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Background

In the field of medical imaging, machine learning and arti-
ficial intelligence (AI) have emerged as techniques that 
are likely to fundamentally transform clinical practice in 
the coming years [1–7]. In the context of magnetic reso-
nance imaging (MRI) and magnetic resonance spectroscopy 
(MRS), AI has the potential to impact all stages of the imag-
ing pipeline, from (1) image acquisition and reconstruction 
to (2) image analysis and interpretation and (3) diagnosis 
and prognosis. If realized, this intelligent imaging revolution 
will lead to accelerated acquisition times, reduced workload 
for clinicians, reduced costs to the healthcare system, and 
more personalized treatment decisions for patients.

Due to the increasing availability of data and comput-
ing power, numerous AI solutions, primarily based on deep 

learning, have been proposed over the past few years, and 
methods are now evolving toward clinical application and 
usage. AI algorithms have been proposed and studied in 
the context of scan planning, accelerated acquisition and 
reconstruction, and image analysis. While current work 
often focuses only on one part of this full imaging pipeline, 
deep learning provides many more opportunities to improve 
the whole workflow of MR image from acquisition to anal-
ysis and diagnosis. Future investigations of deep learning 
approaches will further support the choice of the exami-
nation based on actual physiological scan parameters, e.g., 
heart rate, or on the patient information obtained during the 
planning. Furthermore, deep learning techniques will sup-
port further acceleration in scan time, to allow for real-time 
interventional MRI [8]. We observe a trend toward embed-
ding different elements of the imaging pipeline (acquisition, 
reconstruction, post-processing, analysis, diagnosis) in deep 
learning models and training a network end to end in so-
called multi-task networks, or to exploit the additionally 
available data, and these directions will form the future of 
learning-based MR imaging. However, challenges relating 
to the usability, robustness, and reliability of AI algorithms 
are crucial when used in daily clinical practice, and their 
performance needs to be ensured and validated for diverse 
and heterogeneous patient cohorts.

This special issue highlights current developments and 
unresolved challenges in the push to move AI from a hot 
research topic to a clinical reality for MRI/MRS acquisition 
and reconstruction.

Acquisition and reconstruction

MR imaging represents a significant opportunity for AI due 
to the redundancy and the high dimensionality of the data. 
AI may help to overcome challenges regarding acquisition 
time, SNR, the trade-off between spatial and temporal reso-
lutions, and different types of artifacts, e.g., cardiac, and 
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respiratory motion. While deep learning approaches often 
outperform conventional approaches in terms of pixel-wise 
quantitative metrics, these approaches can be overconfident 
or overfit to the underlying application, and therefore atten-
tion needs to be paid to the real-world evaluation of these 
models to ensure reliability for clinical deployment. It is 
challenging to evaluate the quality and robustness of AI 
reconstruction approaches, especially for subtle patholo-
gies. In particular, we may find overly optimistic results by 
using simulated data and neglecting the unprocessed raw 
k-space data [9].

The robustness of neural networks to changes in anatomy 
[10] and architectures [11] was studied in the context of 
static 2D imaging. Small adversarial input perturbations 
can affect the neural networks differently [12]. Domain 
shifts in anatomy have also been shown to impact image 
reconstruction when using unrolled networks and moder-
ate acceleration [10], but are more subtle and difficult to 
identify. This observation regarding domain shift is differ-
ent to image analysis tasks, where a subtle change in data 
characteristics might already lead to, e.g., mis-segmentation. 
However, as reconstructions serve as the basis for further 
downstream tasks and considering that when deployed in a 
clinical environment these solutions might be more likely to 
encounter out-of-domain data, e.g., other imaging sequences 
or contrasts, or patients with different pathologies, biases 
and error propagation could occur. Clearly, hurdles remain 
to be overcome and better quality assurance mechanisms 
need to be developed.

In this issue, Heckel et al. provide a very comprehensive 
review of recent advances in AI reconstruction for robust 
MRI [13]. They particularly focus on recent advancements 
in the field where approaches such as end-to-end network 
training, generative priors, and self-supervised learning play 
key roles. They discuss new neural network architectures, 
such as transformers, that are sure to play an increasing role 
in the field in the coming years. They continue to consider 
the possibility of AI for image acquisition to be developed 
in tandem with AI reconstruction algorithms to improve 
k-space sampling and pulse sequence design. In addition, 
they introduce advanced applications, such as quantitative 
and dynamic MRI, and consider the main challenges of AI-
based reconstruction which include hallucinations, model 
instabilities, the difficulty of benchmarking, how to quantify 
uncertainty, and the need for large diverse dataset for both 
model development and validation.

Villegas-Martinez et al. and Yang et al. provide focused 
reviews on cardiovascular [14] and neurological [15] appli-
cations, respectively. With respect to the acquisition, com-
mon themes which persist regardless of the application are 
automated scan planning, acquisition parameter selection, 
and artifact correction, with methods to improve workflow 
efficiency and reduce operator variability promising to lead 

to a future with faster, lower-dose and contrast agent-free 
imaging. Zhou et al. specifically address one of the main 
challenges of MR acquisition, subject motion, and discuss 
the use of AI to correct for this [16]. They survey AI meth-
ods to reduce or estimate motion artifacts in both image 
and frequency domains. In addition, they consider how the 
estimated motion can be used and how possible synergies 
between the motion estimation and the downstream tasks 
(e.g., segmentation, parametric mapping, or MR-guided 
therapy) can be exploited. In keeping with the trend of the 
other work in this issue, they identify the pressing need to 
be able to properly validate the accuracy and fidelity of the 
estimated motion.

Some of the previously discussed challenges are also 
tackled within this special issue. Original research from 
Venkatesh et al. introduces SpiNet-QSM for reconstructing 
quantitative susceptibility maps (QSM) using a Schatten 
p-norm model-based AI framework [17]. Of particular inter-
est is the learnable p parameter which allows the framework 
the flexibility to adapt the regularizer to the specific data.

Two studies address hardware limitations with (1) Zhang 
et al. proposing a physics-guided AI model in 2.5D that 
yields high-quality coronary MRI reconstructions based on 
quantitative image quality metrics and the assessment of 
expert cardiologists as compared to conventional 3D koosh-
ball coronary MRI [18], and (2) Shafique et al. presenting 
a parallel framework for SVD-based low-rank model for 
reconstruction of highly accelerated dynamic cardiac MR 
that achieves > 10 × speedup in computation time [19].

The work of Fujima et al. investigates the obtained image 
quality and quantitative reliability of model-based deep 
learning reconstructions in diffusion-weighted imaging. 
They found significant qualitative and quantitative, in terms 
of SNR and CNR, differences between conventional and AI-
based reconstructions [20].

In the domain of MRS reconstruction, Berto et al. report 
the results of a conference challenge that aimed to achieve 
faster imaging time with the use of AI reconstruction [21]. 
Specifically, the reconstruction focused on gamma-aminobu-
tyric acid (GABA)-edited MRS with just one-quarter of the 
typical transients. A range of different neural network archi-
tectures and training schemes achieved promising results, 
but the authors acknowledge the challenge of assessing the 
quality of spectral reconstructions.

Image analysis and interpretation

Post-processing is the most widely studied application of 
AI in medical imaging. In particular, image analysis tasks 
such as segmentation and landmark detection are now 
routinely tackled with AI. It is probable that post-process-
ing AI applications are more mature as they are easier to 
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evaluate compared to acquisition/reconstruction tasks and 
there tends to be more data available to train such models. 
For example, quantitative metrics of evaluating automated 
segmentations are well established, whereas we have seen 
that evaluating reconstructed images remains a challenge 
[22]. However, questions about the reliability of AI are 
still present for post-processing applications in the pres-
ence of biases and domain shifts [23].

In line with previously discussed trends, image 
analysis tasks are now being tackled with joint models 
using multi-task learning, linking the analysis with the 
acquisition and reconstruction of the images. Promi-
nent examples of this are the combined reconstruction 
and segmentation of accelerated MRI, which have been 
proposed for several different sequences and anatomies 
[24–28]. Similar synergies between acquisition and image 
analysis are being made for other analysis steps as well, 
such as kinetic parameter estimation where research is 
studying the direct reconstruction of parametric maps 
from k-space, linking the acquisition and reconstruction 
directly to the diagnostic task [3, 29]. We envisage this 
trend to continue and expand in the future, potentially 
leading to all reconstruction and image analysis tasks 
being completed by one model in an end-to-end fashion.

Novel learning strategies [30] and the increasing avail-
ability of data also foster the trend toward more complex 
architectures. These networks can better generalize to dif-
ferent domains [31] and/or serve a multitude of tasks [32]. 
Although this generalizability aspect is desirable, clinical 
reliability and practical value still need to be investigated.

In this special issue, Suwannasak et al. make such a 
step to evaluate an AI-based super-resolution algorithm. 
In particular, the algorithm allows generation of high-
resolution images from 2× under sampled low-resolution 
3D T1-weighted brain MR images. The authors show the 
potential to reduce scan time to just 1 min, while their 
analysis shows that the super-resolution images still give 
accurate brain volume measurements and preserve image 
quality [33].

Other analysis applications are presented by Huang 
et al. who present work on metabolite concentration quan-
tification for in vivo MRS, and their promising results 
with a CNN-based model aligned well with the ground 
truth but required further investigation for differentiat-
ing metabolites with low concentrations from overlapping 
signals [34]. Kafali et al. quantified visceral and subcuta-
neous adipose tissue based on a 3D multi-contrast CNN 
and achieved excellent performance based on longitudinal 
data suitable for monitoring the risk factors for cardio-
metabolic diseases over time in overweight patients [35].

Image diagnosis and prognosis

The advancement of AI has also opened new frontiers to 
potentially improve the diagnostic accuracy and prognostic 
capabilities. Developments are crucial for accurate disease 
characterization and early treatment planning across various 
specialties, such as oncology, neurology, and cardiovascular 
imaging. Radiomics and ML models have been leveraged to 
extract image features [36–38], which provide insights into 
disease characteristics that may be neglected through con-
ventional methods. Additionally, the use of multiparametric 
MRI protocols facilitates detailed tissue characterization, 
aiding in the early disease detection [39–41], risk stratifica-
tion [42, 43], or therapy monitoring and guidance [44, 45]. 
To increase the model robustness and reliability, techniques 
of data augmentations and synthetic MR images generation 
were developed [46, 47] to address the need for large and 
diverse datasets for training. Moreover, hybrid AI models 
that integrate deep learning with radiomics offer enhanced 
diagnostic precision and more detailed prognostic assess-
ments from MRI scans [48].

However, operating in a diagnostic and prognostic set-
ting poses several challenges. The diversity of MRI data 
across different machines and protocols complicates the 
development of universally applicable AI models. AI 
applications in the clinical environment require high reli-
ability and reproducibility, which necessitates clinical 
validations, standardized datasets, and comparisons across 
MRI machines and sites. The integration of these models 
into existing clinical workflows requires not only techni-
cal compatibility—and in some cases major infrastruc-
tural changes—but also substantial training for clinicians 
to ensure accurate and effective use of these AI tools.

The risk of misdiagnosis emphasizes the need for cli-
nicians to apply and triage their judgment with AI rec-
ommendations. Human-interpretable feedback about the 
output and/or processing of the data needs to be provided 
and analyzed, to increase understanding and collabora-
tion. Another risk relates to training on imbalanced data-
sets which can lead to biases in diagnosis and prognosis 
such as inaccurate predictions for underrepresented patient 
groups. Furthermore, issues surrounding privacy and 
security cannot be neglected, given the sensitive nature of 
patient data involved in these AI systems. It is crucial that 
we ensure the benefits of AI in MRI without compromising 
ethical standards and patient care quality.

While the potential benefits of diagnostic and prognostic 
models are large, so too are these risks and challenges, and 
as such, these use-cases of AI are proportionally underrep-
resented for MRI/MRS data. They are also not included in 
this special issue, but the universal theme of the need robust 
validation of AI in these cases remains clear.
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This special issue does, however, provide valuable 
insights into a potentially crucial step in this process, the 
model evaluation. In the paper by Sharma et al., different sta-
tistical tests were used for the comparison of deep learning 
models trained with different hyperparameter settings and it 
was found that mixed effect models may be more sensitive 
than ANOVA for identifying such differences [49].

In summary, the papers of this special issue cover a spec-
trum of applications from the acquisition to the analysis of 
MRI/MRS data. Together, they illustrate the power of AI and 
identify the steps that still need to be taken for the full poten-
tial impact of AI to be felt in routine clinical practice. As 
discussed, many of these wheels are already in motion and 
given the pace of current progress, and sooner rather than 
later AI algorithms for MRI/MRS acquisition and recon-
struction will be in widespread use in hospitals, benefiting 
patients and clinicians.
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