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Abstract

Background HIV-exposed uninfected (HEU) children are at increased risk of morbidity during the first years of life.
Although the immune responses of HEU infants in early-life are relatively well described, studies of natural killer (NK)
cells in older HEU children are lacking. NK cell subsets were analysed in HEU children and compared to those in HIV
unexposed uninfected (HUU) children aged ~five years.

Methods Multi-parametric flow cytometry was used to characterize peripheral blood-derived NK cell CD56, CD16,
CD57, NKG2A and KIR3DL1/KIR2DL2/L3 expression, including intracellular perforin and granzyme B. NK cell subsets
were compared between HEU children exposed to prenatal antiretroviral therapy (ART) from conception [long-term
(HEULT)]; those exposed to ART during pregnancy [medium-term (HEUMT)] with continued exposure throughout
the breastfeeding period and HUU peers. Furthermore, clinical data of the children, including sick clinic visits and
hospitalizations documented in morbidity diaries from birth to 5 years were compared between HEU and HUU
groups. Frequencies of CD56°™9" and CD56%™ NK cell were correlated with these clinical parameters.

Results 139 children were enrolled however, 133 comprising 43 HEULT, 38 HEUMT and 52 HUU were included in
the main analyses. Total NK cell, CD56°"9" nor CD569™ NK cell proportions differed between HEU and HUU children.
However, HEULT children had lower frequencies of CD569™ NK cells compared to HEUMT children, (p=0.002) which
maintained significance after controlling for preterm birth, p=0.012. No differences were observed between HEULT
and HUU. The expressions of NKG2A, KIR3DL1/KIR2DL2/L3 and CD57 on CD56"9" and CD569™ NK cells were similar
between the three groups. Furthermore, the frequencies of granzyme B and perforin double positive NK cells were
similar between the HUU with HEULT and HEUMT children. CD569™ NK cell counts had a significant moderate
negative correlation with recurrent respiratory infections (rho=-0.38; p=0.010) in HUU children and negatively
correlated with total sick clinic visits in HEUMT (rho=-0.40, p=0.064).

Conclusion The proportions of total NK cell, CD56°19M and CD569™ NK cells, NK cells inhibitory and differentiation
surface marker expression and cytolytic granule-positive cells were similar between HEU and HUU children. These
data suggest that early-life HIV/ART exposure may not result in major changes in NK cell subsets at 5 years of age.
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Introduction

According to UNAIDS more than 85% of pregnant
women living with HIV now have access to antiretrovi-
ral therapy (ART) for their health and the prevention
of mother-to-child transmission (PMTCT) of HIV [1].
Universal access to lifelong ART in pregnant women liv-
ing with HIV has resulted in a continued increase in the
population of infants exposed to HIV/ART in utero and
throughout the breastfeeding period. HIV-exposed unin-
fected (HEU) children populations was approximately
14.8 million globally in 2018 [2].

Although HEU children are not infected, they have
higher rates of morbidity compared to HIV-unexposed
uninfected (HUU) children [3]. HEU children have been
noted to present with increased risk of sick clinic visits
and hospitalizations due to mostly respiratory tract infec-
tions and diarrhoeal diseases within the first two years of
life [4-7]. Most studies have focused on analyses of chil-
dren in the first 2 years of life and, there is a paucity of
data on the outlook in relatively older HEU children [8,
9l.

An altered immune system has been suggested to con-
tribute to increased morbidity in HEU infants younger
than 2 years [10, 11]. In infants, innate immunity plays a
crucial role in non-specific responses to infection early
in life as the adaptive immune system matures. Natural
killer (NK) cells are innate lymphocytes whose main sub-
sets are CD56™ 8" and CD56%™CD16* cells, which make
up approximately 10% and 90% of peripheral NK cells,
respectively [12, 13]. The CD56"8" NK cells mainly pro-
duce cytokines such as tumor necrosis factor (TNF) and
interferon-y, while CD56%™ NK cells display cytolytic
activities through the secretion of perforin and gran-
zymes [14]. Natural killer cell anti-viral functions and
maturation is regulated through expression of inhibitory
or activating receptors on the cell membrane [15, 16],
such as Killer Immunoglobulin-like Receptors (KIRs)
3DL1, 2DL2/L3 and NKG2A, which mostly bind to HLA
class I ligands and non-classical HLA molecules [17]. The
inhibitory receptors NKG2A and KIRs are critical for the
education of NK cells and their subsequent functionality
[12].

Maternal factors including HIV disease severity,
chronic immune activation and inflammation in women
living with HIV have been shown to impact the health
outcomes of their infants [10, 18]. A proinflamma-
tory environment and cell stress due to HIV infection
can affect the maternal-fetal interface, which may skew
the fetal immune system and have consequences for

postnatal immune competence [19]. The timing of mater-
nal ART initiation has been shown to further impact the
health outcomes of HEU. Goetghebuer and colleagues
showed that the reduction of maternal antibody transfer,
and increased immune cell activation were more pro-
nounced in children born to mothers who initiated ART
post-conception than in those born to mothers who ini-
tiated ART preconception [20]. Antiretroviral therapy
significantly improves the quality of life of people liv-
ing with HIV (PLWH) however, it has also been associ-
ated with adverse effects in children and adults [21, 22].
Furthermore, ART can cross the placenta, specifically
nucleoside reverse transcriptase inhibitors have been
detected at high concentrations in cord blood [23] rais-
ing concerns about the potential long term effect of early
maternal ART exposure during this vulnerable phase of
development.

To date, most studies in HEU children have demon-
strated altered proportions, phenotypes and effector
functions of NK cells in infants under one year of age [12,
13]. However, it is unclear how these phenotypes change
upon weaning and whether they persist at older ages.
Therefore, we aimed to characterize NK cells subsets in
HEU children in comparison with those in their HUU
peers at approximately five years of life.

Materials and methods

Study design and participants

This investigation was a nested study under the Univer-
sity of Zimbabwe Birth cohort study (UZBCS). Children
aged 4-5.5 years were enrolled between May and July
2022.

Briefly the UZBCS enrolled pregnant women of at least
20 weeks gestation from high-density areas in Harare
2016-2019 and conducts clinical follow ups of the
mother-child dyads from delivery, weeks 1, 6, 10, 14, 24,
36, 48, 72 and 96 and once a year to date [24]. By design,
half of the pregnant women enrolled into the study were
living with HIV and 99.3% of them were on Tenofovir,
Lamivudine and Efavirenz (TENOLAM-E) therapy at
enrolment for PMTCT and for their own health. Moth-
ers were encouraged to exclusively breastfeed during the
first 6 months of life. In line with the national guidelines,
all HEU children were given Nevirapine and Cotrimoxa-
zole prophylaxis until weaning or testing positive for HIV
DNA by PCR, whichever occurred first as previously
described [24]. Due to lifelong universal access to ART
and effective monitoring, the number of vertical trans-
missions has decreased resulting in few infected children
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participating in the UZBCS [25]. Therefore, these studies
focused on HEU children.

At delivery mothers were issued study morbidity dia-
ries for the documentation of symptoms, clinical diag-
noses and treatment of any illness in the child. To assess
childhood morbidity in the cohort, we analysed existing
clinical records from the morbidity diaries to obtain the
documented sick clinic visits, the clinical diagnosis at
each visit and any hospitalization resulting from the ill-
ness for all the children in this study from birth to 5 years.

The duration (days) of in utero ART exposure was cat-
egorized as maternal ART initiation preconception (long)
or ART initiation post-conception up to 4 weeks before
birth (medium) term as previously described [26].

Ethical considerations

Ethical approval for this study was obtained from the
Joint Research Ethics Committee for University of
Zimbabwe and Parirenyatwa Group Hospitals: JREC
(JREC/81/20) and Medical Research Council of Zimba-
bwe: MRCZ (MRCZ/A/2662). The mother/guardian of
each child provided written informed consent and all the
women were literate.

Blood collection and assays

Venous whole blood was collected in EDTA tubes. Since
all the children were above 18 months of age, the HIV
Rapid Test Kit Determine™ HIV-1/2 (Abbott-Diagnostics,
USA) was used to confirm the HIV status of exposed
children. The viral load test was performed using HIV
RT-PCR (Roche, USA) at the Sally Mugabe National
Microbiology Reference Laboratory. Full blood counts
were performed on a Mindray Haematology BC3600
Analyser (Shenzhen, China).

Peripheral blood mononuclear cells isolation

Peripheral blood mononuclear cells (PBMCs) were iso-
lated within four hours of blood collection using density
gradient centrifugation of blood loaded on Ficoll medium
(Capricorn). The cells were resuspended in Roswell Park
Memorial Institute (RPMI) 1640 (MP Biomedicals) sup-
plemented with 10% heat-inactivated foetal bovine serum
(FBS) (Capricorn) and used for subsequent flow cytom-
etry analyses.

Flow cytometry

PBMCs were incubated in fluorescence-activated cell
sorting (FACS) buffer, which was made from commer-
cial Hank’s Balanced Salt Solution (HBSS) (MP Biomole-
cules) supplemented with 0.5% FBS containing optimally
titrated antibody concentrations. The antibodies included
the following: cluster of differentiation (CD) 3/CD14/
CD19-AF700 (BioLegend catalogue numbers; #300424,
#301822, #302226 respectively). The NK surface markers
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used were CD16-BV785 (BioLegend, #302046), CD56-
BV510 (BioLegend, #318340), CD57-PEDazzle594/
BV605 (BioLegend, #359620), KIR3DL1-PerCP-Cy5.5
(BioLegend, #312718), KIR2DL2/L3-PerCP-Cy5.5 (Bio-
Legend, #312614), NKG2A-PE-Cy7 (Beckman Coulter,
#B10246) and LIVE/DEAD fixable near-IR dye (Thermo
Fisher Scientific). The cells were inclubated for 20 min at
4 °C in the dark and then washed twice with FACS buffer.

Next the cells were permeabilized using Fixation/per-
meabilization solution (BD Biosciences) followed by
washing with Perm/Wash buffer (BD Biosciences). The
cells were incubated with Perm/Wash buffer containing
optimal concentrations of the antibodies against Perfo-
rin-BV711 (BioLegend, #308130) and Granzyme B-PE
(BioLegend, #372208) for 20 min at 4°C in the dark. The
samples were washed as previously indicated and then
resuspended in FACS buffer. The data was acquired using
a BD LSRFortessa flow cytometer (BD Biosciences). Flu-
orescence minus one (FMQO) controls were used to set
gates for the phenotypic markers (Supplementary Fig. 1).
At least 100 000 events were acquired from each sample,
and a minimum cell viability of 75% was considered for
all samples to be included in the statistical analyses.

Software and statistical analyses

A FACSDiva 8 (Becton Dickinson) was used for flow
cytometry data acquisition. FlowJo 10.8.1 (Flow]Jo, LLC,
Ashland OR, USA) software was used for gating the flow
cytometry data. GraphPad Prism 9.0.0 (121) (Graph-
Pad Software, La Jolla, CA, USA) and R programming
version 4.1.0 were used for the statistical analyses. The
Kruskal-Wallis test with Dunn’s correction for multiple
comparisons was used to compare the 3 groups. Asso-
ciations between categorical variables were determined
using the Fisher’s exact test. The Spearman’s method with
corrections for multiple testing was used for correlations
of continuous variables. A p value<0.05 was considered
significant.

Results

Study population

A total of 139 children were enrolled however, 133 chil-
dren were included in the main analyses; 43 HEULT, 38
HEUMT, 52 HUU of whom 48.9% were female. The other
6 children were HEI children and were excluded from
the main analyses due to the small sample size. Three of
the HEI children seroconverted within six weeks of birth
while the other three seroconverted after 6 weeks from
birth (Supplementary Table 1). Within the HEI group,
five children were on treatment, three of whom main-
tained HIV viral suppression while the other two as well
as one child not on treatment had viral loads>1000 cop-
ies/ml at 5 years (Supplementary Table 2). The median
viral load of the HEI children was 1525 copies/ml (IQR:
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582.5-14700.0) at sample collection. Although most
children were born at term, there was a trend towards
increased risk (OR=5.74; CI: 1.2-28.0, p=0.033) of pre-
term birth in long term ART exposure compared to the
unexposed children. The HEULT group had the high-
est proportion of premature children (19%) than the
HEUMT (5.7%) and HUU (3.9%) groups (p=0.05),
(Table 1). The median duration on ART for the HEUMT
mothers was 110 days (IQR: 64.5-184.5). Birth weight did
not differ between the HEU and HUU groups.

Frequencies of CD56°"9" NK cells and CD56%™ NK cells in
HEU and HUU children

NK cells and NK cell subsets were identified using the
gating strategy shown in Fig. 1A. Total NK cells consti-
tuted approximately 8.9% of the total viable lymphocytes.
The CD56™8" and CD564™ subsets comprised 4.6%
(IQR: 2.9-8.3) and 89.5% (IQR: 81.7-94.2) of the total
NK cells, respectively (Fig. 1B). Before stratification by
duration of ART exposure, HEU children had similar fre-
quencies of CD56™ 8" NK cells (4.6%; IQR: 2.9-9.1) com-
pared to HUU children (4.6%; IQR: 2.9-6.9), p=0.478.
The same was true for the CD56%™ NK cells in HEU and
HUU groups (88.8%; IQR: 80.9-94.2 and 90.6%; IQR:
83.2-93.6 respectively), p=0.453. However, after stratifi-
cation the HEULT group had a higher median frequency
of 6% (IQR: 3.0-9.1) CD56" " NK cells compared to
3.4% (IQR: 2.5-5.0) in the HEUMT group, p=0.025 . In
addition, the HEULT had a significantly lower median
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frequency 85.0% (IQR: 80.5-92.4) of CD56%™ NK cells
compared to 93.8% (IQR: 88.8-95.3) in HEUMT group,
p=0.002 (Fig. 1B). After controlling for age and pre-
term birth, only the difference in CD56%™ NK cells
between HEULT and HEUMT groups remained sig-
nificant, p=0.012. The CD56™%*1"¢ NK cell subset was
notably more distinguishable in HEI children compared
to other groups. A comparison of the frequencies of
CD56"™8%"¢ NK cells showed that HEI children had sig-
nificantly increased CD56™%*""¢ subset compared to
HEULT, HEUMT and HUU groups although the analy-
sis was underpowered (Supplementary Fig. 2). In sum-
mary, differences in NK cell populations between HEULT
and HEUMT when compared to HUU children were not
detected.

Inhibitory receptor expression on CD569"t and CD56%™
NK cells in HEU and HUU children

The frequencies of CD56"8" and CD56%™ NK cell
subsets expressing panKIR (KIR3DL1 and KIR2DL2/
D3) were similar between HEU and HUU children and
did not differ according to the duration of early-life
ART exposure (Fig. 2A). The proportions of NKG2A*
CD56™8" NK cells tended to be lower in HEULT chil-
dren than in HUU children but were significantly lower
(p=0.041) in HEULT children than in HEUMT children
(Fig. 2A). Frequencies of NKG2A*CD56%™ NK cells were
also similar between HUU, and both groups of HEU chil-
dren (Fig. 2B). Furthermore, the percentages of CD57*

Table 1 Maternal factors during pregnancy and infant birth outcomes for children stratified by HIV and ART exposure status

Characteristic HEU HUU Pvalue” Pvalue*
Median (IQR) (N=81) (N=52)
[N(%)] HEU MT (N=38) HEU LT
(N=43)
Maternal factors
Age (years) 30.0 (24.0-35.5) 33.0(29.0-35.5) 29.0 (25.0-34.0) 0.078 0.118
Viral load (n=81)
Suppressed 33(86.8) 39(95.1) N/A 0.247 N/A
Unsuppressed 5(13.2) 2(4.9)
(missing=2)
CD4 count (n=81) 347 (230-589) 422 (308-535) N/A 0.384 N/A
Birth outcomes
Gestational age at birth (weeks)
Preterm (<37) 2(5.7) 8(19.0) 2(3.9) 0.050 0.126
Term (=37) 33(94.3) 34(81.0) 50 (96.1)
(missing=3) (missing=1)
Birth weight(grams)
<2500 6(15.8) 493) 3(5.8) 0.304 0.369
>2500 32(84.2) 39(90.7) 49 (94.2)
Sex
Female 19 (50.0) 23 (53.5) 23 (44.2) 0.726 0.721
Male 19 (50.0) 20 (46.5) 29 (55.8)

A- p values for comparisons between HEULT, HEUMT and HUU, #- p values for comparisons between HEU and HUU. Abbreviations: HEU- HIV-exposed uninfected,
HUU- HIV-unexposed uninfected, IQR- interquartile, LT- long term, MT- medium term
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CD56"8" NK cells and CD564™ NK cells did not differ
among the groups (Fig. 2C, D). Taken together, NK sub-

no intracellular perforin and granzyme B positive cells
(Supplementary Fig. 3A). The frequencies of perforin®

sets expressing CD57, KIR and NKG2A did not differ
between HEU and HUU children.

The frequencies of perforin and granzyme B positive NK
cells were similar between HEU and HUU children

To assess the cytotoxic potential of NK cells intracel-
lular perforin and granzyme B in NK cells were mea-
sured. As expected CD56™8" NK cells had very little to

granzyme B* CD56%™ NK cells were similar among
HEULT, HEUMT and HUU children (Supplementary
Fig. 3B). Interestingly, the exploratory analysis of HEI
children revealed lower frequencies of perforin and gran-
zyme B double positive NK cells than in HUU children
(Supplementary Fig. 4B). In summary, the comparable
frequencies of perforin* granzyme B* CD56%™ NK cells
in HEULT, HEUMT and HUU children indicate that
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maternal HIV nor prenatal ART exposure had a negative
impact on the generation of perforin and granzyme B in
CD56%™ NK cells.

Childhood morbidity

As increased childhood morbidity has been observed in
HEU children, childhood diaries recording diseases and
kept by mothers were assessed. The main clinical diag-
noses recorded were skin (27%), gastrointestinal (47%)
and respiratory infections (59%) among the children.
Approximately 56% of the hospitalizations occurred due
to respiratory infections (data not shown). The analyses
showed that sick clinic visits and hospitalizations at 6
weeks, 6 months, 12 months and beyond 12 months did
not differ among the HEULT, HEUMT and HUU groups
of children (Table 2). Although not the main objective
of the study, unsurprisingly HEI children had the high-
est frequencies of sick clinic visits at all the four time
points and of combined sick clinic visits from birth to 5
years although this difference did not reach significance
(p=0.518) (Supplementary Table 2). Taken together,
analyses of morbidity diaries of children did not reveal
increased morbidity in this cohort.

NK cell subsets are associated with clinical parameters in
HEU and HUU children

To assess whether NK cell subsets were correlated with
childhood morbidity clinical parameters correlation
analyses of clinical parameters with NK cell subsets in
HEU and HUU children were performed. The propor-
tion of CD56%™ NK cells had a weak negative correlation
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(rho=-0.26, p=0.061) with recurrent respiratory infec-
tions in the total population of HEU and HUU chil-
dren. According to stratified analyses of the individual
groups, CD56%™ NK cells had a significant moderate
negative correlation with recurrent respiratory infec-
tions (rho=-0.38; p=0.010) in HUU children (Table 3).
Within the HEUMT children CD56%™ NK cells had a
moderate negative correlation with combined sick clinic
visits and a weak correlation with recurrent respiratory
infections (rho =-0.4, p=0.064 and rho= -0.31, p=0.104
respectively) (Table 3). In summary, lower proportions of
CD56%™ NK cells were associated with increased child-
hood morbidity due to recurrent respiratory infections in
the HUU but not in HEU children.

Discussion

Although several studies have shown changes in NK
cell populations in young infants born to HIV infected
women, analyses of NK cells in older children are lack-
ing [8, 9]. Here, we demonstrated that the main subsets
of NK cells in 5-year-old HEU and HUU children are
similar, irrespective of the timing of maternal ART ini-
tiation. These findings suggest that although maternal
HIV infection may impact NK cell populations early in
life, these changes may be reversed with age in HEU chil-
dren. In line with these immunological studies, HIV and
ART exposures were also not associated with increased
morbidity in exposed uninfected children compared
to unexposed children. In summary, these clinical and
immunological analyses suggest that a potential NK cell

Table 2 Clinical and morbidity data for children stratified by HIV and ART exposure status at 5 years

Characteristic HEU HUU Pvalue” Pvalue®
Median (IQR) (N=81) (N=52)
[N(%)] HEU MT (N=38) HEU LT
(N=43)

Children’s age at sample collection (years) 50(4.6-5.2) 5.2 (4.8-6.0) 5.2 (4.7-6.0) 0.086 0.139
Clinical factors
Weight (kg) 17.7 (16.0-19.7) 17.9 (15.7-20.0) 17.7 (16.0-19.2) 0.822 0.585
MUAC (cm) 16.0 (15.4-17.0) 164 (15.5-17.0) 16.0 (15.5-17.0) 0.798 0.772
HB(g/dL) 135(125 14.5) 134 (12.7-14.2) 134 (12.7-14.1) 0.668 0.403
WBC (10° /L) 0(5.5-8.9) 6.2 (5.2-7.1) 6.9 (5.7-8.6) 0.120 0.385
Morbidity
Sick clinic visits at <6 weeks of age 1.0(1.0-1.0) 1.0(1.0-1.0) 1.0(1.0-1.0) 0.549 0273
Sick clinic visits at > 6 weeks-6months 1.0 (1.0-1.0) 1.0 (1.0-1.0) 1.0 (1.0-1.0) 0.855 0.601
Sick clinic visits at > 6 months-12months 1.0 (1.0-2.0) 1.0(1.0-1.3) 1.0 (1.0-1.0) 0.596 0.399
Sick clinic visits beyond 12 months 1.0(1.0-2.0) 1.0(1.0-2.0) 1.0(1.0-2.0) 0.974 0.865
Combined sick clinic visit (birth- 5 years) 2.0(1.0-3.0) 2.0(1.0-3.0) 2.0(1.0-3.0) 0.398 0222
Hospitalization

Yes 3(79) 4(9.3) 6(11.5) 0.875 0.560

No 35(92.1) 39(90.7) 46 (88.5)

A- p values for comparisons between HEULT, HEUMT and HUU, #- p values for comparisons between HEU and HUU. Abbreviations: cm- centimetres, dL- decilitre, HB-
haemoglobin, HEU- HIV-exposed uninfected, HUU- HIV-unexposed uninfected, IQR- interquartile, kg- kilograms, L- litre, LT-long term, MT- medium term, MUAC- mid

upper arm circumference, WBC- white blood cell count
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Table 3 Correlations of morbidity data with proportions of NK cell subsets among children stratified by HIV and ART exposure status

Clinical parameter HEUMT HEULT HUU

rho (p value) (n=38) (n=43) (n=52)
CD56"M9MNK subset

6 months SCV -0.200 (0.912) -0.013 (0.869) 0.139(0.730)
12 months SCV -0.157 (0.838) -0.420 (0.866) -0.382(0.358)
SCV beyond 12 months 0.260 (0.436) -0.140 (0.596) -0.200 (0.993)
5 years SCV -0.300 (0.096) 0.027 (0.689) -0.120 (0.325)
Overall SCV 0.320(0.326) -0.089 (0.812) 0.066 (0.493)
Recurrent respiratory infections 0.330(0.110) -0.032 (0.872) 0.160 (0.365)
Recurrent GIT 0.120 (0.559) 0.180 (0.384) 0.100 (0.770)
Gran B+ Per + CD56""9"NK subset

6 months SCV - -0.067 (0.875) 0.122 (0.821)
12 months SCV -0.453 (0.551) -0.078 (0.946) 0.400 (0.139)
SCV beyond 12 months 0.231(0.838) -0.130 (0.897) 0.260 (0.539)
5 years SCV -0.115 (0.889) -0.150 (0.447) 0.380 (0.254)
Overall SCV -0.042 (0.961) -0.220 (0.235) 0.130 (0.550)
Recurrent respiratory infections 0.151 (0.838) -0.240 (0.456) -0.081 (0.643)
Recurrent GIT 0.137(0.853) 0.079 (0.985) -0.150 (0.603)
CD569™NK subset

6 months SCV 0.093 (0.912) 0.055 (0.851) -0.019 (0.980)
12 months SCV 0.198 (0.798) 0.137 (0.869) 0.279 (0.493)
SCV beyond 12 months -0.230(0.512) 0.18 (0.490) -0.002 (0.058)
5 years SCV 0.320 (0.080) -0.065 (0.868) 0.140 (0.498)
Overall SCV -0.400 (0.0640) 0.065 (0.786) -0.150 (0.301)
Recurrent respiratory infections -0.310 (0.104) -0.080 (0.877) -0.380(0.010)
Recurrent GIT -0.110(0.502) -0.140 (0.402) -0.042 (0.980)
Gran B+ Per + CD56“™NK subset

6 months SCV - 0(1.000) 0.087 (0.864)
12 months SCV 0.056 (0.960) -0.077 (0.946) 0.135(0.830)
SCV beyond 12 months -0.463 (0.453) 0.130 (0.865) 0.130 (0.769)
5 years SCV 0.072 (0.921) -0.200 (0.572) 0.068 (0.698)
Overall SCV -0.155 (0.675) -0.150 (0.442) -0.110 (0.547)
Recurrent respiratory infections 0.035 (0.961) -0.120 (0.515) -0.140 (0.486)
Recurrent GIT 0.144 (0.845) -0.140 (0.671) -0.320(0.324)

Abbreviations: GIT: gastrointestinal tract, HEU: HIV-exposed uninfected, HUU: HIV-unexposed uninfected, LT: long term, MT: medium term, NK: natural killer, rho:

Spearman coefficient, SCV: sick clinic visits

impairment early in life due to ART and HIV may resolve
with age.

NK cell functionality depends on an education process
that relies on the expression of inhibitory receptors such
as NKG2A and KIRs [12]. The frequencies of NKG2A*
CD56%™ NK cells and panKIR*CD56%™ NK cells among
HEU children were similar to those in HUU children.
These observations are consistent with findings from
a study by Ballan et al., which showed that the expres-
sion of NKG2A was not significantly different between
exposed uninfected and infected children [27]. How-
ever, when comparing HEU children with early-life ART
exposure, HEULT children however, had slightly reduced
frequencies of NKG2A*CD56™8" NK cells compared
to HEUMT children. Considering the small differences,
the lower frequencies of NKG2A*CD56"8" NK cells
in HEULT children are unlikely to have severe clinical

consequences but larger studies are needed to further
determine the potential clinical consequences.

Perforin and granzyme B constitute the cytotoxic arse-
nal of NK cells to kill virus infected cells [28]. Importantly,
the frequencies of intracellular perforin and granzyme B
double positive NK cells were similar between HEU and
HUU children. Previous studies reported lower perforin
levels in HEU infants than in HUU infants under one
year of age [8, 9] however, at the age of 5 years these dif-
ferences were not detected in this study. Due to the small
volume of blood collected the current study focused on
a phenotypic NK cell characterization, however NK cell
functionality may still be affected by maternal HIV and
ART exposure. To this end functional analyses of NK
cells in terms of degranulation as measured by CD107a
or cytokine production are needed. The lack of increased
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childhood morbidity further suggests that NK cell func-
tionality is not severely impaired.

Although small differences between the HUELT and
HEUMT groups were observed, the overall proportions
of NK cell subsets and their phenotypes were similar
among all groups. The evaluation of NK cell parameters
in children with different durations of maternal ART
exposure provides an approach to study potential asso-
ciations with ART duration. These findings are reassuring
that phenotypic differences in NK cells in the first years
of life may resolve as these differences were not observed
at 5 years of age in our study.

The collection of clinical and immunological data
allowed us to investigate correlations between NK cell
subsets and clinical parameters. A decrease in CD564™
NK cells had a moderate correlation with an increase in
sick clinic visits and recurrent respiratory infections in
HUU but not in HEU children. These observations may
indicate an association between decreased frequencies of
CD56%™ NK cells and increased risk of respiratory infec-
tions in general. Similarly, low frequencies of NK cells in
circulation have been associated with viral respiratory
infections such as respiratory syncytial virus and severe
infection with influenza virus [29, 30]. Furthermore, a
study in children with recurrent respiratory infections
showed dysregulation of the NK cell compartment in
these children compared to controls indicating the pos-
sible involvement of NK cells in respiratory infections
[31, 32]. While NK cells are crucial for combating intra-
cellular infections, their role in extracellular infections is
limited. This distinction is important for interpreting our
findings on the observed morbidities. Future research
should aim to identify the specific pathogens involved in
these respiratory infections to enhance our understand-
ing of the interactions between immune cells, including
NK cells, and the nature of the infections.

Given that NK cells are involved in the early immune
response against viral infections, it is possible that the
reduced CD56%™ NK cells may be a result of recurrent
viral infection-induced depletion of NK cell subsets [33,
34]. However, further studies are needed to investigate
whether decreased frequencies of NK cell subsets may
underlie increased frequencies of infections HUU chil-
dren, in particular identifying the cut-off of absolute NK
cells in PBMCs may be helpful to for identifying impaired
NK cell immunity. However, these studies require simul-
taneous analyses of other immune cells such as B cells
and T cells, to decipher the specific contribution of NK
cells as we observed weak correlations with morbidity in
the HEU group. In the present study these markers were
not available.
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Strengths and limitations

Previously reported NK cell perturbations among HEU
children compared to HUU children have been observed
in infants younger than one year. The present study pres-
ents a phenotypic assessment of NK cells in an older
cohort of HEU and HUU children who were matched for
age, from the same location, and had relatively similar
socioeconomic statuses to avoid any confounders such
as environmental or age-related factors. Specific growth
and health outcomes among exposed uninfected children
have been suggested to differ according to the duration of
in utero ART exposure [35, 36]. This relatively large study
allowed us to further classify HEU children by duration
of ART exposure into HEULT and HEUMT children [26]
and one of the few studies to correlate the NK subsets
with clinical symptoms. The deep immunophenotyping
and clinical analyses revealed that NK cell populations
and clinical parameters are not associated with maternal
ART or HIV infection.

Absence of samples from the same participants at
an earlier age restricted our ability to analyse NK cell
dynamics during early life. NK cells are essential in pro-
tection against intracellular viral and bacterial infections.
However, the pathogen causing the respiratory tract
infections in these children was not assessed. Due to the
limited sample size in the HEI group of children, we were
unable to include these analyses in the main study. As a
result, findings for this group should be interpreted with
caution and may serve as a preliminary basis for future
research. Larger studies involving cohorts of HEI chil-
dren with varying timing of vertical HIV transmission are
essential to understand the impact of transmission mode
and viremia on their health at five years of age.

Conclusion

In summary, these findings demonstrate that the propor-
tions of NK cells in HEU children are relatively similar to
those in HUU children at the age of five years, suggest-
ing that early differences may be restored after infancy.
Furthermore, we identified that lower CD56%™ NK cells
were associated with recurrent respiratory infections
and thus may be further explored as a marker of immune
competence.
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