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Abstract
Climate change is reshaping forest ecosystems, presenting urgent and complex challenges that demand attention. In this 
context, research that quantifies interactions between climate and forests is substantial. However, modelling at a spatial reso-
lution relevant for ecological processes presents a significant challenge, especially given the diverse geographical contexts 
in which it is applied. In our study, we aimed to assess the effects of applying CHELSA v.2.1 and WorldClim v2.1 data on 
bioclimatic analysis within the Río Puelo catchment area in northern Patagonia. To achieve this, we inter-compared and 
evaluated present and future bioclimates, drawing on data from both climate datasets. Our findings underscore substantial 
consistency between both datasets for temperature variables, confirming the reliability of both for temperature analysis. 
However, a strong contrast emerges in precipitation predictions, with significant discrepancies highlighted by minimal 
overlap in bioclimatic classes, particularly in steep and elevated terrains. Thus, while CHELSA and WorldClim provide 
valuable temperature data for northern Patagonia, their use for precipitation analysis requires careful consideration of their 
limitations and potential inaccuracies. Nevertheless, our bioclimatic analyses of both datasets under different scenarios reveal 
a uniform decline in mountain climates currently occupied by N. pumilio, with projections suggesting a sharp decrease in 
their coverage under future climate scenarios.
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Introduction

Climate change poses significant challenges to forest eco-
systems, affecting their composition, structure, and function. 
Rising temperatures, shifting precipitation patterns, extreme 
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weather events, and hazards such as droughts and wildfires 
are altering their ecological dynamics. These changes can 
lead to shifts in species distribution and disruptions due to 
transformed ecological processes such as tree establishment 
and tree mortality (Rodríguez‐Catón et al. 2016, Srur et al. 
2016, 2018; Tovar et al. 2022) along with changing pat-
terns of invasive species (Iglesias et al. 2022). Additionally, 
the loss of glacier-fed rivers and decreased snowpack levels 
impact hydrological regimes, further intensifying stress on 
ecosystems (Aguayo et al. 2019; Rivera et al. 2023).

Studying the nexus of climate and ecosystems, bioclima-
tology emerges as a comprehensive framework. It explores 
in depth the intricate relationship between climate vari-
ables and biological processes, with a particular emphasis 
on their impact on species and ecosystems. This analyti-
cal approach integrates climatology, ecology, and biology 
to understand species distribution and interactions in space 
and time (Saslis-Lagoudakis et al. 2014). Thus, bioclimatic 
analysis can be a basis for biodiversity conservation (Ferrier 
et al. 2020), future-oriented forestry management (MacKen-
zie and Mahony 2021), and enhancing ecosystem resilience 
(Piraino et al. 2022). To effectively address these challenges 
and capture the nuances of small-scale ecological processes, 
research must be conducted at a relevant spatial scale, ensur-
ing the precision needed for detailed bioclimatic insights.

Nevertheless, modelling at high-resolution presents a sig-
nificant challenge, especially given the diverse geographi-
cal contexts in which it is applied. Peripheral mountainous 
regions, in particular, face hurdles due to limited coverage 
of in-situ observations (Condom et al. 2020; Thornton et al. 
2022) and their inherent topographic complexity. Access 
to reliable climate information at high resolution for these 
regions is often challenging. The scarcity of precise and 
localised data restricts the ability to capture the intricate 
interactions and dynamics of the systems under study, 
thereby introducing significant uncertainties into model 
outputs. Furthermore, limited availability of data compli-
cates the validation and calibration of models, reducing their 
reliability in decision-making processes (Otto et al. 2016; 
Littell et al. 2011).

Climatologies at high resolution for the Earth’s land sur-
face areas (CHELSA) (Karger et al. 2017) and WorldClim 
(Fick and Hijmans 2017) stand out as proven climate data-
sets for bioclimatic analysis, valued for their high spatial 
resolution, global coverage, and user-friendly accessibility. 
Both datasets provide researchers with a range of climatic 
variables crucial for understanding ecological processes and 
environmental changes within bioclimatic analysis (Körner 
et al. 2011; Pesaresi et al. 2017; Pham et al. 2023). Neverthe-
less, studies in different geographical settings have shown 
that particularly precipitation-related variables may lack reli-
ability and should be examined carefully (Bobrowski and 
Schickhoff 2017; Bobrowski et al. 2021; Abdulwahab et al. 

2022). Applying and comparing both datasets can thus shed 
light on the specific needs and challenges in accurately mod-
elling a region’s ecological and climatic dynamics.

Within the Andes of northern Patagonia, a pronounced 
precipitation gradient stretches from west to east over a 
relatively short distance, leading to a distinct vegetation 
productivity gradient across the region (Kitzberger et al. 
2022). This underscores the importance of precipitation-
related bioclimatic variables at high resolution for accurately 
understanding the region’s complex ecosystem dynamics. 
However, despite the area’s unique terrain and the critical 
role of input data in bioclimatic analysis (Morales‐Barbero 
and Vega‐Álvarez 2019), there is a notable research gap in 
comparing different datasets for bioclimatic analysis within 
northern Patagonia. The study by Derguy et al. (2022), 
which compares bioclimatic changes based on two local 
climate models in southern South America, stands as a rare 
but vital exception. However, similar studies are needed to 
uncover the strengths, limitations, and potential biases of 
various datasets, thereby improving the accuracy and reli-
ability of bioclimatic models (Bobrowski and Schickhoff 
2017; Abdulwahab et al. 2022).

In our study, we hypothesised that within the Río Puelo 
catchment area in northern Patagonia, precipitation-related 
variables would demonstrate greater uncertainty compared 
to temperature-related variables, as observed in other geo-
graphical settings. Guided by this hypothesis, our primary 
objective was to assess the impact of using CHELSA and 
WorldClim data on bioclimatic analysis in this region. To 
do this, we first compared current and future bioclimates 
based on these two distinct climate datasets, conducting an 
inter-comparison to identify any inherent patterns, trends, 
or discrepancies. Subsequently, we performed a compari-
son against available reference data to contextualise our 
findings further. This approach was designed to provide a 
comprehensive understanding of the potential implications 
of employing CHELSA and WorldClim data for bioclimatic 
studies within the Río Puelo catchment.

Data and methods

Study area

The Río Puelo watershed in northern Patagonia, spanning 
from 41.2° to 42.5° South and 72.2° to 71.5° West, crosses 
the Río Negro and Chubut provinces in the Andes and fea-
tures diverse topography and notable climatic gradients. 
Precipitation decreases from west to east due to the rain 
shadow of western mountains (Villalba et al. 2003), while an 
elevation range from 190 to 3157 m affects temperature and 
precipitation patterns, including snowfall. The area’s macro-
climate is influenced by the Antarctic Oscillation (AAO) and 
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the El Niño-Southern Oscillation (ENSO). Dominant veg-
etation includes Austrocedrus chilensis and N. antarctica, N. 
dombeyi, and N. pumilio, with certain Nothofagus species 
at their climatic limit in the east (Amigo and Rodríguez-
Guitián 2011; Kitzberger et al. 2022).

Study design

The experimental design of the study (Fig. 2) comprises 
two principal comparative analyses based on CHELSA and 
WorldClim. The first phase involves deriving current and 
future bioclimatic zones for a comparison between both data 
sources, which aims to identify intrinsic patterns, trends, or 
discrepancies between both datasets that are then framed 
as different types of uncertainty. In the initial phase of our 
study, we leverage climate, species, and elevation data to 
delineate bioclimatic zones. This process is critical for 
identifying areas with distinct climate characteristics that 
influence local vegetation patterns. In the second phase, 
historical data from CHELSA and WorldClim, alongside 
meteorological station data, are applied in a validation to 
contextualise and the findings of the first phase. Collectively, 
these comparative phases constitute a comparative frame-
work for examining the applied climate datasets.

Elevation data

We used the digital elevation model of the Shuttle Radar 
Topography Mission (SRTM) at a spatial resolution of 1 arc 
second which corresponds to approximately 28 m within the 
study area (Farr et al. 2007).

Historical climate data

For both evaluation processes (Fig. 2), we investigated the 
climate datasets of WorldClim v2.1 and CHELSA v2.1. 
These are publicly available, easily accessible, and of high 
spatial resolution (required to capture altitudinal layers of 
vegetation). Due to these advantageous properties, both 
datasets are widely used—highly cited within Clarivate 
Web of Science—and applied in ecological research (e.g. 
Fuentes-Castillo et al. 2020), hydrological modelling (e.g. 
Oliveira-Júnior et al. 2021), and studies related to agricul-
ture and forestry (e.g. Barrueto et al. 2018; Fadrique et al. 
2018). This widespread use underscores the significance 
and the comprehensive nature of the datasets in ecological 
modelling. Nevertheless, it should be mentioned that other 
high-resolution datasets and attempts to correct the datasets 
exist (Beck et al. 2020). However, within the scope of our 
study, we specifically concentrate on two datasets that have 
extensively been applied within our area of investigation.

CHELSA V.2.1 is a gridded climate dataset with a 30 
arc-second resolution (~ 0.8 km for the study area), covering 

monthly temperature and precipitation from 1979 to 2013. 
It uses ERA-Interim climatic reanalysis, with a temperature 
algorithm based on statistical downscaling and a precipi-
tation algorithm considering orographic factors, corrected 
using Global Precipitation Climatology Centre (GPCC) and 
Global Historical Climatology Network (GHCN) data. Topo-
climatic effects are covered through integration of Global 
Multi-resolution Terrain Elevation Data (GMTED2010) 
(Karger et al. 2017, 2021). WorldClim 2, similarly at 30 arc-
second resolution, provides a 30-year average of tempera-
ture and precipitation from 1970 to 2000, based on weather 
station data interpolated with elevation (SRTM), coastline 
proximity, and satellite parameters, including land surface 
temperatures and cloud cover from MODIS (Fick and Hij-
mans 2017).

Next to gridded climate data, and as an integral part of 
the validation (Fig. 2), meteorological station data (Fig. 1) 
for El Bolsón (41.9°S; 71.5°W at 343 m.a.s.l.), Río Ville-
gas (41.6°S; 71.5°W at 526 m.a.s.l.), a location west of El 
Bolsón (hereafter referred to as Río Azul [41.9°S; 71.6°W 
at 347 m.a.s.l.]), as well as two locations in the valley of Río 
Manso (hereafter referred to as Río Manso Inferior [41.6°S; 
71.8°W at 439 m.a.s.l.] and Río Manso Confluencia [41.6°S; 
71.7°W at 455 m.a.s.l.]) was retrieved from Servicio Mete-
orológico Nacional (2023) and Sistema Nacional de Infor-
mación Hídrica (2023). In order to function as a source of 
validation for high-resolution climate datasets, only station 
data with available timeseries from 1990 until 2018 was cho-
sen. With the exception of El Bolsón, only data concerning 
precipitation was accessible for the remaining stations.

Future climate data

Building on the pre-selection by Karger et  al. (2017), 
grounded in the Intersectoral Impact Model Intercompari-
son Project (ISIMIP) (Lange 2021), and considering the 
constrained overlap between CHELSA and WorldClim, our 
analysis was narrowed to a suite of five readily available 
climate models and two shared socioeconomic pathways 
(SSP). Specifically, we utilised the pathways SSP1-2.6 
and SSP3-7.0 as well as the climate models GFDL-ESM4, 
MRI-ESM2-0, UKESM1-0-LL, IPSL-CM6A-LR, and MPI-
ESM1-2-HR, all of which are based on CMIP6. The scenario 
SSP1-2.6 with 2.6 Wm−2 by the year 2100 is comparable 
to the optimistic scenario RCP2.6 and was designed with 
the aim of simulating a development that is comparable to 
the 2 °C target, according to the Paris Agreement (UNF-
CCC 2015). This scenario, too, assumes climate protec-
tion measures being taken. The scenario SSP3-7.0 with 7 
Wm−2 by the year 2100 is located in the upper-middle part 
of the full range of scenarios. It was newly introduced after 
the RCP scenarios, closing the gap between RCP6.0 and 
RCP8.5 (O’Neill et al. 2016). CHELSA and WorldClim data 
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differ in timescales, with CHELSA using 30-year intervals 
(2011–2040, 2041–2070, 2071–2100) and WorldClim using 
20-year intervals (2021–2040, 2041–2060, 2061–2080, and 
2081–2100).

Species data

To identify the best data source for establishing vegetation-
relevant bioclimatic zones, we extracted occurrence data 
from the Global Biodiversity Information Facility (GBIF.
org 2021) based on the key natural tree species in northern 
Patagonia: A. chilensis, N. antarctica, N. dombeyi, and N. 
pumilio. Within the process, only species occurrences within 
the Patagonia region were selected. Thus, anthropogenic 
distributions (e.g. from botanical gardens) were excluded. 
Simultaneously, we analysed the updated Forest Type Clas-
sification of Andean Patagonia of the year 2016 which is 
based on field and remote sensing data (CIEFAP-MAyDS 
2016). Out of three available classification levels, level two, 
which classifies the main forest types within the study area, 
was used within the present study (Supplementary Fig. 1). 

According to the authors, the second classification level 
comes with an overall accuracy of 87%.

Bioclimatic analysis

Bioclimates of both high-resolution climate datasets were 
calculated based on the World Wide Bioclimatic Classifica-
tion System (WBCS) of Rivas-Martínez et al. (2011). The 
classification system integrates both moisture levels and 
temperature conditions to define distinct bioclimatic classes, 
essential for understanding various ecosystems and climatic 
impacts (Andrade and Contente 2020, Pesaresi et al. 2017, 
Torregrosa et al. 2013, Cutini et al. 2021, Del Arco Aguilar 
and Rodríguez Delgado 2018, Rodríguez‐Catón et al. 2016, 
Szabó et al. 2021). On one side, it categorises climates into 
ombric types based on the ombrothermic index (Io), indicat-
ing moisture availability with classifications such as arid, 
semiarid, and dry, each specified further into ‘lower’ and 
‘upper’ horizons based on Io value ranges (Table 1). On 
the other side, it details thermotypic classifications through 
the thermotypic index (Tp), delineating temperature-based 
categories like Supramediterranean, Oromediterranean, and 

Fig. 1   Map of eastern Río Puelo watershed (showing Río Puelo and Lago Puelo exclusively), located at the Argentina-Chile border in north-west 
Patagonia. Topography of the study area is illustrated on basis of the digital elevation model SRTM (Farr et al. 2007)
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Crioromediterranean, again divided into ‘lower’ and ‘upper’ 
horizons based on Tp value ranges (Table 1):

where Tp is 
∑

Ti
1−12

> 0
◦
C in tenths of degrees; Pp is the 

positive annual precipitation of the months with an average 
monthly temperature (Ti) higher than 0 °C; and Io is 

(

Pp

Tp

)

10.
This dual approach allows for a comprehensive under-

standing of climatic conditions, offering insights into the 
suitability of regions for different types of vegetation, 
agriculture, and habitat sustainability. All bioclimates 
were calculated using ‘raster’ in RStudio (Hijmans 2023). 
Since mountains represent altitudinal thermic variations, 
classification of macro-bioclimate (submediterranean) 
was elaborated through temperature and precipitation 

values of the valley floors considering the macro-climate 
of the nearest listed station (Esquel; 42.9°S; 71.2°W at 
815 m.a.s.l.) according to Rivas-Martínez et al. (2011). As 
such, the site is located at the border to a temperate macro-
bioclimate (west) and thus classified as ‘extremely strong 
submediterranean’ climate (submediterraneity index of 
El Bolsón = 539) of a balanced oceanic type (simple con-
tinentality index of El Bolsón = 14.21) (Rivas-Martínez 
et al. 2011; Servicio Meteorológico Nacional 2023).

Based on the bioclimatic classification, we derived 
four bioclimatic zones (A, B, C, and D) in relation to the 
four primary tree species (A. chilensis, N. antarctica, N. 
dombeyi, and N. pumilio) for both climate datasets (Fig. 3). 
Each zone encompasses the primary bioclimates (more 
than 5% of occurrence) associated with a dominant tree 
species. Hence, in order to determine a bioclimatic zone, 
occurrence data of a species was layered with our previ-
ously created bioclimatic classification and then filtered 
by all encompassed bioclimatic classes that have a share 
greater than 5%. Due to the very low amount of available 
species data within the investigation area (cf. GBIF.org 
2021), base data for tree species distribution was adopted 
from the available forest classification product of CIEFAP-
MAyDS (2016).

In order to model bioclimatic projections, different sce-
narios and timescales were calculated based on the above 
mentioned SSPs and CMIP6 models. For this purpose, an 
altitudinal level of 1800 m.a.s.l. was set to restrict poten-
tial upshifting of habitat-specific species pools above bare 
rock terrain without natural soil, where the establishment 
of natural subalpine N. pumilio forest can be excluded. 
Within this study, relative cover is defined as factor of 
change and can be explained as the proportion (in percent) 
of a bioclimatic zone in reference to the total area of the 
eastern Río Puelo watershed. For each projection, points of 
origin are the reference periods of CHELSA (1981–2010) 
and WorldClim (1970–2000). Projections were individu-
ally calculated for each GCM and SSP.

Table 1   Ranges of the annual ombrothermic index (Io) and the 
annual positive temperature in tenth degrees (Tp) that determine 
ombric and thermotypic horizons within the study area (in reference 
to Fig. 2)

Ombric types ID Horizon Io
Arid 1 Lower 0.41–0.70

2 Upper 0.71–1.00
Semiarid 3 Lower 1.01–1.50

4 Upper 1.51–2.00
Dry 5 Lower 2.01–2.80

6 Upper 2.81–3.60
Subhumid 7 Lower 3.61–4.80

8 Upper 4.81–6.00
Humid 9 Lower 6.01–9.00

10 Upper 9.01–12.00
Thermotypes ID Horizon Tp
Supramediterranean 1 Lower 1201–1500

2 Upper 901–1200
Oromediterranean 3 Lower 676–900

4 Upper 451–675
Crioromediterranean 5 Lower 101–450

- - -

Fig. 2   Comparative framework 
for assessing bioclimatic model-
ling uncertainty using historical 
and future climate data, as well 
as species, elevation, and mete-
orological station data. Where 
grey boxes represent the data 
input as well as the bioclimatic 
pre-analysis and coloured boxes 
represent the two validation 
phases
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Comparison between data sources

In the first step of the comparison between data sources, we 
used linear regression analysis (Lumley 2020) to explore 
uncertainties linked to our bioclimatic classification, focus-
ing on the impact of various predictor variables, including 
19 bioclimatic factors (Supplementary Table 1) from Brun 
et al. (2022) and Fick and Hijmans (2017), on forest distribu-
tion. This aimed to test our zonation’s explanatory power to 
variations arising from different species datasets. The analy-
sis, utilising data from CIEFAP-MAyDS (2016) and GBIF.
org (2021), sought to pinpoint the most suitable input data 
for bioclimatic zonation and evaluate the explanatory power 
and associated uncertainties of the WBCS in our study area.

In the second step of the comparison between data 
sources, a descriptive analysis of distribution patterns, 
using ‘ggridges’ (Wilke 2022), served as support to iden-
tify variable-related uncertainties in regard to ombric 
and thermotypic horizons. This visualisation tool offers 
good capabilities for visualising changes in distribution 
over time and space. To better understand variability of 
means and extremes of both variables, the 0.1, 0.5, and 
0.9 quantile were retrieved for each period, SSP, GCM, 
and high-resolution climate dataset. Since a considerable 
amount of ground-based data for validation and prioritisa-
tion of climate datasets was missing, we considered the 
disagreement between CHELSA and WorldClim as a way 
to quantify spatial consistency regarding the precipitation 

Fig. 3   The bioclimatic zones of the eastern Río Puelo watershed, 
analysed using two key datasets: CHELSA, with data averaged from 
1981 to 2010 (Karger et  al. 2021), and WorldClim, with averages 
from 1970 to 2000 (Fick and Hijmans 2017). Each dataset categorises 
the region’s ombric and thermotypic horizons, ranging from arid to 
humid and from lower supramediterranean to lower crioromediterra-

nean, respectively. Visual differentiation is achieved through varying 
colour intensities, indicating moisture variations. Additionally, the 
figure marks bioclimatic zones A through D, representing species and 
showing their bioclimates and relative cover percentages across these 
environmental gradients
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and temperature-related variables (annual ombrothermic 
index and positive annual temperature).

In the third step, we assessed terrain-related uncer-
tainty by measuring the percentage of non-intersecting 
pixels between CHELSA and WorldClim datasets regard-
ing ombric horizons, thermotypic horizons, and biocli-
mates. We evaluated each cell for overlaps across these 
data sets and criteria. Non-intersecting pixels indicated 
higher uncertainty. To analyse topographical characteris-
tics of cells without intersection, we utilised SRTM-DEM 
for slope and elevation data. Spatial analyses were con-
ducted in RStudio using ‘rgdal’ (Bivand et al. 2023), ‘ras-
ter’ (Hijmans 2023), and ‘sf’ (Pebesma 2018; Pebesma 
and Bivand 2023) tools, based on EPSG:22181.

In the last step of the comparison between data sources, 
we compared future scenarios of both climate datasets as 
they were calculated by the bioclimatic analysis in the 
first place (section ‘Species data’). This step unveiled the 
scenario-related uncertainty due to the application of dif-
ferent GCMs and SSPs. The subject of the comparison 
is the bioclimatic zones A, B, C, and D, as well as their 
relative coverage degree.

Validation of data sources

In a second step of our framework (Fig. 2), we identified 
spatiotemporal inaccuracy in climate data as deviations 
over time (months) or across locations (from west to east) 
through a validation of both datasets. This inaccuracy is 
measured by the relative precipitation or absolute temper-
ature differences between high-resolution climate datasets 
and meteorological station data. Since station data was 
limited to a common reference period starting from 1980, 
a validation period from 1980 to 2010 was used to vali-
date CHELSA and WorldClim datasets, which cover the 
periods 1981–2010 and 1970–2000, respectively. Spati-
otemporal inaccuracy assessments focused on temperature 
and precipitation for El Bolsón, and precipitation only for 
Río Azul, Río Villegas, Río Manso Confluencia, and Río 
Manso Inferior due to data limitations.

Results

Bioclimatic analysis

Our bioclimatic analysis revealed differing categories 
between CHELSA and WorldClim datasets (Fig. 3a and 
b). CHELSA spans from lower arid and lower-supramedi-
terranean to upper humid and lower crioromediterranean, 
whereas WorldClim covers a narrower range, from lower 
arid and lower-supramediterranean to lower dry and lower 
crioromediterranean. Variations in thermotypic horizons 

are represented by different colours, and ombric horizons 
by colour intensity. WorldClim data, indicated by lower 
overall colour intensity, shows fewer wet end scale biocli-
mates (compare Table 1). Despite these differences, there 
is substantial overlap in the supramediterranean zone, 
highlighted by red and yellow categories.

Further clarification of these patterns is provided by 
examining the bioclimatic zones, as illustrated in Fig. 4c 
(1981–2010 average of CHELSA) and Fig. 4d (1970–2000 
average of WorldClim). As previously stated, the biocli-
matic classification based on CHELSA data is more diver-
sified compared to that derived from WorldClim data, 
leading to similarly diverse bioclimatic zones. In either 
case, all, or most of the upper oromediterranean as well as 
the lower crioromediterranean bioclimates are dedicated 
to zone D, where N. pumilio is predominant. Due to a low 
cover of natural forests in the low-lying areas south of El 
Bolsón, bioclimates of a supramediterranean character are 
almost non-existent within the present zonation. Finally, 
yet importantly, a large overlap of bioclimates between 
zones B and C (CHELSA) and zones A, B, and C (World-
Clim) can be noticed.

Classification‑related uncertainty

Analysing classification-related uncertainty, we found 
varying determination coefficients across datasets and 
bioclimatic indices, underlining how species and climate 
data choices affect bioclimatic zoning. Coefficients ranged 
from low (0.10 with GBIF and WorldClim) to moderate 
(0.50 with CIEFAP-MAyDS and WorldClim) across spe-
cies datasets (GBIF, CIEFAP-MAyDS), climate datasets 
(CHELSA, WorldClim), and classification indices (annual 
ombrothermic index, annual positive temperature). Sig-
nificant correlations with species distribution were found 
for both indices using CIEFAP-MAyDS data, but only for 
the annual ombrothermic index with GBIF data. Linear 
model fitting indicated improved results with more predic-
tor variables (Supplementary Figs. 2 and 3), highlighting 
the significant impact of input data on bioclimatic zones.

Future bioclimates and variable‑related uncertainty

Analysing variable-related uncertainty reveals distinct pat-
terns in current and future precipitation and temperature 
distributions (Fig. 4), highlighting pronounced contrasts 
between CHELSA and WorldClim data (Supplementary 
Tables  2 and 3). The most conspicuous appearance is 
the contrast of the precipitation related variable between 
CHELSA (Fig. 4a, c, e) and WorldClim (Fig. 4g, i, k). 
Whereas a value of 2.5 (Io) is at the 0.5 quantile of CHELSA 
data, a value of 2.5 (Io) is beyond the 0.9 quantile of World-
Clim data. This explains the substantial differences between 
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both datasets regarding the determination of ombric hori-
zons. Instead, distributions of temperature-related variables 
are more similar to each other. In regard to future condi-
tions, lower (0.1) and upper (0.9) quantiles for all scenarios 
show a shift to warmer and dryer bioclimates. Within the 
WorldClim dataset, strong variations regarding the precipita-
tion related variable can be seen between UKESM1-00-LL 
(Fig. 4i) and the other two GCMs (Fig. 4g and k). Especially 
for the SSP3-7.0 scenario at the end of the century, range 

between the 0.1 and the 0.9 quantile is relatively small in 
case of the UKESM1-00-LL GCM (i, SSP3-7.0 2081–2100).

Terrain‑related uncertainty

Terrain-related uncertainty analysis showed varying inter-
section levels between ombric and thermotypic horizons 
across datasets for reference periods, influenced by eleva-
tion and slope. Ombric horizons had a low 11% intersection, 

Fig. 4   Current and future densities of the annual ombrothermic index 
(Io) and the positive annual temperature (Tp) with marked quantiles 
(0.1, 0.5, and 0.9) for CHELSA (a–j) and WorldClim (k–t) under dif-

ferent shared socioeconomic pathways (blue for SSP1-2.6 and red for 
SSP3-7.0) and on basis of different global climate models
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while thermotypic horizons showed a 62% intersection 
(Fig. 5 and Supplementary Fig. 4). Higher intersections 
for ombric horizons were generally below 600 m above sea 
level (m.a.s.l.) with slopes under 10°, despite some outli-
ers. Thermotypic horizon intersections were mainly below 
800 m.a.s.l., with exceptions. Regarding the overall bio-
climatic classification (Fig. 5c), higher intersections were 
noted along Río Azul (label 1), Río Foyel (label 2), Río 
Manso (label 3), and the areas around Lago Puelo and Lago 
Epuyén (label 4), while lower intersections were found in 
the Río Turbio catchment area (label 5), in narrow valleys 
of tributary streams (label 6), and around Lago Marscardi, 
Lago Giullelmo, and Lago Fonck (label 7).

Future bioclimates and scenario‑related uncertainty

In examining the scenario-related uncertainty inherent in 
the projected impacts on bioclimates, our analysis demon-
strates the multifaceted declines and shifts in the near and 
distant future. Overall, the datasets from both CHELSA 
and WorldClim demonstrate a notable variability in the 
reference periods as well as projected future bioclimatic 
cover, revealing trends where certain bioclimatic zones are 
expected to experience increases, while others may face 
declines (Fig. 6). These trends are not uniform but rather 
vary significantly across different models and scenarios 
(e.g. SSP3-7.0 for UKESM1-0-LL and all other models), 
highlighting the nuanced responses of bioclimates to chang-
ing climatic conditions. The evident discrepancies between 
the projections of CHELSA and WorldClim underscore 
the inherent uncertainties within climate impact models 
based on input data, thus warranting a careful and cautious 

interpretation of future bioclimatic trends. However, despite 
the variability, results from all projections consistently indi-
cate a pronounced decline in the bioclimates of zone D. 
This zone is associated with the upper orobiome, where N. 
pumilio predominates (see Fig. 3). Zone D inhabits oro- 
and to some extent crioromediterranean bioclimates and 
can thus be classified as a bioclimatic segment of a typi-
cal mountain biome (Rivas-Martínez et al. 2011). Hence, 
a strong areal decrease can be attributed to an upward shift 
of the limit of Tp and an expansion limit at the upper oro-
graphic or rather edaphic tree line, where rocky habitats and 
lacking soil prevent the establishment of native subalpine N. 
pumilio ecosystems. This trend is particularly strong for sce-
narios based on the global climate model UKESM1-0-LL, 
where zone D shrinks to 28.5% (WorldClim) and 25.1% 
(CHELSA) under SSP1-2.6 respectively 1.3% (WorldClim) 
and 0.8% (CHELSA) under SSP3-7.0.

Spatiotemporal inaccuracy

Figure 7 shows the analysis of spatiotemporal inaccuracies 
showing differences between gridded climate datasets and 
meteorological station observations, particularly for precipi-
tation. The analysis expands along a west-to-east gradient 
(Fig. 7a to c) and includes two stations in the central area 
(Fig. 7d to f). Across this gradient, gridded datasets often 
overestimate monthly precipitation compared to stations, with 
varying degrees of accuracy. Specifically, Río Manso Inferior 
and Río Villegas data consistently show higher precipitation 
in gridded datasets year-round with a mean absolute error 
(MAE) of 24.28% for CHELSA and 37.29% for WorldClim at 
the first and mean MAE of 47.44% for CHELSA and 19.85% 

Fig. 5   Spatial intersection between (a) thermotypic horizons, (b) 
ombric horizons, and (c) bioclimates based on reference periods of 
CHELSA and WorldClim. Where red pixels are without and blue pix-

els are with intersection between both datasets. Marks of (c) represent 
points of reference for specific areas with (transparent) and without 
(hatched) intersection of the overall bioclimatic classification
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for WorldClim at the latter. At Río Manso Confluencia, station 
data typically exceeds gridded estimates except in March, July, 
and September with a mean MAE of 14.32% for CHELSA 
and 21.09% for Worldclim. At Río Azul, underestimations 
are common, except in specific months like March and July. 
Here, mean MAE is only 6.80% for CHELSA and 17.81% 
for WorldClim. El Bolsón Airport’s data shows no consist-
ent trend, with notable overestimation by WorldClim in July 
and a mean MAE of only 4.78 for CHELSA and 15.56% for 
WorldClim. Temperature analysis for El Bolsón reveals closer 
alignment in late autumn and winter, though gridded datasets 
tend to underestimate, with some exceptions. Overall, vari-
ability and inconsistencies across months and years prevent a 
definitive judgment on the datasets relative reliability.

Discussion

In this study, we combined bioclimatic modelling with a com-
parison of two widely used high-resolution climate datasets. 
Our aim was to study the current and future bioclimatological 

conditions of an area that is characterised by complex topog-
raphy, diverse structure of mountain climates, and limited 
data availability. Due to climatic data limitations, we focused 
on evaluating several types of uncertainty and inaccuracy that 
come along with the application of WorldClim and CHELSA.

Comparison of CHELSA and WorldClim

As expected, the comparison between CHELSA and World-
Clim, in regard to temperature-related variables, reveals 
broad consistency. Both bioclimatic classifications show 
substantial overlaps, especially in the low-lying sections of 
the investigation area, below 800 m.a.s.l. Current and future 
temperature densities are similar for the reference periods, 
as well as for all scenarios. Therefore, our findings are con-
sistent with those of Bobrowski and Schickhoff (2017) that 
found high consistency between temperature-related vari-
ables of CHELSA and WorldClim in the Himalayas. Fur-
thermore, the results of the validation show that discrepan-
cies between both gridded climate datasets and station data 
are rather marginal. However, there are some qualitative 

Fig. 6   Potential development of bioclimatic zones under different scenarios with reference to main tree species based on CHELSA and World-
Clim climate data. Where CHELSA is marked by solid lines and WorldClim by dashed lines
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differences between seasons, and accuracy for both datasets 
is higher from May to September.

The perspective changes markedly with respect to pre-
cipitation-related variables. In this case, only 11% of the 
classes overlap when both climate datasets are compared 
independently of external reference data. Moreover, this 
overlap approaches zero in areas characterised by steep 
slopes (approximately above 10°) and higher elevations 
(approximately above 600 m.a.s.l.). The densities of cur-
rent and future precipitation show wide variations for the 
reference periods and individual scenarios, with CHELSA’s 
estimates in precipitation significantly exceeding those of 
WorldClim. The selection of a wide range of GCMs is cru-
cial, as demonstrated by the significant differences observed 
between the models used in this study (e.g. UKESM1-0-LL 
in comparison with all other models). This discrepancy is 

further confirmed by validating the estimates against sta-
tion data, which reveals marked monthly fluctuations in both 
overestimation and underestimation, along with significant 
interannual variability. It is crucial, however, to approach 
these results with caution, as the rain gauges at the stations 
(mostly tipping buckets) are known to underestimate precipi-
tation during snowfall (Kochendorfer et al. 2020). Despite 
these limitations, the findings are consistent with those 
reported in the study by Morales‐Barbero and Vega‐Álvarez 
(2019), which identified large discrepancies between climate 
datasets in mountainous regions on a global scale. Simi-
larly, Bobrowski et al. (2021) highlight the potential draw-
backs of using CHELSA and WorldClim data for ecological 
modelling in remote areas of the Himalayas, primarily due 
to major differences in precipitation-related variables. As 
stated previously, within the eastern Río Puelo watershed, 

Fig. 7   Comparative analysis of monthly relative precipitation and 
temperature estimates by gridded climate data across five locations. 
Panels (a) to (e) show the monthly relative precipitation measured by 
station data (black line) and estimated by CHELSA (blue) and World-
Clim (red), highlighting the variability and patterns of overestimation 

or underestimation of the datasets across a west-to-east precipita-
tion gradient (a to c) as well as two stations located in the centre of 
the investigation area (d and e). Panel (f) presents a comparison of 
monthly temperature records of the station with estimates of the grid-
ded datasets, demonstrating seasonal alignment and deviations
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the notable inconsistency between the datasets can be attrib-
uted to CHELSA data indicating higher precipitation levels, 
in contrast to WorldClim data, which shows lower levels. 
This observation is in line with the findings of Bobrowski 
et al. (2021). The appearance of precipitation related overes-
timation and underestimation was also perceived by Newell 
et al. (2022) for complex topography with low density of 
meteorological stations in northern Peru. In this respect, 
our study confirms the findings of lower accuracy of pre-
cipitation-related variables compared to temperature-related 
variables derived from high-resolution climate data as stated 
by Fick and Hijmans (2017), Karger et al. (2017), and Beck 
et al. (2020). This is warranted by local terrain conditions 
and wind patterns that significantly influence small-scale 
atmospheric processes, making them largely independent of 
latitude or altitude (Bobrowski and Schickhoff 2017). Hence, 
estimating precipitation in remote and complex terrains, as 
given by the Río Puelo watershed, remains a significant chal-
lenge. Moreover, the underlying CMIP6 models generally 
struggle with accurately representing the spatial patterns 
of precipitation in Patagonia, as indicated by Gateño et al. 
(2024) and Salazar et al. (2024). However, the models pre-
selected by Karger et al. (2017) perform relatively well in 
northern Patagonia, according to a comparative study by 
Salazar et al. (2024).

In summary, while CHELSA and WorldClim provide 
valuable temperature data for northern Patagonia, their use 
for precipitation analysis requires careful consideration of 
their limitations and potential inaccuracies. Practitioners and 
researchers should prioritise dataset validation with local 
observations and remain cautious of seasonal and topograph-
ical factors that may influence data reliability. Furthermore, 
future studies could benefit from utilising probabilistic mete-
orological datasets, such as EM-Earth. These datasets typi-
cally outperform deterministic ones in regions with complex 
topography and significant uncertainties due to sparse meas-
urements. They may not only offer a better understanding of 
uncertainty but also provide a more accurate representation 
of extremes (Tang et al. 2022).

Bioclimatic analysis

Concerning bioclimatic analysis, we found a strong decline 
in mountain climates that are currently occupied by N. 
pumilio. This decline is particularly strong for SSP3-7.0 sce-
narios, where projections show a decrease to 15% and less 
of relative cover by end of the century. Our study is thus in 
line with Tovar et al. (2022), indicating a decrease of Tem-
perate deciduous forests in the Andes. A decline in unique 
bioclimates of mountainous areas can be explained by the 
interaction of changing climate and an upper altitudinal 
limit. This has been observed in other geographies (Zomer 
et al. 2014) and is closely linked to complex topographies. 

There is robust evidence that global warming will lead to 
an upward shift of bioclimatic zones, consequently pos-
ing a risk of range contraction and extinction for species 
inhabiting mountainous regions (Adler et al. 2023). Overall, 
the future climate of northern Patagonia is expected to be 
warmer and drier (Gateño et al. 2024; Salazar et al. 2024), 
with critical impacts on water resources (Aguayo et al. 2019; 
Pessacg et al. 2020) and corresponding impacts on regional 
ecosystems.

Implications for regional ecosystems

Despite assessed uncertainties, our study reveals consistent 
bioclimatic trends across both climate data sets and different 
scenarios. These are especially evident regarding exposures 
of oro- and crioromediterranean climates and shed light on 
the future of N. pumilio forests (Supplementary Fig. 5) under 
a changing climate in northern Patagonia.

Northern Patagonian forests with a predominance of ever-
green species, such as N. dombeyi and A. chilensis, change 
to N. pumilio-dominated Subantarctic-Andean deciduous 
forests (Adenocaulo-Nothofagetalia pumilionis Oberd. 1960 
em. Hildebrand-Vogel, Godoy & Vogel 1990 [Nothofagetea 
pumilionis-antarcticae Oberd. 1960]) above certain altitudes. 
This vegetation shift indicates a division into different alti-
tudinal zones, each characterised by specific plant com-
munities whose life forms and species composition differ 
significantly (Aschero et al. 2022; Cagnacci et al. 2020). 
Biotic exchange by the invasion of non-native species such 
as Pinus contorta (Supplementary Figs. 6 and 7) poses a 
significant ecological threat to ecosystems of oromediterra-
nean and crioromediterranean climates (cf. Sala et al. 2000), 
particularly above the treeline of N. pumilio, altering fire 
dynamics and threatening native ecosystems (Raffaele et al. 
2016). Since fire is a current and most likely amplified future 
threat (Kitzberger et al. 2022), ‘new forests’, ‘higher timber-
line’, ‘timber production at higher altitudes’, etc. cannot be 
considered strong ‘restoration’ arguments.

Longitudinally, vegetation types below the subalpine 
level change less discriminatory and more ecotonal, with 
deciduous forests (Myrceugenio-Nothofagetum dombeyi 
Eskuche 1999), mixed forests (Austrocedro-Nothofagetum 
dombeyi Eskuche 1968), and coniferous forests (Gavileo-
Austrocedretum Eskuche 1968) showing overlapping spe-
cies compositions. This is in line with our study indicating 
a large overlap between bioclimates of zone B (N. dombeyi) 
and C (N. antarctica) but a relative distinction between 
zone A (A. chilensis) and B (N. dombeyi) as well as D (N. 
pumilio) from zone A (A. chilensis), B (N. dombeyi), and 
C (N. antarctica). However, even though our classification 
results show a minimal overlap between zone A (A. chilen-
sis) and C (N. antarctica), a combination of both species 
can usually be observed in the succession process of the 



Regional Environmental Change (2024) 24:110	 Page 13 of 15  110

lower slopes or valley bottoms. This continuum suggests a 
complex interaction amongst forest types, potentially offer-
ing resilience against disturbances like wildfires. However, 
future climate change may challenge this balance, with N. 
dombeyi and A. chilensis showing differing moisture prefer-
ences (Veblen 2007) and the potential for range contractions 
under changing climatic conditions.

Limitations and further research

While our study did not focus on future species coverage 
projections, it signals potential risks to species like N. 
pumilio. In this respect, future studies should explore how 
species respond to climate change, including the impact of 
climate extremes on ecosystem disturbances. Understand-
ing the bioclimatology of Wintero-Nothofagetea species 
and climate change effects on their viability is crucial for 
informed forest management. We advocate for maintaining 
and expanding meteorological monitoring to enhance cli-
matology data accuracy, and the improvement of gridded 
climate datasets, as seen in Beck et al. (2020). Our findings 
also suggest that bioclimatic projections could lead to diver-
gent adaptation strategies. Following Gregor et al. (2022), 
it is important to tailor climate-smart forestry to specific 
scenarios. For these reasons, we recommend using our data 
to foster local dialogue and workshops, improving regional 
decision-making with expert insights into adaptation strate-
gies and embracing a transdisciplinary approach to unite 
various knowledge systems for better climate understanding 
and decision-making, as discussed by Bremer et al. (2019) 
and Moure et al. (2023).

Conclusion

Our study investigates the bioclimatological conditions of 
northern Patagonia, facing complex topography and sparse 
data, through a comparative analysis of high-resolution 
climate datasets CHELSA v2.1 and WorldClim v.2.1. Our 
findings underscore substantial consistency between these 
datasets for temperature variables, confirming the reliability 
of both for temperature analysis. However, a strong contrast 
emerges in precipitation estimates, with significant discrep-
ancies highlighted by minimal overlap in bioclimatic classes, 
particularly in steep and elevated terrains. Such variations 
underscore the challenges of accurately modelling precipi-
tation in mountainous regions, where local topography and 
wind patterns play crucial roles. Thus, the study highlights 
the importance of a comparison between different data 
sources and validations against ground-based data and the 
careful consideration of precipitation-related variables in 
bioclimatic modelling within the Río Puelo watershed.

However, despite the differences of the applied climate 
datasets, our bioclimatic analysis reveals a concerning 
decline in mountain climates suitable for N. pumilio, with 
projections suggesting a sharp decrease in their coverage 
under future climate scenarios. This demonstrates that, 
despite the detected uncertainties, it is possible to identify 
vulnerable bioclimatic zones within the Río Puelo watershed 
based on CHELSA and WorldClim data.
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