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Abstract 

Background  Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratifica‑
tion of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are 
at the highest risk. The considerable number of risk assessment scales and prediction models available underscores 
the need for a thorough evaluation of their development, validation, and clinical utility.

Our objectives were to identify and describe available risk prediction tools for PI occurrence, their content 
and the development and validation methods used.

Methods  The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL, EPISTE‑
MONIKOS, Google Scholar, and reference lists were searched to identify relevant systematic reviews. The risk of bias 
was assessed using adapted AMSTAR-2 criteria. Results were described narratively. All included reviews contributed 
to building a comprehensive list of risk prediction tools.

Results  We identified 32 eligible systematic reviews only seven of which described the development and validation 
of risk prediction tools for PI. Nineteen reviews assessed the prognostic accuracy of the tools and 11 assessed clinical 
effectiveness. Of the seven reviews reporting model development and validation, six included only machine learning 
models. Two reviews included external validations of models, although only one review reported any details on exter‑
nal validation methods or results. This was also the only review to report measures of both discrimination and calibra‑
tion. Five reviews presented measures of discrimination, such as the area under the curve (AUC), sensitivities, specifici‑
ties, F1 scores, and G-means. For the four reviews that assessed the risk of bias assessment using the PROBAST tool, all 
models but one were found to be at high or unclear risk of bias.

Conclusions  Available tools do not meet current standards for the development or reporting of risk prediction mod‑
els. The majority of tools have not been externally validated. Standardised and rigorous approaches to risk prediction 
model development and validation are needed.

Trial registration  The protocol was registered on the Open Science Framework (https://​osf.​io/​tepyk).
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Introduction
Pressure injuries (PI) carry a significant healthcare 
burden. A recent meta-analysis estimated the global 
burden of PIs to be 13%, two-thirds of which are hospi-
tal-acquired PIs (HAPI) [1]. The average cost of a HAPI 
has been estimated as $11 k per patient, totaling at least 
$27 billion a year in the United States based on 2.5 mil-
lion reported cases [2]. Length of hospital stay is a large 
contributing cost, with patients over the age of 75 who 
develop HAPI having on average a 10-day longer hospital 
stay compared to those without PI [3].

PIs result from prolonged pressure, typically on bony 
areas like heels, ankles, and the coccyx, and are more 
common in those with limited mobility, including those 
who are bedridden or wheelchair users. PIs can develop 
rapidly, and pose a threat in community, hospital, and 
long-term care settings. Multicomponent preventive 
strategies are needed to reduce PI incidence [4] with 
timely implementation to both reduce harm and burden 
to healthcare systems [5]. Where preventive measures 
fail or are not introduced in adequate time, PI treatment 
involves cleansing, debridement, topical and biophysical 
agents, biofilms, growth factors, and dressings [6–8], and 
in severe cases, surgery may be necessary [5, 9].

A number of clinical assessment scales for assessing 
the risk of PI are available (e.g. Braden [10, 11], Norton 
[12], Waterlow [13]) but are limited by reliance on sub-
jective clinical judgment. Statistical risk prediction mod-
els may offer improved accuracy over clinical assessment 
scales, however appropriate methods of development 
and validation are required [14–16]. Although methods 
for developing risk prediction models have developed 
considerably [14, 15, 17, 18]. Methodological standards 
of available models have been shown to remain relatively 
low [17, 19–22]. Machine learning (ML) algorithms to 
develop prediction models are increasingly common-
place, but these models are at similarly high risk of bias 
[23] and do not necessarily offer any model performance 
benefit over the use of statistical methods such as logis-
tic regression [24] Methods for systematic reviews of risk 
prediction model studies have also improved [25–27], 
with tools such as PROBAST (Prediction model Risk of 
Bias Assessment Tool) [28] now available to allow critical 
evaluation of study methods.

Although several systematic reviews of PI risk assess-
ment scales and risk prediction models for PI (subse-
quently referred to as risk prediction tools) are available 
[29–38], these have been demonstrated to frequently 
focus on single or small numbers of scales or models, use 
variable review methods and show a lack of consensus 
about the accuracy and clinical effectiveness of available 
tools [39]. We conducted an umbrella review of system-
atic reviews of risk prediction tools for PI to gain further 

insight into the methods used for tool development and 
validation, and to summarise the content of available 
tools.

Methods
Protocol registration and reporting of findings
We followed the guidance for conducting umbrella 
reviews provided in the Cochrane Handbook for Inter-
vention Reviews [40]. The review was reported in accord-
ance with guidelines for Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) [41] 
(see Appendix  1), adapted for risk prediction model 
reviews as required. The protocol was registered on the 
Open Science Framework (https://​osf.​io/​tepyk).

Literature search
Electronic searches of MEDLINE, Embase via Ovid, 
and CINAHL Plus EBSCO from inception to June 2024 
were developed, tested and conducted by an experienced 
information specialist (AC), employing well-established 
systematic review and prognostic search filters [42–44] 
combined with specific keyword and controlled vocabu-
lary terms relating to PIs. Additional simplified searches 
were undertaken in EPISTEMONIKOS and Google 
Scholar due to the more limited search functionality of 
these two sources. The reference lists of all publications 
reporting reviews of prediction tools (systematic or non-
systematic) were reviewed to identify additional eligible 
systematic reviews and to populate a list of PI risk pre-
diction tools. Title and abstract screening and full-text 
screening were conducted independently and in dupli-
cate by two of four reviewers (BH, JD, YT, KS). Any dis-
agreements were resolved by discussion or referral to a 
third reviewer.

Eligibility criteria for this umbrella review
Published English-language systematic reviews of risk 
prediction models developed for adult patients at risk of 
PI in any setting were included. Reviews of clinical risk 
assessment tools or models developed using statisti-
cal or ML methods were included, both with or without 
internal or external validation. The use of any PI classifi-
cation system [6, 45–47] as a reference standard was eli-
gible. Reviews of the diagnosis or staging of those with 
suspected or existing PIs or chronic wounds, reviews of 
prognostic factor and predictor finding studies, and mod-
els exclusively using pressure sensor data were excluded.

Systematic reviews were required to report a compre-
hensive search of at least two electronic databases, and 
at least one other indicator of systematic methods (i.e. 
explicit eligibility criteria, formal quality assessment of 
included studies, sufficient data presented to allow results 

https://osf.io/tepyk
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to be reproduced, or review stages (e.g. search screening) 
conducted independently in duplicate).

Data extraction and quality assessment
Data extraction forms (Appendix  3) were developed 
using the CHARMS checklist (CHecklist for critical 
Appraisal and data extraction for systematic Reviews of 
prediction Modelling Studies) and the Cochrane Progno-
sis group template [48, 49]. One reviewer extracted data 
concerning review characteristics, model details, num-
ber of studies and participants, study quality and results. 
Extractions were independently checked by a second 
reviewer. Where discrepancies in model or primary study 
details were noted between reviews, we accessed the pri-
mary model development publications where possible.

The methodological quality of included systematic 
reviews was assessed using AMSTAR-2 (A MeaSurement 
Tool to Assess systematic Reviews) [50], adapted for sys-
tematic reviews of risk prediction models (Appendix 4). 
Quality assessment and data extraction were conducted 
by one reviewer and checked by a second (BH, JD, KS), 
with disagreements resolved by consensus. Our adapted 
AMSTAR-2 contains six critical items, and limitations in 
any of these items reduce the overall validity of a review 
[50].

Synthesis methods
Reviews were considered according to whether any 
information concerning model development and valida-
tion was reported. This specifically refers to reporting 
methods of model development or validation, and/or the 
presentation of measures of both discrimination and cali-
bration. This is in contrast to evaluations of prognostic 
accuracy, where models are applied at a binary threshold 
(e.g., for high or low risk), and present only discrimina-
tion metrics with no further consideration of model per-
formance. Available data were tabulated, and a narrative 
synthesis was provided.

All risk prediction models identified are listed in 
Appendix  5: Table  S4, including those for which no 
information about model development or validation was 
provided at the systematic review level. Risk prediction 
models were classified as ML-based or non-ML models, 
based on how they were classified in included systematic 
reviews, including cases where models such as logistic 
regression were treated as ML-based models. Where pos-
sible, the predictors included in the tools were extracted 
at the review level and categorised into relevant groups 
in order to describe the candidate predictors associated 
with the risk of PI. No statistical synthesis of systematic 
review results was conducted.

Reviews reporting results as prognostic accuracy (i.e. 
risk classification according to a binary decision) or 

clinical effectiveness (i.e. impact on patient management 
and outcomes) are reported elsewhere [39]. Hereafter, 
the term clinical utility is used to encompass both accu-
racy and clinical effectiveness.

Results
Characteristics of included reviews
Following the de-duplication of search results, 7200 
unique records remained, of which 118 were selected 
for full-text assessment. We obtained the full text of 
111 publications of which 32 met all eligibility criteria 
for inclusion (see Fig. 1). Seven reviews reported details 
about model development and internal validation [36, 37, 
51–55], two of which also considered external validation 
[52, 54]; 19 reported accuracy data [29–35, 38, 54, 56, 
56–58, 58–61, 61–66, 66–72]. One review [54] reported 
both model development and accuracy data, and four 
reviews reported both accuracy and effectiveness data 
[56, 58, 61, 66].

Table 1 provides a summary of systematic review meth-
ods for all 32 reviews according to whether or not they 
reported any tool development methods (see Appendix 5 
for full details). The seven reviews reporting predic-
tion tool development and validation were all published 
within the last 6 years (2019 to 2024) compared to reviews 
focused on the clinical utility of available tools (published 
from 2006 to 2024). Reviews focused on model develop-
ment methods almost exclusively focused on ML-based 
models (all but one [60] of the seven reviews limited 
inclusion to ML models) and frequently did not report 
study eligibility criteria related to study participants or 
setting (Table  1). In comparison, only two reviews (8%) 
concerning the clinical utility of models included ML-
based models [38, 54], but more often reported eligibility 
criteria for population or setting: hospital settings (n = 3) 
[33, 38, 54], or surgical settings (n = 8) [31, 34, 61, 63, 64, 
70], hospital or acute settings (n = 2) [67, 71] long-term 
care settings (n = 2) [29, 35] or the elderly (n = 1) [60].

On average, reviews about tool development 
included more studies than reviews of clinical util-
ity (median 22 compared to 15), more participants 
(median 408,504 compared to 7684), and covered more 
prediction tools (median 21 compared to 3) (Table 1). 
Ten reviews (38%) about clinical utility included only 
one risk assessment scale, whereas reviews of tool 
development included at least 3 different risk predic-
tion models. The PROBAST tool for quality assess-
ment of prediction model studies was used in 57% 
(n = 4) of tool development reviews [37, 52–54], 
whereas validated test-accuracy specific tools such as 
QUADAS were used less frequently (10/26, 38%) in 
reviews of clinical utility. Two reviews of tool develop-
ment did not report any quality assessment of included 
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studies (29%), compared to 4 (15%) reviews of clinical 
utility. Meta-analysis was conducted in two of seven 
(29%) reviews of tool development compared to more 
than half of reviews of clinical utility (15, 58%).

Methodological quality of included reviews
The quality of included reviews was generally low 
(Table  2; Appendix  5 for full assessments). The major-
ity of reviews (71% (5/7) reviews on tool development 

Fig. 1  PRISMA [41] flowchart: identification, screening and selection process. List of full-text articles excluded, with reasons, is given in Appendix 5. 
*Note that one review [54] is included in both
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Table 1  Summary of included systematic review characteristics

Review characteristics Reviews on model 
development and validation 
(N = 7)

Reviews on accuracy or 
clinical effectiveness (N = 26)

All included reviews (N = 32)

Median (range) year of publication 2022 (2019–2023) 2017 (2006–2024) 2019 (2006–2024)

Eligibility criteria

  Participants

    Adults only 2 (29)a 15 (58)b 16 (50)a,b

    Any age 0 (0) 2 (8) 2 (6)

    No age restriction reported 5 (71) 9 (35) 14 (44)

  Presence of PI at baseline

    No PIs at baseline 0 (0) 6 (23) 6 (19)

    NS 7 (100) 20 (77) 26 (81)

  Setting

    Any healthcare setting 0 (0) 2 (8) 2 (6)

    Hospital 3 (43) 3 (12) 5 (16)

    Acute care (incl. surgical and ICU) 0 (0) 8 (31) 8 (25)

    Hospital or acute care 0 (0) 2 (8) 2 (6)

    Long-term care 0 (0) 2 (8) 2 (6)

    Long-term, acute or community settings 0 (0) 1 (4) 1 (3)

    NS 4 (57) 8 (31) 12 (38)

  Risk assessment tools

    Any prediction tool or scale 0 (0) 9 (35) 9 (28)

    Specified clinical scale(s) 0 (0) 12 (46) 12 (38)

    ML-based prediction models 6 (86) 2 (8) 7 (22)

    ML or statistical models 1 (14) 0 (0) 1 (3)

    PI prevention strategies 0 (0) 1 (4) 1 (3)

    NS 0 (0) 2 (8) 2 (6)

  PI classification system

    Any 0 (0) 1 (4) 1 (3)

    Accepted standard classifications 0 (0) 2 (8) 2 (6)

    Several specified classification systems 
(NPUAP, EPUAP, AHCPR or TDCPS)

0 (0) 3 (12) 3 (9)

    Other 0 (0) 1 (4) 1 (3)

    NS 7 (100) 19 (73) 25 (78)

  Source of data

    Prospective only 0 (0) 4.5 (17)c 4.5 (14)c

    Prospective or retrospective 1 (14) 2.5 (10)c 3.5 (41)c

    NS 6 (86) 19 (73) 24 (75)

  Study design restrictions

    Yes 1 (14) 14 (54) 15 (47)

    No 0 (0) 3 (12) 3 (9)

    NS 6 (86) 9 (35) 14 (44)

  Review methods

  Median (range) no. sourcesd searched 5 (2–9) 6 (2–14) 5 (2–14)

Publication restrictions:

  End date (year)

    2000–2009 0 (0) 3 (12) 3 (9)

    2010–2019 1 (14) 16 (62) 17 (53)

    2020–2023 6 (86) 7 (27) 12 (38)

Language

  English only 5 (71) 10 (38) 15 (47)
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and 78% (18/23) reviews on clinical utility) partially met 
the AMSTAR-2 criteria for the literature search (i.e. 
searched two databases, reported search strategy or key-
words, and justified language/publication restrictions), 
with only three (two reviews [56, 72] on clinical utility, 
and one review [54] on both tool development and clini-
cal utility) meeting all criteria for ‘yes’ (i.e. searching grey 
literature and reference lists, with the search conducted 
within 2 years of publication). Twenty-two reviews (69%) 
conducted study selection in duplicate (5/7 (71%) of 

reviews about tool development and 17/26 (65%) of clini-
cal utility reviews). Conflicts of interest were reported 
in all seven tool development reviews and 77% of clini-
cal utility reviews (20/26). Reviews scored poorly on the 
remaining AMSTAR-2 items, with around 50% or fewer 
reviews meeting the stipulated AMSTAR-2 criteria. Nine 
reviews (28%) used an appropriate method of quality 
assessment of included studies and provided itemisation 
of judgements per study. No review scored ‘yes’ for all 
AMSTAR-2 items in either category.

Table 1  (continued)

Review characteristics Reviews on model 
development and validation 
(N = 7)

Reviews on accuracy or 
clinical effectiveness (N = 26)

All included reviews (N = 32)

  2 languages 1 (14) 3 (12) 3 (9)

  > 2 languages 0 (0) 3 (12) 3 (9)

  No restrictions 0 (0) 4 (15) 4 (13)

  NS 1 (14) 6 (23) 7 (23)

Quality assessment toole

  PROBAST 4 (57) 1 (4)f 4 (13)f

  QUADAS 0 (0) 2 (8) 2 (6)

  QUADAS-2 0 (0) 8 (31) 8 (25)

  JBI tools 1 (14) 3 (12) 4 (13)

  CASP 0 (0) 2 (8) 2 (6)

  Cochrane RoB tool 0 (0) 1 (4) 1 (3)

  Other 0 (0) 6 (23) 6 (19)

  None 2 (29) 4 (15) 6 (19)

  Meta-analysis included 2 (29) 15 (58) 16 (50)

Method of meta-analysis

  (% of reviews incl. meta-analysis)

  Univariate RE/FE model (depending on hetero‑
geneity assessment)

1 (50)g 2 (13)g 3 (19)

  Univariate RE model 1 (50) 6 (40)g 6 (38)g

  Hierarchical model (for DTA studies) 0 (0) 2 (13) 2 (13)

  Unclear/NS 0 (0) 5 (33)g 5 (31)g

Volume of evidence

  Median (range) no. studies 22 (3–35) 15 (1–70) 17 (1–70)

  Median (range) no. participants 408,504 (6674–1,278,148) 7684 (528–408,504) 11,729 (528–1,278,148)

  Median (range) no. tools 21 (3–35) 3 (1–28) 4 (1–35)

Figures are number (%) of reviews, unless otherwise specified
a One review [55] specified restricting to “adult” populations, but only restricted by aged ≥ 14 years
b One review [60] restricted to aged > 60 years
c One review [56] states either prospective or retrospective data is eligible for Research Question 1, but prospective only for Research Question 2, hence 0.5 added to 
each category
d Including databases, bibliographies or registries
e Reviews may fall into multiple categories, therefore total number within the domain is not necessarily equal to N (100%)
f One review [38] reported use of PROBAST in methods but did not present any PROBAST results
g One review conducts univariate meta-analysis for a single estimate, e.g. c-statistic [52], AUC [62], RR [57] or OR [58]

AHCPR Agency for Health Care Policy and Research, CASP Critical Appraisal Skills Programme, DTA diagnostic test accuracy, EPUAP European Pressure Ulcer Advisory 
Panel, FE fixed effects, ICU intensive care unit, JBI Joanna Briggs Institute, ML machine learning, NPUAP National Pressure Ulcer Advisory Panel, NS not stated, PI 
pressure injury, PROBAST Prediction model Risk of Bias Assessment, QUADAS (2) Quality Assessment of Diagnostic Accuracy Studies (Version 2), RE random effects, 
TDCPS Torrance Developmental Classification of Pressure Sore
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Findings
Of the 32 reviews, 26 reviews focused on the clinical util-
ity (accuracy or effectiveness) of prediction tools. These 
clinical utility reviews provided no details about the 
development or validation of included models (except 
for one review [54]), and gave only limited detail about 
the setting and study design (see Appendix  5). Reviews 
reporting the accuracy of prediction tools largely treated 
the tools as diagnostic tests to be applied at a single 
threshold (e.g., for high or low risk) and they did not 
focus on the broader aspects of prognostic model per-
formance, such as calibration and the temporal relation-
ship between prediction and the outcome, PI occurrence. 
These reviews included a total of 70 different predic-
tion tools, predominantly derived by clinical experts, as 
opposed to empirically derived models (that is, with sta-
tistical or ML methods). The methodology underlying 
their development is not always explicit, with scales in 
routine clinical usage apparently based on epidemiologi-
cal evidence and clinical judgment about predictors that 
may not meet accepted principles for the development 
and reporting of risk prediction models. The most com-
monly included tools were the Braden [10, 11] (included 
in 21 reviews), Waterlow [13] (n = 14 reviews), Norton 

[12] (n = 11 reviews), and Cubbin and Jackson scales [73, 
74] (n = 8 reviews).

The seven systematic reviews that reported detailed 
information about model development and valida-
tion included 70 prediction models, 48 of which were 
unique to these seven reviews. Between three [51] and 
35 [36] model development studies were included; one 
review [52] also included eight external validation stud-
ies and another review [54] included one external valida-
tion study. Electronic health records (EHRs) were used 
for model development in all studies in one review [37] 
and for the majority of models (> 66%) in the remaining 
reviews, where reported [51, 53–55]. Three reviews [52, 
54, 55] reported the use of prospectively or retrospec-
tively collected data. No review included information 
about the thresholds used to define whether a patient is 
at risk of developing PIs. Five reviews included details 
about the predictors included in each model.

The largest review [36] reported that logistic regression 
was the most commonly reported modelling approach 
(20/35 models), followed by random forest (n = 18), deci-
sion tree (n = 12) and support vector machine (n = 12) 
approaches. Logistic regression was also the most fre-
quently used approach in three other reviews (18/23 

Table 2  Summary of AMSTAR-2 assessment results

AMSTAR​ A MeaSurement Tool to Assess systematic Reviews, Item 1 adequate research question/inclusion criteria?, Item 2 protocol and justifications for deviations?, 
Item 3 reasons for study design inclusions?, Item 4 comprehensive search strategy?, Item 5 study selection in duplicate?, Item 6 data extraction in duplicate?; Item 7 
excluded studies list (with justifications)?, Item 8 included studies description adequate?, Item 9 assessment of RoB/quality satisfactory?, Item 10 studies’ sources of 
funding reported?, Item 11 appropriate statistical synthesis method?, Item 12 assessment of impact of RoB on synthesised results?, Item 13 assessment of impact of 
RoB on review results?, Item 14 discussion/investigation of heterogeneity?, Item 15 conflicts of interest reported?, N/A not applicable,RoB risk of bias. Further details 
on AMSTAR items are given in Appendix 4, and results per review are given in Appendix 5. Note that where AMSTAR-2 assessment was applied to overlapping reviews 
(n = 4) for prognostic accuracy and clinical effectiveness separately, and resulted in differing judgements for each review question, the judgements for the prognostic 
accuracy review question are displayed here for simplicity 
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[55], 16/21 [52] and 15/22 [53]). Primary studies fre-
quently compared the use of different ML methods using 
the same datasets, such that ‘other’ ML methods were 
reported with little to no further detail (e.g. 19 studies in 
the review by Dweekat and colleagues [36]).

Approaches to internal validation were not well 
reported in the primary studies. One review [52] found 
no information on internal validation for 76% (16/21) 
of studies; with re-sampling reported in two and tree-
pruning, cross-validation and split sample reported in 
one study each. Another review [36] reported finding no 
information about internal validation for 20% of studies 
(7/35) and the use of cross-validation (n = 10), split sam-
ple (n = 10) techniques, or both (n = 8) for the remainder. 
Cross-validation was used in more than half (12/22) of 
studies in another [53].

Only one review reported details on methods for the 
selection of model predictors [52]: 29% (6/21) selected 
predictors by univariate analysis prior to modelling and 
9 used stepwise selection for final model predictors; 11 
(52%) clearly reported candidate predictors, and all 21 
clearly reported final model predictors. Another review 
[54] stated that feature selection (or predictor selec-
tion) was performed improperly and that some studies 
used univariate analyses to select predictors, but further 
details were not provided. One review [52] reported 15 
models (71%) with no information about missing data, 
and only two using imputation techniques (imputa-
tion using another data set, and multiple imputations by 
chained equations). Another review [54] reported 7 mod-
els (39%) with no information about missing data, miss-
ing data excluded or negligible for 4 models (22%), and 
single or multiple imputation techniques used for 5 (28%) 
and 3 (17%) models, respectively.

Model performance measures were reported by three 
reviews [37, 52, 53], all of which noted considerable vari-
ation in reported metrics and model performance includ-
ing C-statistics (0.71 to 0.89 in 10 studies [53]), F1 score 
(0.02 to 0.99 in 9 studies [53]), G-means (0.628 to 0.822 
in four studies [37]), and observed versus expected ratios 
(0.97 to 1 in 3 studies [52]). Four reviews [37, 53–55] 
reported measures of discrimination associated with 
included models. Across reviews, reported sensitivities 
ranged between 0.04 and 1, specificities ranged between 
0.69 and 1, and AUC values ranged between 0.50 and 1.

Shi and colleagues [52] included eight external vali-
dations using data from long-term care (n = 4) or acute 
hospital care (n = 4) settings (Appendix 5: Table S5). All 
were judged to be at unclear (n = 4) or high (n = 4) risk 
of bias using PROBAST. Model performance metrics for 
five models (TNH-PUPP [75], Berlowitz 11-item model 
[76], Berlowitz MDS adjustment model [77], inter-
RAI PURS [78], Compton ICU model [79]) included 

C-statistics between 0.61 and 0.9 and reported observed 
versus expected ratios were between 0.91 and 0.97. The 
review also reported external validation studies for the 
‘SS scale’ [80] and the prePURSE study tool [81], but no 
model performance metrics were given. A meta-analysis 
of C-statistics and O/E ratios was performed, including 
values from both development and external validation 
cohorts (Table 3). Parameters related to model develop-
ment were not consistently reported: C-statistics ranged 
between 0.71 and 0.89 (n = 10 studies); observed versus 
expected ratios ranged between 0.97 and 1 (n = 3 studies).

Pei and colleagues [54] reported that one [90] (1/18, 
6%) of the model development studies included in their 
review also conducted an external validation. However, 
review authors presented accuracy metrics that origi-
nated from the internal validation, as opposed to the 
external validation (determined from inspection of the 
primary study). Additionally, no details on external vali-
dation methods and no measures of calibration were 
presented. Pei and colleagues [54] judged this study to be 
at high risk of bias using PROBAST, as with the major-
ity of studies (16/18, 89%) included in their review. More 
detailed information about individual models, including 
predictors, specific model performance metrics and sam-
ple sizes, is presented in Appendix 5.

Included tools and predictors
A total of 124 risk prediction tools were identified 
(Table 4); 111 tools were identified from the 32 included 
systematic reviews and 13 were identified from screen-
ing the reference lists of literature reviews that used non-
systematic methods that were considered during full-text 
assessment. Full details obtained at the review-level are 
reported in Appendix 5: Table S4.

Tools were categorised as having been developed 
with (60/124, 48%) or without (64/124, 52%) the use of 
ML methods (as defined by review authors). Prospec-
tively collected data was used for model development 
for 21% of tools (26/124), retrospectively collected data 
for 41% (51/124), or was not reported (47/124). Informa-
tion about the study populations was poorly reported, 
however study setting was reported for 112 prediction 
tools. Twenty-seven tools were reported to have been 
developed in hospital inpatients, and 22 were devel-
oped in long-term care settings, rehabilitation units or 
nursing homes or hospices. Where reported (n = 100), 
sample sizes ranged from 15 [101] to 1,252,313 [102]. 
The approach to internal validation used for the predic-
tion tools (e.g. cross-validation or split sample) was not 
reported at the review level for over two-thirds of tools 
(83/124, 67%).

We could extract information about the predictors for 
only 66 of the 124 tools (Table  5 and Appendix  5). The 
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Table 4  Summary of tool characteristics, extracted at review-level

Note that tools were categorised as ML or non-ML tools based on the descriptions from authors of the included systematic reviews that the tools were identified in
a The 32 included systematic reviews
b Tools use multiple methods, therefore total number not equal to N (100%)
c One study also used discriminant analysis for model development
d Many seemed to use clinical expertise, but development methods were not clearly reported
e Counting of final predictors may vary between models: some authors may count individual factors, while others consider domains or subscales
f One review [36] implies 5 models did not implement internal validation
g ‘Resampling’ (not described further) was used for the development of 2 models

ML machine learning, NS not stated, ICU intensive care unit, PI pressure injury

Tool characteristics ML-based models (N = 60, 48%) Non-ML tools (N = 64, 52%) Total (N = 124)

No. of included reviewsa considered in

  0 0 (0) 13 (20) 13 (10)

  1 31 (52) 23 (36) 54 (44)

  2 6 (10) 9 (14) 15 (12)

  > 2 23 (38) 19 (30) 42 (34)

Development study details

  Median (range) year of publication 2020 (2000–2023) 1998 (1962–2015) 2008 (1962–2023)

Source of data

  Prospective 8 (13) 18 (28) 26 (21)

  Retrospective 41 (68) 10 (16) 51 (41)

  NS 11 (18) 36 (56) 47 (38)

Setting

  Hospital 16 (27) 11 (17) 27 (22)

  Long-term care (incl. end-of-life and rehab) 8 (13) 14 (22) 22 (18)

  Acute care (incl. surgical and ICU) 33 (55) 24 (38) 57 (46)

  Mixed settings 1 (2) 1 (2) 2 (2)

  Other 2 (3) 2 (3) 4 (3)

  NS 0 (0) 12 (19) 12 (10)

Study population age

  Adults 36 (60) 34 (53) 70 (56)

  Any 4 (7) 3 (5) 7 (6)

  NS 20 (33) 27 (42) 47 (38)

Baseline condition

  PIs at baseline 1 (2) 0 (0) 1 (1)

  No PIs at baseline 11 (18) 19 (30) 30 (24)

  NS 48 (80) 45 (70) 93 (75)

Development methods

  Development method/algorithmb

    ML algorithms 48 (80) 0 (0) 48 (39)

    Logistic regression 40 (67) 15 (23)c 55 (44)

    Cox regression 0 (0) 5 (8) 5 (4)

    Fine-Gray model 2 (3) 0 (0) 2 (2)

    Clinical expertise 0 (0) 2 (3) 2 (2)

    NS 0 (0) 44 (69)d 44 (35)

  Internal validation methodb

    Cross-validation 21 (35) 3 (5)g 24 (19)

    Data splitting 28 (47) 0 (0) 28 (23)

    Not done/NS 22 (37)f 61 (95) 83 (67)

    Median (range) no. of final predictorse 7 (3–23) 8 (3–12) 7 (3–23)

Study cohort

  Median (range) total sample size 2674 (27–1,252,313) 285 (15–31,150) 686 (15–1,252,313)

  Median (range) number of events 207 (8–86,410) 51 (9–1350) 98 (8–86,410)

  Median (range) proportion of events (% of sample size) 10.43% (0.42–80.00%) 14.84% (1.18–46.67%) 14.69% (0.42–80.00%)
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most frequently included predictor was age (33/66, 50%), 
followed by pre-disposing diseases/conditions (32/66, 
48%), medical treatment/care received (28/66, 42%) and 
mobility (27/66, 41%). Tools often (31/66, 47%) included 
multiple pre-existing conditions or comorbidities and 
multiple types of treatment or medication as predictors. 
Other common predictors include laboratory values, 
continence, nutrition, body-related values (e.g. weight, 
height, body temperature), mental status, activity, gen-
der and skin assessment (27% to 35% of tools). Ten tools 
incorporated scores from other established risk predic-
tion scales as a predictor, with eight including Braden 
[10, 11] scores, one including the Norton [12] score and 
one including the Waterlow [13] score.

Only one review [52] reported the presentation format 
of included tools, coded as ‘score system’ (n = 11), ‘for-
mula equation’ (n = 3), ‘nomogram scale’ (n = 2), or ‘not 
reported’ (n = 6).

Discussion
This umbrella review summarises data from 32 eligible 
systematic reviews of PI risk prediction tools. Quality 
assessment using an adaptation of AMSTAR-2 revealed 
that most reviews were conducted to a relatively poor 
standard. Critical flaws were identified, including inade-
quate or absent reporting of protocols (23/32, 72%), inap-
propriate statistical synthesis methods (13/17, 76%) and 
lack of consideration for risk of bias judgements when 
discussing review results (17/32, 53%). Despite the large 
number of risk prediction models identified, only seven 
reviews reported information about model development 
and validation, predominantly for ML-based prediction 
models. The remaining reviews reported the accuracy 
(sensitivity and specificity), or effectiveness of identified 
models. The studies included in the ‘accuracy’ reviews 
that we identified, typically reported a binary classifica-
tion of participants as high or low risk of PI based on 
the risk prediction tool scores, rather than constituting 
external validations of models. For many (44/64, 69%) 
prediction tools that were developed without the use of 
ML, we were not able to determine whether reliable and 
robust statistical methods were used or whether models 
were essentially risk assessment tools developed based 
on expert knowledge. For nearly half (58/124, 47%) of 
the identified tools, predictors included in the final mod-
els were not reported. Details of study populations and 
settings were also lacking. It was not always clear from 
the reviews whether the poor reporting occurred at the 
review level or in the original primary study publications.

Model development algorithms included logistic 
regression, decision trees and random forests, with a vast 
number of ML-based models having been developed in 

the last 5 years. Although logistic regression is considered 
a statistical approach [103], it does share some character-
istics with ML methods [104]. Modern ML frameworks 
and libraries have streamlined the automation of logistic 
regression, including feature selection, hyperparameter 
optimisation, and cross-validation, solidifying its role 
within the ML ecosystem; however, logistic regression 
may still appear in non-ML contexts, as some develop-
ers continue to apply it using more traditional methods. 
Most (6/7, 86%) of our set of reviews reported the use 
of logistic regression as part of an ML-based approach; 
however, this reflects the classifications used by included 
systematic reviews as opposed to our own assessment of 

Table 5  Predictor categories and frequency (%) of inclusion in 
N = 66 tools

Figures are given as count (% out of 66 tools with information on predictors). 
Note that multiple predictors may fall within the same predictor category. 
For instance, the category ‘skin’ may encompass both ‘skin moisture’ and ‘skin 
integrity’, with the frequency count reflecting the entire predictor category 
rather than individual predictors

Predictor category No. of tools 
predictor 
appears in

Age 33 (50)

Pre-disposing conditions 32 (48)

Receiving medical treatment/care 28 (42)

Mobility 27 (41)

Laboratory values 23 (35)

Continence 22 (33)

Nutrition 22 (33)

Body 21 (32)

Mental status 21 (32)

Activity 21 (32)

Gender 21 (32)

Skin 18 (27)

General Health 14 (21)

Braden [10, 11] score 8 (12)

Length of stay 8 (12)

Pressure injury 7 (11)

Surgery duration 6 (9)

Ability to ambulate 6 (9)

Medical unit, ward, visit 5 (8)

Ethnicity or place of birth 5 (8)

Friction, shear, pressure 3 (5)

Body position 3 (5)

Pain 3 (5)

Hygiene 2 (3)

Isolation 2 (3)

Smoking 2 (3)

Norton [12] or Waterlow [13] score 2 (3)

‘Special’ (not explained) 2 (3)
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the methods used in the primary studies, and may there-
fore be an overestimation of the use of ML models.

In contrast to logistic regression approaches, deci-
sion trees and random forests may not produce a 
quantitative risk probability. Instead, they commonly cat-
egorise patients into binary ‘at risk’ or ‘not at risk’ groups. 
Although the risk probabilities generated in logistic 
regression prediction models can be useful for clinical 
decision-making, it was not possible to derive any infor-
mation about thresholds used to define ‘at risk’ or ‘not at 
risk’, and for most reviews, it was unclear what the final 
model comprised of. This lack of transparency poses 
potential hurdles in applying these models effectively in 
clinical settings.

A recent systematic review of the risk of bias in ML-
developed prediction models found that most models 
are of poor methodological quality and are at high risk 
of bias [23]. In our set of reviews, of the four reviews that 
conducted a risk of bias assessment using the PROBAST 
tool, all models but one [105] were found to be at high 
or unclear risk of bias [37, 52–54]. This raises significant 
concerns about the accuracy of clinical risk predictions. 
This issue is particularly critical in light of emerging evi-
dence [106] on skin tone classification versus ethnicity/
race-based methods in predicting pressure ulcer risk. 
These results underscore the need for developing bias-
free predictive models to ensure accurate and equita-
ble healthcare outcomes, especially in diverse patient 
populations.

Where the method of internal validation was 
reported, split-sample and cross-validation were the 
most commonly used techniques, however, detail was 
limited, and it was not possible to determine whether 
appropriate methods had been used. Although split-
sample approaches have been favoured for model 
validation, more recent empirical work suggests that 
bootstrap-based optimism correction [107] or cross-
validation [108] are preferred approaches. None of the 
included reviews reported the use of optimism correc-
tion approaches.

Only two reviews included external validations of 
previously developed models [52, 54]; however, lim-
ited details of model performance were presented. 
External validation is necessary to ensure a model is 
both reproducible and generalisable [109, 110], bring-
ing the usefulness of the models included in these 
reviews into question. The PROGRESS framework sug-
gests that multiple external validation studies should be 
conducted using independent datasets from different 
locations [15]. In the two reviews that included model 
validation studies [52, 54], it is unclear whether these 
studies were conducted in different locations. Where 
reported, they were all conducted in the same setting 

as the corresponding development study. PROGRESS 
also suggests that external validations are carried out 
in a variety of relevant settings. Shi and colleagues 
[52] described four of eight validations as using ‘tem-
poral’ data, which suggests that the validation popula-
tion is largely the same as the development population 
but with the use of data from different timeframes. 
This approach has been described as lying somewhere 
‘between’ internal and external validation, further 
emphasising the need for well-designed external valida-
tion studies [109].

Importantly, model recalibration was not reported 
for any external validations. Evidence suggests greater 
focus should be placed on large, well-designed exter-
nal validation studies to validate and improve promising 
models (using recalibration and updating [111]), rather 
than developing a multitude of new ones [15, 18]. Model 
validation and recalibration should be a continuous pro-
cess, and this is something that future research should 
address. Following external validation, effectiveness stud-
ies should be conducted to assess the impact of model 
use on decision-making, patient outcomes and costs [15].

The effective use of prediction tools is also influenced 
by the way in which the model’s output is presented to 
the end-user. Only one review [52] reported the presenta-
tion format of included tools, such as formula equations 
and nomograms. In conjunction with this, identifying 
and mitigating modifiable risk factors can help prevent 
PIs. Additional effort is needed in the development of 
risk prediction tools to extract predictors that are risk 
modifiers and provide end-users with this information, to 
make the predictions more interpretable and actionable.

Risk stratification in itself is not clinically useful unless 
it leads to an effective change in patient management. For 
instance, in high-risk groups, additional types of preven-
tive interventions can be triggered, or default preven-
tive measures can be applied more intensively (e.g. more 
frequent repositioning) based on the results of the risk 
assessment. While sensitivity and specificity are valid 
performance metrics, their optimisation must consider 
the cost of misclassification. Net benefit calculations, 
which can be visualised through decision curves [112], 
provide a more reliable means of evaluating the clinical 
utility of risk assessment for PIs across a range of thresh-
olds at which clinical action is indicated. These calcula-
tions can assist in providing a balanced use of resources 
while maximising positive health outcomes, such as low-
ering the incidence of PI.

It is also important to assess whether the tool can 
improve outcomes with existing preventive interven-
tions and whether it integrates well into clinical work-
flows (i.e. clinical effectiveness). A well-developed tool 
with good calibration and discrimination properties may 
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be of limited value if these practical concerns are not 
addressed. Therefore, model developers should check the 
expected value of prognosis and how the tool can guide 
prevention when employed in practice, before planning 
model development. If it’s determined that there is no 
value in predicting certain outcomes – that brings into 
question whether the model should even be developed 
[113].

Despite the advances in methods for developing risk 
prediction models, scales developed using clinical exper-
tise such as the Braden Scale [10, 11], Norton Scale [12], 
Waterlow Score [13] and Cubbin-Jackson Scales [73, 74] 
are extensively discussed in numerous clinical practice 
guidelines for patient risk assessment and are commonly 
used in clinical practice [6, 114]. Although guidelines 
recognise their low accuracy, they are still acknowl-
edged, while other risk prediction models are not even 
considered. This may be due to the availability of at least 
some clinical trials evaluating the clinical utility of scales 
[39]. Some scales, such as the Braden scale [10, 11], are 
so widely used that they have become an integral com-
ponent of risk assessment for PI in clinical practice, and 
have even been incorporated into EHRs. Their wide-
spread use may impede the progress towards the devel-
opment, validation and evaluation of more accurate and 
innovative risk prediction models. Striking a balance 
between tradition and embracing advancements is cru-
cial for effective implementation in healthcare settings 
and improving patient outcomes.

Strengths and limitations
Our umbrella review is the first to systematically identify 
and evaluate systematic reviews of risk prediction mod-
els for PI. The review was conducted to a high standard, 
following Cochrane guidance [40], and with a highly sen-
sitive search strategy designed by an experienced infor-
mation specialist. Although we excluded non-English 
publications due to time and resource constraints, where 
possible these publications were used to identify addi-
tional eligible risk prediction models. To some extent, 
our review is limited by the use of AMSTAR-2 for qual-
ity assessment of included reviews. AMSTAR-2 was not 
designed for assessment of diagnostic or prognostic stud-
ies and, although we made some adaptations, many of 
the existing and amended criteria relate to the quality of 
reporting of the reviews as opposed to methodological 
quality. There is scope for further work to establish crite-
ria for assessing systematic reviews of prediction models.

The main limitation, however, was the lack of detail 
about risk prediction models and risk prediction model 
performance that could be determined from the included 
systematic reviews. To be as comprehensive as possible in 

model identification, we were relatively generous in our 
definition of ‘systematic’, and this may have contributed 
to the often-poor level of detail provided by included 
reviews. It is likely, however, that reporting was poor 
in many of the primary studies contributing to these 
reviews. Excluding the ML-based models, more than half 
of the available risk prediction scales or tools were pub-
lished prior to the year 2000. The fact that the original 
versions of reporting guidelines for diagnostic accuracy 
studies [115] and risk prediction models [116] were not 
published until 2003 and 2015 respectively, is likely to 
have contributed to poor reporting. In contrast, the ML-
based models were published between 2000 and 2023, 
with a median year of 2020. Reporting guidelines for the 
development and validation of ML-based models are 
more recent [117, 118], but aim to improve the reporting 
standards and understanding of evolving ML technolo-
gies in healthcare.

Conclusions
There is a very large body of evidence reporting various 
risk prediction scales, tool and models for PI which has 
been summarised across multiple systematic reviews 
of varying methodological quality. Only five system-
atic reviews reported the development and validation 
of models to predict the risk of PIs. It seems that for the 
most part, available models do not meet current stand-
ards for the development or reporting of risk prediction 
models. Furthermore, most available models, includ-
ing ML-based models have not been validated beyond 
the original population in which they were developed. 
Identification of the optimal risk prediction model for 
PI from those currently available would require a high-
quality systematic review of the primary literature, ideally 
limited to studies conducted to a high methodological 
standard. It is evident from our findings that there is still 
a lack of consensus on the optimal risk prediction model 
for PI, highlighting the need for more standardised and 
rigorous approaches in future research.
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