline

9,12,13-TriHOME
13-OxoODE
Valine
3-hydroxybutyric acid
L-tryptophan

GC gas chromatography, LC-MS/MS liquid chromatography–mass spectrometry/liquid chromatography/ tandem mass spectrometry, FIA flow injection analysis, GC-MS gas chromatography–mass
spectrometry, FIA-MS/MS flow injection analysis–tandemmass spectrometry, UPLC-QTOFMS ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry,GC-TOFMS gas
chromatography time-of-flight mass spectrometry, UHPLC-QTOF-MS ultra-high chromatography- quadrupole-time-of-flight mass spectrometry, AC acylcarnitine, LysoPCmonoacyl-
glycerophosphocholine, PC aa diacyl-glycerophosphocholine, PC ae alky-acyl-glycerophosphocholine, SM sphingomyelin, AC acylcarnitine, (A)A (advanced) adenoma, AP clonic adenomatous polyps,
Cn controls, CC, colon cancer, RC rectal cancer, CRC colorectal cancer, SP serrated polyps, HPP hyperplastic polyps, ♀ female, ♂ male.
aIncludes only named metabolites.
bNo significant associations with metabolites identified (after correction for multiple testing).
cDescribes the metabolite identification method used: targeted groups, untargeted approaches, or specific commercial panels.
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Table 4 shows themetabolite biomarkers fromstool andurine samples.
It includes three studies that analyzed stool sample panels, reporting AUCs
of 0.9522, 0.9436, and 0.9725, with the latter not performing any kind of
validation. The panel by Telleria et al. further reported a sensitivity of 70%
and specificity of 100%, using four metabolites and levels of hemoglobin to
discriminate between cases and non-cases of advanced adenoma22. For the
panels ofmetabolites based on urine, all studies performed either internal or
external validation. The study byWang et al. 33 showed the highest AUC of
0.752, along with sensitivity of 88.9% and specificity of 50.2% for a panel
composed of 18 metabolites to distinguish between polyp cases and non-
cases. The internal validation confirmed these results, with a sensitivity of
82.7% and a specificity of 51.2%. Deng et al. 31 conducted an external vali-
dation of a urine-based diagnostic panel for the detection of adenomatous
polyps, that was originally developed and validated using n = 1000 samples
from a Canadian cohort30. The external validation in the Chinese cohort
yielded anAUCof 0.72, a sensitivity of 82.6%, and a specificity of 42.4%.The
panel consisted of fourmetabolites in combination with information on the
age, sex, and smoking status of the participants.

Quality assessment of diagnostic accuracy studies
In this study, we utilized the QUADAS-2 tool to evaluate the risk of bias
and applicability concerns. Detailed results are provided in Supple-
mentary Table 4. For the “patient selection” domain, two studies were
identified with a high risk of bias due to small case numbers and large
significant differences between cases and controls, while 16 indicated a
low risk, and eight were unclear. In the ‘index test’ domain, the risk of
bias was low in ten studies, unclear in 15, and high in one. Similarly, for
the ‘reference standard’ domain, the risk assessment showed 16 studies
with low risk, tenwith unclear risk, and nonewith high risk. The unclear
risk assessments in the “index test” and “reference standard” domains
were partly due to the absence of information in some studies about the
independent execution of metabolite tests and their comparison
counterparts, such as colonoscopies. In the “flow and timing” domain,
eight studies were assessed as low risk, eight as high risk, and ten as
unclear. Predominantly, the studies were highly applicable, a result of
our focused method in selecting articles pertinent to CRC or its early
predictors. Nonetheless, we observed significant applicability issues in
“patient selection” for ten studies, mainly because of missing internal or
external validation and a narrow demographic focus. There were no

applicability concerns for the “index test” and predominantly no in
“reference standard” domains, as these tests align with our review
question.

Discussion
In the present systematic review, we identified 26 studies focusing on
metabolite biomarkers for the prediction of the occurrence or presence of
CRC or its precursors. These studies contributed valuable insights into
metabolomics within the context of CRC screening trials and prospective
cohort studies. Lipids and lipid-like molecules emerged as the most fre-
quently investigated metabolites across various biospecimens, offering the
potential for CRC and its precursors prediction in the context of CRC
screening or risk assessment. However, the heterogeneity in data analysis
methodologies and result reporting hindered a unified interpretation and
precluded ameta-analytic approach. Specifically, this variability in the use of
different metabolite panels, statistical models, and validation techniques
limits comparability and introduces challenges in synthesizing data across
studies. Therefore, a descriptive presentation of findings was conducted.
Additionally, most studies showed a lack of robust validation for their
biomarker panels, often only performing internal validation, which ques-
tions the generalizability of the findings. The small sample sizes in several
studies further constrained the statistical power, increasing the risk of
erroneous results. A notable geographical bias toward white and Asian
populationswas also observed, affecting the applicability offindings to other
ethnic groups. While individual studies displayed advancements in meta-
bolomics profiling, the absence of consistent validation across studies
underscores theneed for standardizedmethodological frameworks in future
research.

The comparison between individual metabolites and metabolite
panels reveals a notable pattern, suggesting that the latter holds superior
potential as a screening tool or risk assessment tool for CRC screening.
Three out of 15 studies13,15,19 based on individual metabolites did not
find any significant associations after correcting for multiple testing. In
contrast, studies examining metabolite panels consistently demon-
strated good to very good predictive or diagnostic abilities. This
observation, supported by a systematic review incorporating also post-
diagnostic metabolite samples11, suggests that metabolite panels may
possess the capacity to better reflect the complexity of biological sys-
tems, address disease heterogeneity, and offer synergistic insights into

Fig. 2 | Associations between individual metabolites and colorectal cancer risk,
categorized by direction of association. A Inversely associated metabolites with
colorectal cancer risk. B Positively associated metabolites with colorectal cancer

risk. Note: metabolites are grouped by Super Class from the Human Metabolome
Database. Metabolites reportedas ratios are excluded.
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collective metabolic alterations associated with CRC development,
unlike individual metabolites.

Notably, a range of panels have yielded exceptionally high AUC values
between 0.76 and an optimal 1.0 for CRC detection or prediction, with
AUCs exceeding 0.83 for early indicators of CRC, with some consisting of
merely two metabolites29, while others included up to 26 metabolites23.
However, these high-performance panels, in some instances, were evaluated
in studies utilizing relatively small sample sizes of fewer than 50
cases25,28,29,36,37 and were only examined in a single population. While more
than half of the studies implemented internal validation, predominantly
using split-sampling methods for model testing, only three studies under-
took external validation14,27,31. These studies revealed varied outcomes:
certain metabolites displayed unreliable or minimal correlations with CRC
in diverse populations, whereas others achieved results on par with current
stool tests. While Gejisen et al. 14 replicated their untargeted approach
findings, revealing 15 metabolites significantly associated with CRC in two
European cohorts, Papadimitriou et al. 27 reported inconsistent associations
between tryptophan metabolism-linked metabolites and colon cancer
across cohorts.Deng et al. achievedcomparablemetabolite test performance
in the studied Chinese cohort to the original Canadian cohort in which the
metabolite panel was developed30,31. While this panel exhibited increased
sensitivity, its specificity was somewhat lower compared to well-established
fecal blood tests that have specificities for advanced adenomas ranging from
0.90 to 0.9538. These varied outcomes point to a significant challenge in the
field of metabolite biomarker research, emphasizing the critical need for
thorough independent validation39. The importance of such validation is
heightened by the fact thatmetabolite stability can differ over time andwith
various sample collection methods40. Thorough independent validation is
essential to mitigate the risk of overestimating predictive capabilities, often
referred to as the “winner’s curse”, where models may appear highly pre-
dictive in initial derivation but fail to perform as well in subsequent appli-
cations. Internal validation helps address this by proper evaluation of the
model within the same dataset (e.g., by a split sample or cross-validation
approaches), reducing the likelihood of overfitting. External validation not
only confirms the robustness of these findings but also identifies potential
limitations in different demographic or clinical settings, ensuring that the
predictive models can be reliably applied in various real-world scenarios.

Several metabolic pathways, including glycolysis, glutaminolysis, oxi-
dative phosphorylation, and lipidmetabolism41, appear to be altered during
the cancer state.Notably, lipidmetabolismstands out, as lipids and lipid-like
molecules frequently emerge as the most altered metabolites in CRC risk
prediction.Among these, two studies identifiedelevated levels of plasmabile
acids, including glycocholic acid, taurocholic acid, glycochenodeoxycholic
acid, taurochenodeoxycholic acid, glycodeoxycholic acid, and taurodeoxy-
cholic acid, to be positively associated with CRC16,26. These bile acids may
contribute to carcinogenesis through their roles in disrupting cell signaling
pathways, promoting inflammation, and inducing DNA damage in color-
ectal epithelial cells42,43. Additionally, bile acids can activate nuclear recep-
tors, which are involved in lipid metabolism, cellular proliferation, and
apoptosis regulation42. This may reflect their vital roles in cellular functions
essential for cancer development, such as cell membrane integrity, energy
storage, and signaling44,45. Additionally, the prevalence of lipids in these
findings could also be influenced by their prominence in commercially
available metabolomics kits and the specific research focus on these mole-
cules, which may skew the observed metabolic alterations toward lipid-
related pathways. Further, the precise timing of these metabolic changes
remains unclear, underscoring a significant area for future research to
explore the temporality ofmetabolite biomarker alterations in the context of
cancer progression. Research from screening trials and nested case-control
studies within prospective cohorts provides a unique opportunity to
investigate the temporality of metabolite biomarker performance. In nested
case-control studies and prospective cohort studies, where samples are
collected on average several years before diagnosis, risk-predictive bio-
markers gain importance. For example, these biomarkers hold the potential
for application in individuals before the starting age for screening,T
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facilitating risk assessment, and the development of more refined risk pre-
diction algorithms. Current risk-prediction algorithms, incorporating fac-
tors such as age, family history, genetic risk factors, and lifestyle factors,
show promise but require further improvement46. Conversely, metabolite
biomarkers identified in screening trials, shortly before the diagnosis ofCRC
or its precursors, may provide valuable insights for refining and optimizing
diagnostic strategies, leveraging the screening trials’ capability to capture
biomarkers indicative of the imminent occurrence of CRC.

Consideration should also be given to the temporal aspect related
to the stage of colorectal carcinogenesis examined in the selected stu-
dies. Metabolite profiles may exhibit distinct patterns at various stages
of CRC progression, with specific metabolites associated with aggres-
sive tumor characteristics being more pronounced in CRC compared
to adenomas or polyps47. Recognizing and leveraging these nuanced
metabolic panels could enhance the accuracy of metabolite-based
diagnostics, enabling more precise differentiation between CRC, ade-
nomas, and polyps.

Metabolites, integral to the phenotype, are extractable from
diverse biospecimens, including blood, urine, and stool, with blood and
urine being the most common choices in the examined studies. The
results based on different biospecimens are only partly comparable.
Notably, negative correlations have been observed between metabolite
concentrations in stool and urine samples, whereas positive correla-
tions exist between blood and urine, as well as blood and stool meta-
bolite concentrations48. Tumor-related detection of metabolites in
blood samples, which are routinely collected in medical practice,
exhibits challenges with indirect tumor analysis and potential analyte
dilution from leaked cells49. Conversely, metabolites derived from
urine and stool samples show promise in capturing CRC-related
metabolic perturbations, potentially reflecting the tumor
microenvironment50. In contrast to the complexity of blood analysis,
the simplicity of urine and stool provides unique advantages. However,
variations in metabolite concentrations due to circadian rhythm and
diet necessitate standardizing collection time and controlling for
nutrient consumption patterns51. Especially concentrations of fatty
acids, lipids, and amino acids are known to show circadian variation52.
Additionally, metabolite concentrations depend onwhether a person is
fasting or has recently eaten, with decreases in acylcarnitine and tri-
glycerides and increases in amino acids and glucose-related metabo-
lites after a meal52.

The inclusion of various sets of covariates adds to the complexity of
comparing the performance of different individual metabolites and meta-
bolite panels across the studies. Age, sex, and various clinical variables were
included as covariates in the models, with age and sex being the most
frequently integrated factors. However, many metabolites are affected by
lifestyle and nutritional factors and are subject to temporal variation caused
by such factors53,54. Standardized conditions of sample collection, alongwith
careful ascertainment of potential non-tumor relateddeterminants is crucial
for establishing potential use of metabolomics in CRC risk assessment or
early detection55.

Metabolite identification is subject to significant variation due to
the varied use of analytical techniques, technical implementation, and
the use of various techniques of data analyses across the included
studies. The choice of analytical techniques, such asNMR, GC-MS, and
LC–MS, introduces distinctive approaches tometabolite identification.
NMR, as the most popular option, offers the possibility to detect a wide
range of metabolites, while alternative methods like ELISA assays offer
enhanced flexibility, demonstrating the diverse spectrum of tools
available. Technical factors also play a crucial role in the variation of
the metabolite identification. The time and temperature of sample
collection and freezing can significantly influence outcomes. Stan-
dardizing protocols for sample collection, pre-analytical handling, and
storage conditions is essential to minimize variations, ensuring
reproducibility in metabolomics research55. Likewise, initiatives to
standardize metabolomics analyses are crucial in this regard, as they

aim to establish consistent protocols across studies55,56. These include
guidelines for study design, sample processing, and data reporting,
which are necessary to reduce inconsistencies and improve the com-
parability of results across different laboratories and studies55.

In parallel, the integration of various techniques of statistical analysis,
exemplified by the LASSO algorithm and Bayesian network in the included
studies18,23,30,32, introduces another layer of complexity. These techniques
prove valuable in identifying metabolites that differentiate between CRC or
precursor cases and controls. The combination of metabolomics and
machine learning offers an alternative to traditional statistical methods,
particularly for addressing the challenges presented by non-linear biological
data57.

The direct comparison of the results obtained for the identified
metabolite panels and for the individual metabolites is complicated by
a variety of factors, such as differing analytical methods and technical
considerations. The potential introduction of metabolomics testing in
clinical practice should be accompanied by careful evaluation of cost-
effectiveness studies. So far, cost-effectiveness studies have been very
limited. One such study concluded that implementing urine-based
metabolomics tests, such as those fromDeng et al. 30,31, might be a cost-
effective strategy in programmatic CRC screening programs58.
Therefore, the translation of these findings into clinical practice is not
imminent, highlighting the need for careful consideration of the
complex intricacies involved.

A strength of our review is its sole focus on studieswhere biospecimens
were collected before diagnosis of CRC orCRCprecursors, differentiating it
from most metabolomics research based on samples collected after diag-
nosis, whose relevance for early detection remains uncertain. Additionally,
the review’s comprehensive approach, covering a broad spectrum of
metabolite biomarkers in various biospecimens, improves our under-
standing of CRC metabolomics, potentially unlocking new insights into
CRC prediction and risk assessment.

Limitations in the interpretation and implementation of meta-
bolomics studies pose challenges. A major concern is the lack of
standardization, with efforts from initiatives aimed at establishing
standardized protocols from study design to sample collection and
preparation55. This lack of standardization may hinder the compar-
ability of studies included in this systematic review. While the review
provides a narrative summary, it does not include a meta-analysis due
to the heterogeneity of the studies. This decision, while justified in light
of the lack of standardization, means that the review does not offer a
quantitative synthesis of the data, which could potentially yield more
definitive conclusions. Furthermore, this systematic review faces
potential challenges beyond those inherent to the included studies,
such as publication bias, and the variability and sometimes insufficient
detail in the data reported by the individual study publications.

This systematic review emphasizes the significant potential of meta-
bolite panels, particularly those that focus on lipids, in improving CRC
prediction and risk assessment, outperforming the accuracy of individual
metabolites. These panels, based on metabolites derived from blood, urine,
and stool samples, have the potential to enhanceCRC screening by enabling
accurate risk assessment, thereby optimizing resource allocation, and
identifying individuals at high risk. However, the variation in analytical
methods and the lack of a standardized validation process underscore the
need for methodological harmonization. By standardizing techniques,
ensuring thorough validation, and examining metabolic variations at dif-
ferent CRC stages, metabolomics might have the potential to be effectively
incorporated into clinical practice, potentially transforming CRC screening
strategies to align with the emerging focus on personalized and precision
medicine.

Methods
Our systematic review was conducted following a pre-registered study
protocol with PROSPERO (registration number: CRD42023425862). Any
modifications made during the review process were documented in
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PROSPERO to ensure transparency and consistency. Additionally, we
adhered to the standardized methodology guidelines outlined in the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) (Supplementary Table 1)59.

Search strategy
Our systematic literature search aimed to identify relevant studies focusing
on metabolite biomarkers in noninvasive (urine, stool) or minimally inva-
sive (blood)biospecimensanalyzed inpre-diagnostic settings, concentrating
onCRCor its precursors. The searchwas conducted onDecember 30, 2023,
across three electronic databases, including PubMed, Web of Science, and
Scopus. The search terms employed consisted of “metabolomics”, “pre-
diagnostic biomarker”, and “colorectal cancer” along with associated terms.
Details regarding the employed terms for each database are available in
Supplementary Table 2.

Study selection
In our selection process, we considered articles on studies conducted in a
screening context that involved the measurement of metabolomics in
biospecimens (blood, urine, or stool) taken before a diagnosis of CRC or its
precursors. Additionally, we included articles based on prospective cohort
studies in which metabolomics measurements were obtained from bios-
pecimens collected at baseline. The primary outcome of interest encom-
passed CRC, its anatomic subsites (rectal or colon cancer), or precursors
such as adenomas or polyps. Letters, editorials, comments, news articles, or
articles published in languages other than English were not included.
Records unrelated to our review question, such as those focusing on dif-
ferent cancer types or biospecimen collection after diagnosis, were also
excluded.We furthermore excluded records that lacked sufficient statistical
data or did not report on the diagnostic or predictive performance of
metabolite biomarkers.

Data extraction and evaluation of study quality
Data extraction was performed independently by two authors, TS and CF.
To ensure precision and reliability, any initial discrepancies were resolved
through consensus after a thorough review and discussion. Information
extracted from each study included publication details (e.g., first author,
publication year), population characteristics (country, study design, study
setting, sample size, mean or median age of participants, and proportion of
female participants), sample characteristics (type of biospecimen, technique
used for metabolomics analysis, and the specific metabolites evaluated), as
well as effect measures, statistical methods, and study results, such as the
diagnostic or predictive performance of the studiedmetabolite biomarkers.

Themethodological quality of each recordwas independently assessed
by two investigators, TS andCF, using theQualityAssessment ofDiagnostic
Accuracy Studies 2 (QUADAS-2) tool60. Initial disagreementswere resolved
through consensus after further review and discussion. The assessment of
risk of bias included four domains: “patient selection,” “index test,” “refer-
ence standard,” and “flow and timing,” and the evaluation of applicability
comprised three domains: “patient selection”, “index test”, and “reference
standard”. The risk of bias and applicability assessment for each study was
rated as “high risk/concern,” “low risk/concern,” or “unclear risk/concern”
based on the QUADAS-2 signaling questions60.

Data availability
All data generated and analyzed during this study are included in the article
and its supplementary information files.
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