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Abstract

Xenoliths recovered from the post-Variscan Bode dike system of the eastern Harz Mountains provide evidence for the exist-
ence of an Early Devonian magmatic arc system hidden beneath very low-grade metasedimentary rocks of the Rhenoher-
cynian Zone, but also for Late Carboniferous—Early Permian crust reworking. This interpretation is based on petrographic
observations and whole-rock geochemical analyses of granite xenoliths, in addition to results of zircon U-Pb dating and Hf
isotope analyses. Zircon grains recovered from variably deformed granite xenoliths yield ages between 419 and 393 Ma,
interpreted to reflect the timing of granite intrusion. Rare zircon xenocrysts of Archean (ca. 2.92-2.65 Ga) and Proterozoic
age (ca. 1.5 t0 0.56 Ga), all with subchondritic eHf,,y, values (— 0.8 to — 5.5) indicate reworking of older crust. Compila-
tion of age-Hf isotope data further suggests that the pre-Variscan granitoids beneath the Harz Mountains belong to the same
magmatic arc system exposed widespread in the adjacent Mid-German Crystalline Zone, and interpreted to result from
NW-ward subduction of the Rheic Ocean beneath Avalonia-Baltica. Zircon in xenoliths with granophyric texture yields
ages at 400 Ma and 295-310 Ma, indicating re-melting of Devonian granitoid basement during post-Variscan rift-related
magmatism, immediately prior to Bode dike intrusion.
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Introduction

Presently, very little is known about the lower crust of the
Harz Mountains forming part of the Rhenohercynian Zone
of the Variscan Orogen after Kossmat (1927; Fig. 1a). The
Variscan basement of the Harz Mountains mainly con-
sists of very low-grade Paleozoic metasedimentary rocks,
which were predominately deposited between the Early
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Devonian and Early Carboniferous in marine settings from
different sources (Wachendorf et al. 1995; Huckriede et al.
2004; Schwab and Hiineke 2008; Schwab and Ehling 2008;
Linnemann et al. 2023), and intensely folded during the
Variscan orogeny at <330 Ma (Schwab 2008, and refer-
ences therein). High-grade metamorphic rocks are exposed
only in the Ecker Gneiss complex (Fig. 1b), which was
long considered to represent an exhumed sliver of Cado-
mian basement beneath the Harz Mountains. This inter-
pretation, however, has been disproved by Geisler et al.
(2005) and more recently by Linnemann et al. (2023),
showing that the protoliths of metasedimentary rocks of
the Ecker Gneiss complex were supplied from Baltica,
and deposited during the Devonian at <410 Ma (410 + 10;
414 +6; 406 + 12 Ma: U-Pb ages of the youngest detri-
tal zircon grains from three samples). Subsequently,
during the Variscan orogeny, the Ecker Gneiss complex
was affected by a granulite-facies metamorphic overprint
(Appel et al. 2019).

During the Late Carboniferous to Early Permian, the
Paleozoic rock units of the Harz Mountains were intruded

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00531-024-02429-3&domain=pdf

1198

International Journal of Earth Sciences (2024) 113:1197-1211

by mafic and felsic plutonic rocks, comprising the Harzburg
gabbro, the Oker, Brocken and Ramberg granites at ca. 300
Ma (Baumann et al. 1991; Goll et al. 1998; Linnemann et al.
2023), but also by N-S, NW-SE and E-W trending dikes of
similar age (Fig. 1b). In the northeastern Harz Mountains,
low-grade sedimentary rocks of Devonian age, the Wissen-
bach slates, were intruded by E-W trending, steep dipping
dikes of the Bode dike system, prior to emplacement of the
Ramberg pluton, as indicated by field relationships (Schust
1958). This dike system is made up by a variety of sub-
volcanic rocks comprising kersantite, fine-grained granite
porphyry, microgranodiorite and microgranite (Tietz 1995,
1996), and locally contains abundant xenoliths up to metre
size, comprising metamorphic rocks and granitoids. Pres-
ently, nothing is known about the composition of the grani-
toid rocks, their geotectonic setting and intrusion ages, i.e.
whether the granitoid protoliths intruded during the pre-,

syn- or post-Variscan evolution. In this context, we note that
pre-Variscan and Variscan granitoids are nowhere exposed
within the Rhenohercynian realm of Germany, neither in
the Harz Mountains nor in the Rhenish Massif (Fig. 1a). In
this study, we present the first set of data of granite xeno-
liths from the Bode dike system, comprising petrographic
observations, whole-rock geochemical data, results of zircon
U-Pb dating and Hf isotope analyses. These data in combi-
nation will provide new information about the composition,
origin and evolution of the deeper crust of the eastern Harz
Mountains. By comparison with data from adjacent geologi-
cal units, these will also place new constraints on the pre-
and post-Variscan evolution in Central Europe.
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Fig.1 a Position of the Harz Mountains in Germany. b Simplified
geological map of the Harz Mountains with geochronological data of
plutonic and volcanic rocks. Geochronological data: (1) U-Pb zircon
(Baumann et al. 1991), (2) U-Pb zircon (Linnemann et al. 2023), (3)
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Ar-Ar of biotite and sanidine (Lippolt and Hess 1996), (4) K—Ar of
biotite and muscovite (Goll et al. 1998), (5) Ar—Ar whole rock (Goll
in von Seckendorff 2012), (6) Pb—Pb zircon (Obst et al. 2001)
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Geological setting

The Bode dike system is exposed in the northeastern part of
then Harz Mountains, close to the city of Thale, mostly west
of the Ramberg pluton (Fig. 1b). It comprises two subparal-
lel E-W trending dikes, a southern branch made up by the
kersantite of Treseburg, and a northern branch dominated by
granite porphyry (Figs. 1, 2). The northern branch, our study
area, is well exposed along the northern slope of the Bode
stream valley (Fig. 2), where it transects Wissenbach slate
of middle Devonian age (Eifelian), intercalated by numerous
diabase sills and dikes.

The northern branch is 3-8 m wide, about 12 km long,
and hosts several stages of magma injections (Fig. 2). The
first stage is reflected by a dense zone of fine-grained granite
porphyry, which is free of xenoliths and commonly forms
the margin of the dike, both hanging and footwall against the
surrounding Wissenbach slates. Subsequently, the same dike
was injected in its centre part by melts of dacitic and rhy-
olitic composition, both rich in xenoliths (Tietz 1995, 1996).
In the field, both phases show a microgranitic structure,
and can be distinguished from each other by their different

colours, with the granodioritic phase showing a dark, and
the microgranitic phase a bright colour. Sharp and grada-
tional contacts between microgranite and microdiorite sug-
gest a fast sequence of injection, and locally point to magma
mingling either within the dike and/or immediately prior to
magma injection (Tietz 1995, 1996). Composite dikes, as
described above, only occur in the area west of the Ramberg
pluton over a length of almost 600 m, and microgranitic and
microgranodioritic varieties with xenoliths just over 350 m
along strike along the northern slope of the Bode stream
valley, north of the cliff “Blaue Klippe” (Fig. 2).

Presently, no radiometric ages are available for the Bode
dike system. Field relationships indicate that it is younger
than the surrounding Wissenbach slates (Eifelian) and older
than the Ramberg pluton (Schust 1958; Fig. 1b). The age of
the Ramberg pluton is constrained by results of K—Ar dating
of biotite (296 +7 Ma) and K-feldspar (300 +7 Ma) pre-
sented by Goll et al. (1998), and a recently published U-Pb
zircon age of 295 +5 Ma (LA-ICP-MS; Linnemann et al.
2023). We note that all these ages are significantly older
than a zircon U-Pb age of 283 +3 Ma (also LA-ICP-MS),
previously presented by Zech et al. (2010).
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Fig. 2 Field relationships of the composite northern Bode dike in the
Bode stream valley. a Geologic map with sample sites, and b cross
section (modified after Tietz 1996). The Bode dike system results

from three phases of magma injection: (1) margins made up of gran-
ite porphyry, (2) microgranodiorite, and (3) microgranite
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The xenolith suite included in the microgranite and
microdiorite varieties of the northern Bode dike comprises
metasedimentary rocks, dioritoids (autoliths), amphibolites,
paragneisses, micaschists and granitic rocks (Tietz 1996;
this study). Leucogranite xenoliths up to cubic metre in size
occur abundantly in the microgranodioritic intrusion (Figs. 2
and 3).

Sample description

The granite xenoliths investigated in this study were all
sampled from the microgranodioritic variety of the Bode
dike exposed in several cliffs along the northern slope of the
Bode stream valley (Fig. 2). The granitoids are mostly leuco-
cratic, and affected by a different degree of ductile and brit-
tle deformation, showing all transitions from non-deformed
granite to orthogneiss (Figs. 3, 4). Based on thin section
observations, two types of granite can be distinguished: (1)
granitoids with ductile deformation features (samples GK1,
GK7, GK8), and (2) undeformed granites with granophyric
textures (samples GK2 and GKS5; Fig. 4). The granitoids
are medium- to course-grained, commonly show a foliation
(more or less pronounced) and distinct mylonitic textures,
reflected by dynamically recrystallized quartz ribbons sur-
rounding feldspar-rich domains dominated by perthitic
K-feldspar and minor plagioclase (Fig. 4a, b). Samples with
granophyric textures (GK2 and GK5) are characterised by
euhedral quartz phenocrystals, surrounded by a relatively
fined-grained matrix dominated by granophyric K-feldspar-
quartz intergrowths, locally surrounding plagioclase phe-
nocrystals (Fig. 4c, d).

Analytical techniques
U-Pb dating and zircon imaging

Zircon grains were recovered from five granite xenoliths
(GK1, GK2, GK5, GK7, GKS8). Sample GK1 was processed
and analysed at University Goéttingen (UG), and the other
four samples at Karlsruhe Institute of Technology (KIT).
The samples were crushed with Jaw crusher and steel disc
mill to grain sizes <500 um, and the heavy mineral frac-
tion enriched by panning (only at KIT) or by heavy liquids
and magnetic separation at UG. Finally, zircon grains were
manually picked from concentrates under ethanol, mounted
on double-sided tape. At KIT, the zircon grains were sput-
tered with Au for 10 s, and imaged for their morphologies by
back-scattered electron (BSE) microscopy using a TESCAN
VEGAZ2 scanning electron microscope (at the Department
of Petrology). Representative zircon images are shown in
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Fig.3 Field relationships of xenoliths in the Bode dike. Coarse-
grained granite xenolith of ca. 25 cm size, and small quartzite xeno-
lith in a grey microgranodioritic matrix

Fig. 5. Subsequently, the same grains were mounted with
epoxy and grinded to expose their centre parts (also done at
UG). The polished grains were imaged again by BSE at KIT,
and CL (cathodoluminescence) at UG, to get information
about their internal zoning (Fig. 5 and ESM—electronic sup-
plement material). Based on these images, the most pristine
zircon grains/domains were selected for in situ U-Pb dating
and Hf isotope analyses.

Uranium-Pb analyses were performed by laser abla-
tion—sector field—inductively coupled plasma—mass spec-
trometry (LA-SF-ICP-MS) at UG and KIT. Detailed
information about analytical conditions in each lab is
presented in ESM (Table S1). In each lab, zircon grains
of unknown age were analysed together with reference
zircon (for details see ESM: Table S2). At KIT, all raw
data were corrected offline using an in-house MS Excel©
spreadsheet program (Gerdes and Zeh 2006, 2009). A
common Pb correction based on the interference and
background-corrected 2**Pb signal, and a model Pb com-
position were applied (Stacey and Kramers 1975). At UG,
data processing was carried out with the software URA-
NOS of Dunkl et al. (2008). The results of measurements
of unknowns and reference zircon grains are presented
in ESM (Table S2). Concordia diagrams were plotted by
means of the software ISOPLOT 3.75 (Ludwig 2012).

Hf isotope analyses

Lutetium-Hf isotope analysis was carried out with a Res-
olution M-50 193 nm ArF Excimer laser system coupled
to a Thermo Scientific multicollector (MC)-SF-ICP-MS
(Neptune Plus) at FIERCE Frankfurt am Main, Germany.
The analytical protocols used are the same as described
in detail by Gerdes and Zeh (2006), and Zeh and Gerdes



International Journal of Earth Sciences (2024) 113:1197-1211

1201

Fig.4 Scans and photomicrographs (crossed nicols) of granite xeno-
liths with different structures from the Bode dike: a, b deformed
granitoid, sample GK7; ¢, d granophyric granite, sample GKS5. a, b
Sample GK7 is a leucocratic, well-foliated granite gneiss, transect
by mylonite zones with dynamically recrystallized quartz. It mainly

(2012; and reference therein). Detailed operating conditions
for Lu—Hf isotope analyses and results of standard meas-
urements are presented in ESM (Tables S1 and S3). Mul-
tiple measurements of reference zircon GJ1 and Temora-1
during the analytical session yielded '7®Hf/!""Hf ratios of
0.2820002 +0.000022 (20 S.D.), and 0.282701 +0.000046
(20 S.D.) respectively, in agreement with published values
(Woodhead and Hergt 2005). For calculation of the epsilon
Hf (eHf,), the chondritic uniform reservoir (CHUR) was
used as recommend by Bouvier et al. (2008); !7Lu/!"""Hf
and "®Hf/"""Hf of 0.0336 and 0.282785, respectively, and a
decay constant of 1.867 X 10711 (Scherer et al. 2001; Soder-
lund et al. 2004). All two-stage Hf model ages (Tpy,) were
calculated by applying "°Hf/'7"Hf =0.283181 +0.00023
(n=46) and '°Lu/"""Hf =0.038055 for the depleted man-
tle (DM) evolutionary line (average MORB composition of
Atlantic and Indian Oceans of Chauvel and Blichert-Toft

consists of quartz (Qtz) and perthitic K-feldspar (perth Kfsp), (c, d)
Sample GK-7 contains euhedral quartz phenocrystals (Qtz) within
a fine-grained matrix dominated by K-feldspar-quartz granophyric
intergrowths

2001), resulting in a depleted mantle (DM) evolution-
ary line ranging from+ 14 (today) to zero (at 4.56 Ga).
Crustal evolutionary trends were modelled by applying
176 u/"""Hf = 0.0113 for continental crust (average of Taylor
and McLennan 1985, and Wedepohl 1995). For all zircon
xenocrysts, initial '"*Hf/'7"Hf, eHf, and Tp,,; were calculated
using the 27Pb/2%Pb ages obtained for the respective zircon
domains (ESM: Table S2).

Whole-rock geochemical analyses

Whole-rock geochemical analyses were carried out on
powders obtained by jaw crushing and Achate disc milling
from 4 granite samples. For analysis, 0.5 g sample powder
was mixed with 5 g SPECTROMELT A 12 (66% di-lithium
tetraborate/34% lithium metaborate) and fused at a burner
station. Major and minor element analyses on fusion discs
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Fig.5 Back-scattered electron
images of zircon grains found
in granophyric granite (sample
GK5), and granitoids (samples
GK7 and GK8). Images show
zircon morphologies (numbers
100, 111, 211 etc. represent face
indices), and internal structures
(images with circles, repre-
senting laser spot positions),
X0-xenocryst zircon. Numbers
beneath zircon images represent
no. of analyses and 2°°Pb/**8U
age. Note that in sample GKS5,
two groups of zircon can be dis-
tinguished, based on typologies
and ages (for details see text)

sample GK5

230: 401 Ma 232: 404 Ma
231: 391 Ma

N~
X
O
Qo
Q.
=
©
w

264: 2558 Ma  276:401 Ma

286: 1497 Ma

were obtained using a Bruker S4 Explorer wavelength-
dispersive X-ray fluorescence (XRF) spectrometer at the
Laboratory for Environmental and Raw Materials Analysis
(LERA), Institute of Applied Geosciences at KIT, Germany.
Matrix effects were corrected automatically by the Bruker
software. The relative analytical error for major and minor
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elements is 1% and 1-8%, respectively. Volatile components
are reported as loss of ignition (LOI).

Trace elements were analysed subsequently by LA-SF-
ICP-MS (193nm ArF Excimer laser, Analyte Excite +, Tel-
edyne Photon Machines) coupled to a Thermo Scientific Ele-
ment XR instrument at KIT, on the same fusion discs used
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for the WDXRF analyses. The fusion discs were measured
together with reference glasses NIST-SRM612 (primary
standard), BIR1, BHVO2 and BCR2G (secondary stand-
ards). On each fusion disc, five spots were measured with a
diameter of 85 pum alternating with measurements of refer-
ence material. The analyses were obtained with Al-H cones
using the following instrument parameters (for standards and
fusion discs): ablation duration=25 s on peak after 20 s
background measurement, laser repetition rate =10 Hz, laser
fluence =7 J/cm?; mixed Ar—He-N, carrier gas (Ar=0.77
L/min, He cell gas=0.30 L/min, He cup gas=0.22 L/min,
N, =12 mL/min), RF power=1125 W. The oxide forma-
tion rate monitored as 2*U0,/***U was < 0.08% during the
analytical session. Raw data were processed by means of
the software GLITTER (van Achterberg 2000), using SiO,
as an internal standard. The geochemical data of unknown
rock samples and reference materials are presented in ESM
(Table S4). Values represent the mean of five in situ fusion
disc analyses. The errors are commonly < 2% (16 mean) for
most trace elements with concentrations > 1 pg/g.

Results
Geochemical data

Whole-rock geochemical data were obtained from four gran-
ite xenoliths (granophyric granite: GK2, GKS; granitoids:
GK7, GKS8). The results are shown in Figs. 6 and 7. All ana-
lysed granites show high silica (Si0,=72.5 to 75.1 wt%) and
alkali oxide contents (Na,O +K,0=4.2 to 8.7 wt%). Based
on major element composition, the granites are classified as
peraluminous to subaluminous, magnesian and calc-alkalic
(GK7, GK8) or alkali-calcic (GK2, GKS) in composition
(Fig. 6a—c). The trace element patterns of all samples nor-
malised to primitive mantle are similar, and characterised by
relative depletion in Ba, Nb, Ti, Sr and P, and enrichment
in Pb,+ U and Th (Fig. 6¢). The chondrite-normalised REE
patterns are also similar. They reveal negative europium
anomalies (Eu/Eu*y=0.27-0.5), enrichment of LREE over
HREE [(La/Yb)y=7.1-13.2] and a moderate fractionation
of HREE [(Gd/Yb)y=1.4-2.3]. In discrimination diagrams
for geotectonic setting, all samples plot in the field for vol-
canic arc granites (Fig. 7a, b).

Results of zircon U-Pb dating

Zircon grains from five xenoliths could be recovered for
U-Pb dating, mostly more than 50 grains per sample, but
only 5 grains from sample GK2 (granophyric granite).
These five grains gave late Permian to Mesozoic 2*°Pb/>*U
ages <261 Ma (ESM: Table S2), and some analyses show
a high degree of discordance (e.g. grain U228), suggesting

significant Pb loss after zircon growth. In contrast, zir-
con grains of the granitoid samples GK7 and GKS yield
concordia ages of 418.9+ 1.8 Ma (n=17 out of 27), and
417.7+ 1.8 Ma (n=16 out of 25), respectively (Fig. 8;
Table 1), which are interpreted to date the time of magma
crystallisation; also supported by oscillatory zircon zoning
patterns (Fig. 5) and zircon Th/U ratios between 0.2 and 1.4
(ESM: Table S2). In situ U-Pb analyses of magmatic zir-
con grains/domains of granitoid sample GK1 reveal a rela-
tively wide scatter in 2°°Pb/**®U ages between 416 + 6 and
368 +5 Ma. Assuming a coherent magmatic population, nine
out of the 20 analyses provide a mean 2*°Pb/?*8U ages of
393 +4.8/— 1.7 Ma (calculated by “TuffZircAge" algorithm
of Ludwig and Mundil 2002; Fig. 8b). A few zircon analyses
from the three granitoid samples gave significantly older
207pp/2%Ph ages, ranging from 1451 to 559 Ma in sample
GK1, 2652 to 1401 Ma in sample GK7, and from 2920 to
1497 Ma in sample GKS8. These grains represent xenocrysts
and indicate involvement of older crustal matter of Archean
to Proterozoic age during granite formation.

Sample GK5 (granophyric granite) contains a com-
plex zircon population, which can be subdivided in two
major groups, based on U-Pb ages and zircon morpholo-
gies (Figs. 5 and 8e). Group I comprises euhedral zircon
grains dominated by {101} pyramids, which yield Devonian
206pp/238U ages ranging from 404 + 6 to 391 +7 Ma (similar
to zircon ages obtained from the granitoid samples GK7 and
GKS; Fig. 8c, d). The three oldest analyses give a concordia
age of 402.4 +3.6 Ma. The youngest age of 391 +7 Ma was
obtained from a rim (spots 230 and 231; see Fig. 5), per-
haps formed during a somewhat younger magmatic event.
At least some of the Devonian zircon grains/domains were
affected by serious Pb loss, as indicated by significant dif-
ferences in 2°°Pb/>*®U ages obtained by double analyses
of the same zircon zone (e.g. spots 240 and 241 in Fig. 5).
Group II zircon grains are dominated by {211} pyramids
(more or less corroded), and reveal Late Carboniferous to
Early Permian ages (Figs.5 and 8e). The most reliable U-Pb
analyses, i.e. from grains with a high degree of concord-
ance (90-100%) yield 2°Pb/**8U ages between 308 +5 and
285 +4 Ma (n=38). Five of these analyses give a concor-
dia age of 296.4 2.3 Ma, which is interpreted to represent
magma crystallisation. Ages between c. 390 and c. 296 Ma
perhaps result from a creeping, differential Pb loss, which
affected the Devonian zircon population during Early Per-
mian magmatism. In summary, combined information from
zircon images and U-Pb ages suggests that the granophyric
granite GK5 emplaced and crystallised during the Late Car-
boniferous—Early Permian, and that the parental magma was
formed by the re-melting of Devonian granite basement (for
more discussion see chapter 5.1: “Crustal evolution beneath
the Harz Mountains™).
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Results of Hf isotope analyses

Hafnium isotope compositions were measured on zircon
grains of three samples, granophyre granite GKS5, and
the granitoids GK7 and GK8. Magmatic zircon grains of
all three samples show overlapping '"°Hf/!""Hf, ratios
(Table 1). These range from 0.282439 +0.000043 (sample
GK5—group I) to 0.282455 +0.000067 (sample GK7), and
correspond to eHf, gy, between —2.4+2.7and —3.3+1.4
(or eHf,95,=— 5.0+ 1.2), and two-stage Hf model ages
between 1.25+0.14 Ga and 1.30+0.06 Ga (all errors are
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2 sigma)—(Fig. 9; ESM- Table S3). Significantly lower
176H£/17THf, ratios between 0.280909 and 0.281935 were
only obtained from zircon xenocrysts, corresponding to Hf
model ages between 2.17 and 3.29 Ga (ESM).
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Discussion {100} faces (Fig. 5), suggesting crystallisation at relatively

Crustal evolution beneath the Harz Mountains

Results of zircon U-Pb dating of xenoliths from the Bode
dike reveal that the basement of the eastern Harz Mountains,
hidden beneath very low-grade sedimentary rocks of mid-
dle Devonian age, hosts granitic rocks, which were formed
during two stages of magmatic evolution (Table 1). Older
granites, affected by a different degree of ductile deforma-
tion, emplaced and crystallised during the Early Devonian
between 419 and 393 Ma, and younger granites with grano-
phyric textures at ca. 295 Ma during the Late Carbonifer-
ous—Early Permian.

Combined results of whole-rock geochemistry and zircon
U-Pb-Hf isotope analyses suggest that the magmatic proto-
liths of the granitoids intruded into a supra-subduction zone
(magmatic arc) setting, and underwent assimilation and frac-
tionation during emplacement within the crust. This inter-
pretation is backed by the mildly peraluminous, calc-alkaline
character, highly fractionated REE patterns with negative
Eu-anomalies (pointing to fractionation in the stability field
of plagioclase in relative shallow magma chambers), nega-
tive Nb—Sr—Ti and positive Pb anomalies in primitive mantle
normalised diagrams (Fig. 6), and by discrimination dia-
grams for geotectonic setting (Fig. 7). Assimilation of older
crust is indicated by zircon xenocrysts with 2°’Pb/2%Pb ages
between 2920 and 559 Ma found in three xenoliths (Fig. 5,
ESM Table S3), and reworking of older crust by subchon-
dritic eHf ;)\, values between — 0.8 and — 4.6. These values
could result either from mantle-wedge enrichment by “sedi-
ments” during previous subduction (e.g. Laurent and Zeh
2015; Couzinie et al. 2016, and references therein), and/
or from assimilation of crustal rocks during magma ascent.
Two-stage Hf model ages indicate that the reworked crust
was derived from a depleted mantle source at ca. 1.2 Ga, on
average (Fig. 9). Finally, we note that zircon grains of the
samples GK7 and GK8 show a predominance of {110} over

low temperatures, mostly <700 °C according to the clas-
sification scheme of Pupin (1980). These temperatures are
slightly lower than zircon-in-melt saturation temperatures
of 759 to 771 °C, based on whole-rock compositions of the
investigated samples and the calibration of Harrison and
Watson (1983).

The granophyric granite GKS5 crystallised at 296.4 +2.3
Ma, which is suggested by a concordia age obtained from
5 grains of group II zircon dominated by {211} pyramids
(Table 1, Figs. 5 and 8). This age reflects magma crystal-
lisation during the Late Carboniferous—Early Permian, and
overlaps within analytical error with an U-Pb zircon age of
295.0+4.5 Ma, recently presented for the Ramberg pluton
by Linnemann et al. (2023). This overlap and field relation-
ships indicate that the Bode dike system formed immedi-
ately prior to Ramberg pluton emplacement. Zircon grains
recovered from the granophyre sample GK2 yields late
Permian to Triassic 2°°Pb/?*8U ages < 260 Ma. These ages
are geologically meaningless, and most likely result from
Pb loss. The finding of both Devonian and Permian zircon
grains in sample GKS5 further suggests that the granophyric
granites result from partial melting of Devonian granites
at depth during Late Carboniferous—Early Permian heating.
This interpretation is also backed by similar normalised trace
element patterns (Fig. 6) and overlapping Hf isotope com-
positions (Table 1, Fig. 9). Partial crust melting was most
likely caused by mantle upwelling related to crust extension
(Fig. 10), which affected wide parts of Central Europe dur-
ing the Late Carboniferous—Early Permian (e.g.Ziegler 1990;
van Wees et al. 2000; Wilson et al. 2004; McCann et al.
2006 and references therein). We note that the age obtained
for the granophyric granite xenoliths overlaps intrusion ages
derived for granites, gabbros, and intermediate to felsic dikes
of the Harz Mountains (Fig. 1), and for diorites, granites
and volcanic rocks of the Thuringian Forest (Zeh and Britz
2000; Zeh et al. 2000; Liitzner et al. 2021).
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Implications for Rheic Ocean closure

The Early Devonian intrusion ages (419-392 Ma) obtained
from granitoid xenoliths of the Bodegang dike overlap geo-
chronological data of felsic igneous rocks from the adjacent
Mid-German Crystalline Zone, and Northern Phyllite Zone.

@ Springer

Our ages are only slightly younger than emplacement ages of
444-423 Ma obtained from orthogneisses of the Ruhla For-
mation of the Mid-German Crystalline Zone (Britz 2000;
Zeh and Will 2010), which emplaced metasedimentary
rocks of Paleozoic age (maximum depositional age at <435
Ma; Zeh and Gerdes 2010), and from the drill core Saar
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Fig. 10 Model explaining the
formation of the granites found
in xenoliths of the Bode dike of
the eastern Harz Mountains. a
Late Silurian to Early Devo-
nian granite emplacement in a
magmatic arc system caused

by NW-ward subduction of the
Rheic Ocean beneath Avalonia
already attached to Baltica. b
Partial melting of pre-Variscan
basement beneath the Harz
mountains caused by mag-
matic underplating during Late
Carboniferous to Early Permian
extension

(a) 440-390 Ma
NW

Avalonia*

T 57 A ar ar . ar
+i+ T+t
o+t

*Neoproterozoic
basement + clastic
sedimentary rocks

(b) 300-295 Ma
NW Variscan

thrust
(>320 Ma)

ages of ca. 1.2 Ga derived from the Bode dike xenoliths are
very likely meaningless in a geological context, and rather
reflect mixing of mantle melts with crustal matter, compris-
ing pre-Silurian igneous and metasedimentary rocks. This
is directly indicated by zircon xenocrysts with Archean to
Proterozoic ages found in several Bode dike xenoliths. The
source of the zircon xenocrysts is ambiguous. Based on their
ages, these could result from the reworking of Cadomian
orthogneisses (as described from the Odenwald by Dérr and
Stein 2019), but also from (meta)sedimentary rocks depos-
ited at <565 Ma (**Pb/>*3U age of the youngest xenocryst
in sample GK1). We note that detrital zircon grains with
ages of 580+ 20 Ma are extremely rare (<2%) in quartzites
of presumed Silurian—Devonian protolith age, as exposed in
the Ecker Gneiss complex of the Harz Mountains (Geisler
et al. 2005; Linnemann et al. 2023), in the Rhenish Mas-
sif (Eckelmann et al. 2014), and in the Ruhla Formation of
the Mid-German Crystalline Zone (Zeh and Gerdes 2010).
However, such grains occur relatively abundant (ca. 20%)
in metagreywackes of presumed Neoproterozoic age of the
Northern Phyllite Zone (Warstein paragneiss; Dorr and
Stein 2019), and in lower Cambrian to Silurian sediments
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of the Brabant Massif (Linnemann et al. 2012; Willner et al.
2013), having an Avalonia provenance. Thus, the finding of
xenocrysts with ages of 570-600 Ma, c. 1.5 Ga and 2.6-2.9
Ga in the Bode dike xenoliths points to the assimilation of
Avalonia-derived sediments, which is also supported by
overlap in age-Hf isotope data (Fig. 9). We further note that
Hf model ages of ca. 1.2 Ga derived from zircon grains in
the Bode dike xenoliths overlap well with Nd model ages of
1.03-1.34 Ga estimated for Silurian intrusive and volcanic
rocks of the Brabant Massif (Linnemann et al. 2012).

In summary, comparison of zircon age-Hf data and
whole-rock isotope—geochemical results suggests that
Silurian to early Devonian granitoid rocks constituting the
basement beneath the eastern Harz Mountains formed part
of a magmatic arc system, which resulted from westward
subduction of the Rheic Ocean beneath Avalonia, which at
420-395 Ma was already connected to Baltica (see model in
Zeh and Gerdes 2010; Linnemann et al. 2023), and overlain
by Baltica-derived clastic sedimentary rocks (Fig. 10a).

During Variscan collision at < 330 Ma, the Rheic Ocean
and the Rhenohercynian “back arc” basin became finally
closed (see model in Zeh and Gerdes 2010), and the
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Silurian—-Devonian magmatic arc fragmented and overthrust
by very low-grade metasedimentary rocks of Paleozoic age
(mostly Emsian to Visean), resulting in the NW-vergent
fold-and-thrust architecture of the Harz Mountains. As
shown by Franke (2000) and Linnemann et al. (2023), the
Paleozoic sedimentary units of the Harz Mountains were
supplied from very different sources: from Baltica-Avalonia,
from Cadomia, and the Late Devonian—Carboniferous flysch
from the Mid-German Crystalline Zone. Finally, all rock
units became juxtaposed in a giant accretionary prism and
were affected by very low-grade metamorphic overprint. The
only exceptions are exotic slivers of Variscan high-grade
paragneiss with Baltica affinity, the so-called Ecker Gneisses
(Fig. 10b). It is likely that the Devonian granites, exposed
as xenoliths in the Bode dike, were also deformed during
Variscan collision, although there is no direct evidence for it.

Conclusions

1. The Bode dike of the eastern Harz Mountains contains
xenoliths of granite composition, in addition to meta-
sedimentary rocks and amphibolites.

2. The granite protoliths were formed during two different
magmatic events, as indicated by combined results of
petrography, zircon U-Pb dating, Hf isotope analyses
and whole-rock geochemistry.

3. Deformed granites are witnesses for the existence of
a Late Silurian—Early Devonian magmatic arc system,
which resulted from NW-ward subduction of the Rheic
Ocean beneath Avalonia-Baltica between 440 and
390 Ma.

4. Granites with granophyric textures result from re-
melting of Silurian—-Devonian granites, due to mantle
upwelling in an extensional regime, which affected wide
parts of Central Europe during the Late Carboniferous—
Early Permian.
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