
Vol.:(0123456789)

European Journal of Applied Physiology (2024) 124:3421–3431 
https://doi.org/10.1007/s00421-024-05543-x

ORIGINAL ARTICLE

Machine learning predicts peak oxygen uptake and peak power 
output for customizing cardiopulmonary exercise testing using 
non‑exercise features

Charlotte Wenzel1   · Thomas Liebig2 · Adrian Swoboda3 · Rika Smolareck1 · Marit L. Schlagheck1   · 
David Walzik1   · Andreas Groll4   · Richie P. Goulding5 · Philipp Zimmer1 

Received: 28 March 2024 / Accepted: 22 June 2024 / Published online: 3 July 2024 
© The Author(s) 2024

Abstract
Purpose  Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness. 
To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physi-
cal characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp 
protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake 
( V̇O2peak) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR).
Methods  The cross-sectional study was conducted with 274 (♀168, ♂106) participants who performed CPET on a cycle 
ergometer. Machine learning models and multiple linear regression were used to predict V̇O2peak and PPO using non-exercise 
features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive 
explanation (SHAP) was applied to determine the feature importance.
Results  The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21–8.17]) for 
V̇O2peak prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35–52]) for PPO prediction. Compared 
to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of V̇O2peak and PPO, 
respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the 
most impactful features.
Conclusion  Machine learning models predict V̇O2peak and PPO more accurately than MLR and can be used to individualize 
CPET protocols. Features that provide information about the participant's body composition contribute most to the improve-
ment of these predictions.
Trial registration number  DRKS00031401 (6 March 2023, retrospectively registered).
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HR	� Heart rate
HRmax	� Maximal heart rate
MET	� Metabolic equivalent task
PAL	� Physical activity level
PPO	� Peak power output
PSQI	� Pittsburgh Sleep Quality Index
RER	� Respiratory exchange ratio
RMSE	� Root mean square error
SD	� Standard deviation
SHAP	� Shapley additive explanation
SMM	� Skeletal muscle mass
TBW	� Total body water
TTE	� Time to exhaustion
V̇O2max	� Maximal oxygen uptake
V̇O2peak	� Peak oxygen uptake
W	� Watts
WSD	� Wasserstein distance

Introduction

Cardiopulmonary exercise testing (CPET) on a cycle ergom-
eter is widely applied in endurance sports as well as in clini-
cal settings. It provides a comprehensive insight into inte-
grated cardiopulmonary function within a single laboratory 
session. In particular, maximal oxygen uptake ( V̇O2max) 
reflects the integrated capacity of the cardiopulmonary 
and neuromuscular systems to take up, transport, and uti-
lize oxygen during exercise (Poole and Jones 2017). It thus 
represents the greatest attainable rate of aerobic adenosine 
triphosphate generation and is a marker of exercise capac-
ity (Bassett and Howley 2000). In addition to V̇O2max, peak 
power output (PPO) is typically used as a measure of exer-
cise capacity. It is quantified in external units of power out-
put, thus requiring less specialist equipment. Both outcomes 
are strongly predictive of all-cause mortality and the risk of 
developing chronic diseases (Ross et al. 2016). They can be 
applied to manage exercise training by determining training 
intensity and to validate and monitor the success of training 
interventions (Myers 2005).

To measure valid and interpretable CPET values on a 
cycle ergometer, the appropriate rate of increase in power 
and associated test duration are relevant factors. A too-rapid 
increase and a short test duration may lead to hyperventila-
tion, lack of determinability of the gas exchange threshold 
(Glaab and Taube 2022), and premature end of the test due 
to the occurrence of task failure prior to the attainment of 
V̇O2max (Hill et al. 2002). Too slow increase in power and 
a long test duration could result in insufficient V̇O2 drive 
to reach V̇O2max. This may lead to test termination due to 
factors not typically associated with reaching the tolerance 
limit during severe exercise (e.g. peripheral muscle fatigue, 
accumulation of metabolic products associated with fatigue, 

etc.) (Vanhatalo et al. 2010; Burnley et al. 2012). Conse-
quently, an inappropriate increase in power can lead to early 
or delayed termination of CPET and failure to accurately 
determine V̇O2max. Due to the challenge of attaining V̇O2max, 
peak oxygen uptake ( V̇O2peak) is alternatively employed as 
an indicator of physical performance, representing the high-
est V̇O2 value determined during the CPET.

To reach peak performance values, the test protocol 
should be precisely adjusted to the participant achieving 
voluntary exhaustion within the recommended 8 to 12 min 
(Buchfuhrer et al. 1983; American College of Sports Medi-
cine 2021). Standardization of test duration across partici-
pants would ensure the comparability of results between 
different test facilities or clinical environments and lead to 
optimized processes. To enable valid completion of each 
test, it is necessary to adapt the power increase to the physi-
cal characteristics of every individual. It would be advanta-
geous if these characteristics are non-exercise features that 
are convenient to collect in daily practice before conducting 
a CPET and are expected to have an impact on V̇O2peak and 
PPO. Furthermore, appropriate prediction models are impor-
tant for customizing the protocol. In addition to V̇O2peak, 
which is commonly used as an outcome parameter (Myers 
et al. 2001; da Silva et al. 2012; Cunha et al. 2015), PPO 
depicts a further outcome parameter that can be collected 
with less equipment.

Previous work investigating protocol adaptations for 
CPET included small (Saengsuwan et al. 2017) or homoge-
neous (Myers et al. 1994; Cunha et al. 2015) populations and 
usually used conventional linear predictive models (Myers 
et al. 1994, 2001; da Silva et al. 2012; Saengsuwan et al. 
2017). This may lead to a possible overestimation of the 
explanatory power of the models. Indeed, the American Col-
lege of Sports Medicine recommends formulas for predicting 
V̇O2max based on multiple linear regression (American Col-
lege of Sports Medicine 2021). Thus, potential non-linear 
relationships between the features and the outcome param-
eter cannot be identified. Meanwhile, several machine learn-
ing models, like decision tree (Song and Lu 2015), random 
forest (Breiman 2001), k-nearest-neighbor (Sreevalsan-Nair 
2020), and gradient boosting regression (Friedman 2001), 
are able to capture non-linear patterns. They can incorporate 
many features, and deal with heterogeneous data and the 
associated outliers (Friedman 2001; Singh et al. 2016). Due 
to this background, this work aims (1) to compare two dif-
ferent non-exercise feature sets to predict V̇O2peak and PPO 
using four machine learning models and one linear model 
and (2) to identify the most impactful features to adapt the 
power increase to the physical conditions of each participant 
on a cycle ergometer. We hypothesize that machine learn-
ing models provide more accurate predictions of V̇O2peak 
and PPO than the conventional multiple linear regression 
technique.
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Materials and methods

Participants

The cross-sectional study included n = 274 (♀168, ♂106) 
participants who were at least 18 years old and physi-
cally able to perform CPET. Participants were asked not 
to engage in vigorous exercise or drink alcohol or coffee 
for 24 h and not to eat for 2 h prior to the measurement. 
Participants were excluded from the study if they had a 
pacemaker, an acute infection, or an orthopedic injury. 
Female subjects were also excluded if they were pregnant.

Procedures

Participants’ demographic and anthropometric data were 
collected. Subsequently, body composition was assessed 
by bioelectrical impedance analysis (BIA) (SECA mBCA 
525), and handgrip strength measurement (Jamar hand 
dynamometer hydraulic) was conducted. Afterward, par-
ticipants answered questionnaires on physical activity 
level (PAL) (Godin and Shephard 1985; Armstrong and 
Bull 2006) and sleep quality (Buysee et al. 1989). The 
CPET was performed in an upright position on a cycle 
ergometer (CORTEX Bike M). The test began with a one-
minute resting measurement and a 2-min period of base-
line cycling at 25 watts (W) for females and 50 W for 
males. Subsequently, we increased the workload by 15, 
20 or 25 W/min for females and 20, 25 or 30 W/min for 
males, depending on PAL category and body-mass-index 
(BMI) (supplements Table A). The power increased con-
tinuously until participants were no longer able to main-
tain a frequency above 60 revolutions per minute. This was 
followed by a recovery phase of 3 min at 25 W for females 
or 50 W for males.

Respiratory gas exchange and ventilation were meas-
ured continuously on a breath-by-breath basis via spiro-
ergometry (CORTEX METAMAX® 3B). Heart rate (HR) 
was monitored permanently via a bluetooth chest strap 
(Polar H10). The highest 15-s average determined by the 
software (CORTEX MetaSoft® Studio) during the CPET 
was regarded as peak V̇O2 ( V̇O2peak), respiratory exchange 
ratio (RER) and maximal HR (HRmax). The highest power 
output achieved during the CPET prior to exhaustion 
was considered the PPO. Time to exhaustion (TTE) was 
defined by the time of exercise test minus baseline and 
recovery periods. To ensure that most participants had 
achieved their full capacity, they had to reach a V̇O2 pla-
teau with 150 ml/min difference between the last two 30-s 
intervals or meet two of the following three criteria at the 
time of V̇O2peak: (1) a RER ≥ 1.1, (2) a rating of perceived 

exertion > 17 on the 6–20 scale and (3) a HRmax within 10 
beats/min of the age-predicted HRmax (Tanaka et al. 2001).

Feature selection

The selection of non-exercise features for the prediction of 
V̇O2peak and PPO was based on possible associations with 
physical performance (Wier et al. 2006; Schembre and Riebe 
2011; Booth et al. 2012; Antunes et al. 2017; Saengsuwan 
et al. 2017; Przednowek et al. 2018; Langer et al. 2020; 
American College of Sports Medicine 2021; Shen et al. 
2022). The small feature set comprised 15 features that are 
convenient to assess in practice and have a low time require-
ment. These include anthropometric and demographic data, 
as well as self-perceived health status and activity level. The 
big feature set was extended by body composition variables, 
handgrip strength, and questionnaires (Godin and Shephard 
1985; Buysee et al. 1989; Armstrong and Bull 2006), and 
comprised 41 features. All features are listed in Table 1 and 
explained in more detail in the supplements (Table B).

Applied machine learning algorithms

Multiple linear regression (Jobson 1991) as a conventional 
model and four different supervised machine learning mod-
els were used to predict the V̇O2peak and PPO, each utilizing 
the two feature sets. Table 2 lists the multiple linear regres-
sion, and the machine learning models, their description, and 
the reasons for selection.

Table 1   Small and big feature set

PAL physical activity level, BMI body-mass-index, FM fat mass, 
FFM fat free mass, SMM skeletal muscle mass, TBW total body 
water, ECW extracellular water, MET metabolic equivalent task, 
PSQI Pittsburgh Sleep Quality Index

Feature set Features

Small feature set Age (years), sex, smoking, smoking behavior 
(years), chronic diseases, allergies, supple-
ments, medications, PAL, weight (kg), height 
(m), BMI, waist circumference (cm), hip 
circumference (cm), waist-hip-ratio

Big feature set Age (years), sex, smoking, smoking behavior 
(years), chronic diseases, allergies, supple-
ments, medications, PAL, weight (kg), height 
(m), BMI, waist circumference (cm), hip 
circumference (cm), waist-hip-ratio, FM

(%), FM (kg), FFM (%), FFM (kg), SMM (%), 
SMM (kg), SMM torso (kg), SMM torso (%), 
SMM legs (kg), SMM legs (%), TBW (%), 
TBW (L), ECW (%), ECW (L), ECW/TBW 
(%), total energy expenditure (kcal/day), rest-
ing energy expenditure (kcal/day), phase angle 
(°), handgrip strength (kg), handgrip strength 
(%), MET, PAL category, Godin score, Godin 
category, PSQI score, PSQI category
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Statistical analysis

All statistical analyses were conducted with Python 3.9 (Van 
Rossum and Drake 2009) (supplements Table C). First, par-
ticipant characteristics were presented by descriptive statis-
tics [mean ± standard deviation (SD)]. Two missing values 
of the Pittsburgh Sleep Quality Index (PSQI) Score were 
replaced by the single imputation method (Glas 2010). Since 
the outcome parameters are continuous, the machine learn-
ing models were trained for regression tasks. All variables 
were standardized using the z transformation. The final study 
population was divided into a training (80%) and a valida-
tion (20%) set. On the training data, fivefold cross-validation 
(Refaeilzadeh et al. 2016) was used for hyperparameter tun-
ing using Bayes search (Lindauer et al. 2019) and to train 
the final models. The performance of the final models was 
evaluated on the validation set. The evaluation was based 
on quality criteria including the mean of the reset standard-
ized root mean square error (RMSE), the R squared (R2), 
the Wasserstein distance (WSD), and the respective 95% 
confidence intervals obtained from the validation set using 
1000 replicates. The Shapley additive explanation (SHAP) 
(Nohara et  al. 2022) was used to determine the feature 
importance. This involved assessing the relevance of features 
using SHAP values to identify the relative contribution of 
the feature to V̇O2peak and PPO prediction. In a further step, 
the entire procedure described above was performed again 
for V̇O2peak and PPO separately for females and males to 
investigate sex-specific differences. Accordingly, the feature 
sex was removed from this part of the analysis.

Results

Characteristics and CPET values of participants 
included in the predictions

In total, n = 274 potential participants attended the study. 
Finally, n = 258 (♀101, ♂157) adults were included in the 
analysis for the prediction of V̇O2peak. Of the n = 16 excluded 
participants, n = 14 did not reach a V̇O2 plateau or at least 
two out of three exhaustion criteria and n = 2 were excluded 
due to missing BIA and CPET values. In the analysis for 
predicting PPO, n = 272 (♀106, ♂166) participants were 
included. Only n = 2 were excluded due to missing CPET 
and BIA values. The participants’ characteristics and CPET 
values are shown in Table 3.

Model comparison for predicting V̇O2peak and PPO

Figure 1 illustrates the performance of the multiple linear 
regression and the applied machine learning models con-
cerning the mean of the three quality criteria: RMSE, R2 and Ta
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WSD. The RMSE is a standard statistical parameter and is 
used to evaluate model performance. The units of RMSE in 
this work are ml/kg/min for the prediction of V̇O2peak and W 
for the prediction of PPO. The R2 represents the proportion 
of the variance of the outcome parameter that is explained 
by the features of the model. The WSD measures differences 
between probability distributions. The smaller the RMSE 
and the WSD and the larger the R2 the more accurate the 
results of the models. The multiple linear regression with 
the big feature set has an additional coordinate system, as 
all quality criteria differ significantly from those of the other 
models. The mean values of the quality criteria and the 95% 
confidence intervals can be found in the supplements (Table 
D–F).

Machine learning models such as random forest and 
gradient boosting regression with the big feature set have 
a low RMSE and WSD as well as a high R2 and perform 
better overall than models with the small feature set. Fig-
ure 2 shows the performance of the sex-separated models 
for the prediction of V̇O2peak and PPO using the mean of 
quality criteria.

In the prediction of V̇O2peak for females, the applied 
machine learning models consistently outperformed the 
multiple linear regression models. In all sex-separated 
models, the machine learning models with the big feature 
set perform better overall than the models with the small 
set.

Table 3   Participants’ characteristics and CPET values for the predictions (mean ± SD)

SD standard deviation, CPET cardiopulmonary exercise testing, BMI body-mass-index, Rel. FM relative fat mass, Rel. FFM relative fat free 
mass, PPO peak power output, V̇O2max maximal oxygen consumption, TTE time to exhaustion

Characteristics and 
CPET values

Prediction of V̇O2peak Prediction of PPO

Females (n = 101) Males (n = 157) All (n = 258) Females (n = 106) Males (n = 166) All (n = 272)

Age (years) 27.40 ± 9.96 27.17 ± 8.46 27.26 ± 9.06 27.29 ± 9.74 27.52 ± 8.97 27.43 ± 9.26
Height (m) 1.69 ± 0.06 1.81 ± 0.07 1.77 ± 0.09 1.69 ± 0.06 1.81 ± 0.07 1.76 ± 0.09
Weight (kg) 65.97 ± 9.60 79.97 ± 10.97 74.49 ± 12.48 65.83 ± 9.52 79.96 ± 10.84 74.45 ± 12.42
BMI 23.09 ± 3.24 24.32 ± 2.98 23.84 ± 3.14 23.03 ± 3.20 24.39 ± 2.99 23.86 ± 3.14
Waist-Hip-Ratio 0.76 ± 0.05 0.83 ± 0.05 0.80 ± 0.06 0.76 ± 0.05 0.83 ± 0.05 0.80 ± 0.06
Rel. FM (%) 27.74 ± 7.60 17.02 ± 6.73 21.22 ± 8.80 27.78 ± 7.53 17.04 ± 6.83 21.23 ± 8.83
Rel. FFM (%) 72.29 ± 7.61 82.98 ± 6.73 78.79 ± 8.80 72.25 ± 7.54 82.96 ± 6.83 78.78 ± 8.82
PPO (W) 214 ± 44 322 ± 57 280 ± 74 212 ± 44 320 ± 60 278 ± 75
V̇O2peak (L/min) 2.53 ± 0.51 3.87 ± 0.65 3.34 ± 0.88 2.52 ± 0.51 3.84 ± 0.66 3.33 ± 0.89
V̇O2peak (ml/kg/min) 38.89 ± 8.05 48.89 ± 8.34 44.97 ± 9.56 38.71 ± 7.93 48.60 ± 8.56 44.74 ± 9.61
TTE (min:s) 09:41 ± 1:57 10:14 ± 1:49 10:01 ± 1:53 09:37 ± 1:56 10:07 ± 1:55 09:55 ± 1:56

Fig. 1   Quality criteria of the models for the prediction of V̇O2peak and PPO. RMSE root mean squared error, R2 R squared, WSD Wasserstein dis-
tance, MLR multiple linear regression, DT: decision tree, RF Random forest, KNN k-nearest-neighbor, GBR gradient boosting regression
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Feature importance

The ten most impactful features for predicting V̇O2peak and 
PPO were selected for each model by SHAP. SHAP values 
are assigned to each feature for prediction. The prediction 
result is the sum of the contributions of each feature. The 
x-axis represents the impact of each feature on the predic-
tion for each participant represented by a dot and the y-axis 
shows the feature in descending order of overall importance. 
The color of the gradient denotes the magnitude of the origi-
nal value for that feature. Since random forest and multiple 
linear regression performed best among the machine learn-
ing models with the small feature set (Fig. 1) and random 
forest with the big feature set consistently performed best 
among the sex- separated models, the SHAP values of these 
models are shown in Fig. 3. The supplements also contain all 

figures of the SHAP values of the most accurate model with 
the big and the small feature set (Figure A–F).

Discussion

We hypothesized that machine learning models will pro-
vide more accurate predictions of V̇O2peak and PPO than 
the conventional multiple linear regression technique. 
Moreover, we aimed (1) to compare two non-exercise fea-
ture sets to predict V̇O2peak and PPO using four machine 
learning models as well as multiple linear regression and 
(2) to identify the most impactful features. The results 
confirm that machine learning models provide more 
precise results in comparison to multiple linear regres-
sion. Our analysis further indicates that machine learning 

Fig. 2   Quality criteria of the models for the prediction of V̇O2peak 
and PPO for females and males. RMSE root mean squared error, R2 R 
squared, WSD Wasserstein distance, MLR multiple linear regression, 

DT decision tree, RF random forest, KNN k-nearest-neighbor, GBR 
gradient boosting regression
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Fig. 3   Importance of the features by SHAP with the random forest 
and multiple linear regression with the small feature set as well as the 
random forest with the big feature set for the prediction of V̇O2peak 
and PPO for females and males. SHAP Shapley additive explanation, 

BMI body-mass-index, PAL physical activity level, SMM skeletal 
muscle mass, TBW total body water, FM fat mass, FFM fat free mass, 
ECW extracellular water, MET metabolic equivalent task
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models with comprehensive features make more accurate 
predictions than models containing only anthropometric 
and demographic data. In particular, features that include 
information about the participant’s body composition seem 
to have a relevant impact on the prediction of V̇O2peak and 
PPO. These results may be helpful in developing new 
standards for performing CPETs and improving predic-
tion models for V̇O2peak and PPO.

In addition to the four machine learning models deci-
sion tree, random forest, k-nearest-neighbor and gradient 
boosting regression, we used multiple linear regression as 
a conventional technique that is commonly used in exercise 
physiology to predict V̇O2peak and PPO (Myers et al. 1994, 
2001; da Silva et al. 2012; Akay and Abut 2015; Saengsuwan 
et al. 2017). Previous literature has already shown that intel-
ligent machine learning models can predict V̇O2peak more 
accurately than existing multiple linear regression-based 
prediction models (Akay and Abut 2015; Liu et al. 2022). 
These results are confirmed by our work, which, in contrast 
to previous literature, compared machine learning and mul-
tiple linear regression models based on the same population 
and the same conditions. Moreover, these indicate that some 
predictor variables showed non-linear relationships with V̇
O2peak and PPO. The applied machine learning models can 
effectively analyze and capture these non-linear relations, 
explaining their greater performance over the traditional 
multiple linear regression technique.

In this study, the random forest proved to be the most 
robust prediction model, as it possessed the lowest RMSE, 
the highest R2, and typically displayed a lower WSD for 
almost all predictions. The random forest estimated V̇O2peak 
considering both sexes with a mean error of 6.52 ml/kg/
min, a variance explanation of approximately 52% and a 
difference in probability distributions of 0.28. The gradient 
boosting regression model performed slightly better than 
the random forest in predicting PPO when both sexes were 
considered. It predicted PPO with a mean error of 43 W, a 
variance explanation of about 66% and a difference in the 
probability distributions of 0.18. In particular, the multiple 
linear regression had an unusually high RMSE and WSD 
as well as a negative R2 if many features were included in 
the prediction. The results were outside the interpretable 
range and are due to the fact that the multiple linear regres-
sion cannot handle a large number of predictor variables that 
exhibit multicollinearity (Jobson 1991). In contrast to mul-
tiple linear regression, random forest handles outliers and 
avoids overfitting by capturing underlying patterns rather 
than overlearning the training data (Singh et al. 2016). The 
gradient boosting regression is considered a robust method 
that can also deal with very heterogeneous data (Friedman 
2001). In addition to these advantages, machine learning 
models are able to recognize linear relationships between 
variables. Therefore, the effectiveness of conventional linear 

methods in predicting V̇O2peak and PPO should be critically 
reconsidered.

Beside the correct selection of suitable prediction mod-
els, the identification of relevant features is crucial. This 
allows practical recommendations regarding the parameters 
that should be recorded before conducting a CPET. Previ-
ous literature aimed at individualizing test protocols has 
used features that are usually assessed prior CPET, such as 
questionnaires on PAL, sex, age, BMI or resting HR (Myers 
et al. 2001; da Silva et al. 2012; Cunha et al. 2015; Saeng-
suwan et al. 2017). In our study, we divided the features into 
two sets to determine if collecting only anthropometric and 
demographic data before conducting a CPET is sufficient 
to adapt a ramp protocol to the participant’s characteristics.

Previously, data from the National Health and Nutrition 
Examination Survey (Liu et al. 2022) have been used to 
develop machine learning models for the prediction of V̇
O2max with non-exercise features. In line with our results, the 
authors concluded that models with a comprehensive fea-
ture set performed significantly better than previous meth-
ods using a limited number of predictors and mainly linear 
models. However, the work was limited by the fact that some 
predictor variables cannot be readily implemented in other 
healthcare settings. Furthermore, existing studies have often 
used submaximal features to predict maximal physical per-
formance, which are less practical and more time-consuming 
(Evans et al. 2015; Kokkinos et al. 2018; Abut et al. 2019; 
Ashfaq et al. 2022). In our work, only non-exercise features 
that are convenient to collect in various environments were 
included.

To elaborate which features contribute most to the predic-
tion of V̇O2peak and PPO, the results of the SHAP analysis 
were considered. As in previous studies (Myers et al. 2001; 
da Silva et al. 2012), our findings indicate that sex has a sig-
nificant influence on the prediction when the small feature 
set is applied. To determine what accounts for the differ-
ence between males and females, we fitted the models to 
the sex-separated data and examined the big feature set in 
the following.

Body composition variables proved to be the most influ-
ential features of V̇O2peak and PPO. Especially SMM, ECW, 
and TBW seem to be important predictors. The SHAP analy-
sis showed that high body composition values associated 
with high SMM led to increased V̇O2peak and PPO. This can 
be explained by the fact that muscle fibers consume oxygen 
and fiber cross-sectional areas increase linearly with PPO 
(Appelman et al. 2024). Furthermore, there exists a linear 
relationship between the power output and the V̇O2 incre-
ment rate.

Subjective features such as health-related questionnaires, 
as well as demographic data appeared to be less relevant, 
particularly for the prediction of V̇O2peak for females and 
PPO for both sexes. The SHAP values for the prediction of 
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V̇O2peak and PPO in males attribute a relevant significance 
to the waist–hip ratio and height. This indicates that anthro-
pometric data should continue to be used for the predictions 
and should not be completely excluded.

The SHAP analysis showed that it may be beneficial to 
determine the body composition of the participant before 
conducting a CPET to adapt a ramp protocol on the cycle 
ergometer to the characteristics of the participant. With 
the prediction of PPO, an adaptation of the protocol can be 
implemented quickly. To effectively utilize the predicted V̇
O2peak from this work, the V̇O2 and power output relationship 
can be considered, which is approximately 10 ml/W/min. 
The mean response time of V̇O2 for ramp protocols is about 
40 s (Caen et al. 2020). Using these two variables, the rate 
of power increase required to reach the predicted V̇O2peak in 
a given time can be calculated.

A limiting factor of this work is that the PPO is influenced 
by the choice of power increase (Poole and Jones 2017). This 
reduces the reliability of the models for predicting PPO as 
they are based on the ramp protocols performed in this study. 
Consequently, we included V̇O2peak as an outcome parameter 
since it can be achieved despite different power output slopes 
(Iannetta et al. 2020). Moreover, the generalizability of the 
prediction models is limited to the investigated population, 
comprising mainly healthy young European adults who were 
physically able to perform a CPET.

The results can help to adjust power increase in a ramp 
protocol to achieve volitional exhaustion within a certain 
duration. This facilitates the comparison of CPETs between 
different test settings, clinical environments, and studies. In 
addition, the results can be used to evaluate the effective-
ness of an intervention to increase PPO or V̇O2peak. This 
involves adapting the power increase in a CPET before and 
after the intervention using the machine learning prediction 
models. The results could be used to assess an individual’s 
exercise tolerance by using the machine learning prediction 
models to determine when an individual's measured V̇O2peak 
is significantly different from the predicted values. In future 
analysis, the machine learning approach can be extended 
to predictions for clinical populations by adding disease-
specific features. In addition, the population can be extended 
to a wider age range, different body mass classes and lower 
fitness levels.
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