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Abstract

Purpose Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness.
To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physi-
cal characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp
protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake
(VOzpeak) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR).

Methods The cross-sectional study was conducted with 274 (2168, 3106) participants who performed CPET on a cycle
ergometer. Machine learning models and multiple linear regression were used to predict VOzpeak and PPO using non-exercise
features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive
explanation (SHAP) was applied to determine the feature importance.

Results The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21-8.17]) for
VO2peak prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35-52]) for PPO pred.iction. Compared
to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of VO, and PPO,
respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the
most impactful features.

Conclusion Machine learning models predict VO2peak and PPO more accurately than MLR and can be used to individualize
CPET protocols. Features that provide information about the participant's body composition contribute most to the improve-
ment of these predictions.

Trial registration number DRKS00031401 (6 March 2023, retrospectively registered).

Keywords Cardiopulmonary exercise testing - Machine learning - Peak oxygen uptake - Peak power output - Prediction

Abbreviations CPET  Cardiopulmonary exercise testing
BIA Bioelectrical impedance analysis ECW Extracellular water
BMI Body-mass-index FFM Fat free mass

FM Fat mass
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HR Heart rate

HR,_,. Maximal heart rate

MET Metabolic equivalent task
PAL Physical activity level

PPO Peak power output

PSQI Pittsburgh Sleep Quality Index
RER Respiratory exchange ratio
RMSE Root mean square error

SD Standard deviation

SHAP  Shapley additive explanation
SMM Skeletal muscle mass

TBW Total body water

TTE Time to exhaustion

VO,,.x Maximal oxygen uptake
VO,peu.  Peak oxygen uptake

W Watts

WSD Wasserstein distance
Introduction

Cardiopulmonary exercise testing (CPET) on a cycle ergom-
eter is widely applied in endurance sports as well as in clini-
cal settings. It provides a comprehensive insight into inte-
grated cardiopulmonary function within a single laboratory
session. In particular, maximal oxygen uptake (VO,,,..)
reflects the integrated capacity of the cardiopulmonary
and neuromuscular systems to take up, transport, and uti-
lize oxygen during exercise (Poole and Jones 2017). It thus
represents the greatest attainable rate of aerobic adenosine
triphosphate generation and is a marker of exercise capac-
ity (Bassett and Howley 2000). In addition to VO,,.,,, peak
power output (PPO) is typically used as a measure of exer-
cise capacity. It is quantified in external units of power out-
put, thus requiring less specialist equipment. Both outcomes
are strongly predictive of all-cause mortality and the risk of
developing chronic diseases (Ross et al. 2016). They can be
applied to manage exercise training by determining training
intensity and to validate and monitor the success of training
interventions (Myers 2005).

To measure valid and interpretable CPET values on a
cycle ergometer, the appropriate rate of increase in power
and associated test duration are relevant factors. A too-rapid
increase and a short test duration may lead to hyperventila-
tion, lack of determinability of the gas exchange threshold
(Glaab and Taube 2022), and premature end of the test due
to the occurrence of task failure prior to the attainment of
VO, (Hill et al. 2002) Too slow increase in power and
a long test duration could result in insufficient VO, drive
to reach VO,,... This may lead to test termination due to
factors not typically associated with reaching the tolerance
limit during severe exercise (e.g. peripheral muscle fatigue,
accumulation of metabolic products associated with fatigue,
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etc.) (Vanhatalo et al. 2010; Burnley et al. 2012). Conse-
quently, an inappropriate increase in power can lead to early
or delayed termination of CPET and failure to accurately
determine VO,,,.. Due to the challenge of attaining VO,,,,.,
peak oxygen uptake (VOzpeak) is alternatively employed as
an indicator of physical performance, representing the high-
est VO, value determined during the CPET.

To reach peak performance values, the test protocol
should be precisely adjusted to the participant achieving
voluntary exhaustion within the recommended 8 to 12 min
(Buchfuhrer et al. 1983; American College of Sports Medi-
cine 2021). Standardization of test duration across partici-
pants would ensure the comparability of results between
different test facilities or clinical environments and lead to
optimized processes. To enable valid completion of each
test, it is necessary to adapt the power increase to the physi-
cal characteristics of every individual. It would be advanta-
geous if these characteristics are non-exercise features that
are convenient to collect in daily practice before conducting
a CPET and are expected to have an impact on VOzpeak and
PPO. Furthermore, appropriate prediction models are impor-
tant for customizing the protocol. In addition to Vozpeak,
which is commonly used as an outcome parameter (Myers
et al. 2001; da Silva et al. 2012; Cunha et al. 2015), PPO
depicts a further outcome parameter that can be collected
with less equipment.

Previous work investigating protocol adaptations for
CPET included small (Saengsuwan et al. 2017) or homoge-
neous (Myers et al. 1994; Cunha et al. 2015) populations and
usually used conventional linear predictive models (Myers
et al. 1994, 2001; da Silva et al. 2012; Saengsuwan et al.
2017). This may lead to a possible overestimation of the
explanatory power of the models. Indeed, the American Col-
lege of Sports Medicine recommends formulas for predicting
VO,,... based on multiple linear regression (American Col-
lege of Sports Medicine 2021). Thus, potential non-linear
relationships between the features and the outcome param-
eter cannot be identified. Meanwhile, several machine learn-
ing models, like decision tree (Song and Lu 2015), random
forest (Breiman 2001), k-nearest-neighbor (Sreevalsan-Nair
2020), and gradient boosting regression (Friedman 2001),
are able to capture non-linear patterns. They can incorporate
many features, and deal with heterogeneous data and the
associated outliers (Friedman 2001; Singh et al. 2016). Due
to this background, this work aims (1) to compare two dif-
ferent non-exercise feature sets to predict VOZpeak and PPO
using four machine learning models and one linear model
and (2) to identify the most impactful features to adapt the
power increase to the physical conditions of each participant
on a cycle ergometer. We hypothesize that machine learn-
ing models provide more accurate predictions of VOzpeak
and PPO than the conventional multiple linear regression
technique.
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Materials and methods
Participants

The cross-sectional study included n=274 (2168, £'106)
participants who were at least 18 years old and physi-
cally able to perform CPET. Participants were asked not
to engage in vigorous exercise or drink alcohol or coffee
for 24 h and not to eat for 2 h prior to the measurement.
Participants were excluded from the study if they had a
pacemaker, an acute infection, or an orthopedic injury.
Female subjects were also excluded if they were pregnant.

Procedures

Participants’ demographic and anthropometric data were
collected. Subsequently, body composition was assessed
by bioelectrical impedance analysis (BIA) (SECA mBCA
525), and handgrip strength measurement (Jamar hand
dynamometer hydraulic) was conducted. Afterward, par-
ticipants answered questionnaires on physical activity
level (PAL) (Godin and Shephard 1985; Armstrong and
Bull 2006) and sleep quality (Buysee et al. 1989). The
CPET was performed in an upright position on a cycle
ergometer (CORTEX Bike M). The test began with a one-
minute resting measurement and a 2-min period of base-
line cycling at 25 watts (W) for females and 50 W for
males. Subsequently, we increased the workload by 15,
20 or 25 W/min for females and 20, 25 or 30 W/min for
males, depending on PAL category and body-mass-index
(BMI) (supplements Table A). The power increased con-
tinuously until participants were no longer able to main-
tain a frequency above 60 revolutions per minute. This was
followed by a recovery phase of 3 min at 25 W for females
or 50 W for males.

Respiratory gas exchange and ventilation were meas-
ured continuously on a breath-by-breath basis via spiro-
ergometry (CORTEX METAMAX® 3B). Heart rate (HR)
was monitored permanently via a bluetooth chest strap
(Polar H10). The highest 15-s average determined by the
software (CORTEX MetaSoft® Studio) during the CPET
was regarded as peak VO, (VOzpeak), respiratory exchange
ratio (RER) and maximal HR (HR_,,). The highest power
output achieved during the CPET prior to exhaustion
was considered the PPO. Time to exhaustion (TTE) was
defined by the time of exercise test minus baseline and
recovery periods. To ensure that most participants had
achieved their full capacity, they had to reach a VO, pla-
teau with 150 ml/min difference between the last two 30-s
intervals or meet two of the following three criteria at the
time of VOzpeak: (1)aRER >1.1, (2) a rating of perceived

exertion > 17 on the 6-20 scale and (3) a HR,, within 10
beats/min of the age-predicted HR _,, (Tanaka et al. 2001).

max

Feature selection

The selection of non-exercise features for the prediction of
VOzpeak and PPO was based on possible associations with
physical performance (Wier et al. 2006; Schembre and Riebe
2011; Booth et al. 2012; Antunes et al. 2017; Saengsuwan
et al. 2017; Przednowek et al. 2018; Langer et al. 2020;
American College of Sports Medicine 2021; Shen et al.
2022). The small feature set comprised 15 features that are
convenient to assess in practice and have a low time require-
ment. These include anthropometric and demographic data,
as well as self-perceived health status and activity level. The
big feature set was extended by body composition variables,
handgrip strength, and questionnaires (Godin and Shephard
1985; Buysee et al. 1989; Armstrong and Bull 2006), and
comprised 41 features. All features are listed in Table 1 and
explained in more detail in the supplements (Table B).

Applied machine learning algorithms

Multiple linear regression (Jobson 1991) as a conventional
model and four different supervised machine learning mod-
els were used to predict the VOzpeak and PPO, each utilizing
the two feature sets. Table 2 lists the multiple linear regres-
sion, and the machine learning models, their description, and
the reasons for selection.

Table 1 Small and big feature set

Feature set Features

Small feature set Age (years), sex, smoking, smoking behavior
(years), chronic diseases, allergies, supple-
ments, medications, PAL, weight (kg), height
(m), BMI, waist circumference (cm), hip

circumference (cm), waist-hip-ratio

Big feature set Age (years), sex, smoking, smoking behavior
(years), chronic diseases, allergies, supple-
ments, medications, PAL, weight (kg), height
(m), BMI, waist circumference (cm), hip
circumference (cm), waist-hip-ratio, FM

(%), FM (kg), FFM (%), FFM (kg), SMM (%),
SMM (kg), SMM torso (kg), SMM torso (%),
SMM legs (kg), SMM legs (%), TBW (%),
TBW (L), ECW (%), ECW (L), ECW/TBW
(%), total energy expenditure (kcal/day), rest-
ing energy expenditure (kcal/day), phase angle
(°), handgrip strength (kg), handgrip strength
(%), MET, PAL category, Godin score, Godin
category, PSQI score, PSQI category

PAL physical activity level, BMI body-mass-index, FM fat mass,
FFM fat free mass, SMM skeletal muscle mass, TBW total body
water, ECW extracellular water, MET metabolic equivalent task,
PSQI Pittsburgh Sleep Quality Index
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Reason
Multiple linear regression is used to model a continuous variable and make pre- Multiple linear regression is the most commonly used statistical technique espe-

Description

Table 2 Description of the supervised machine learning models and justification of the selection

Multiple linear regression

Models

@ Springer

cially in exercise physiology (Jobson 1991; Akay and Abut 2015). It provides
insights into the relationship between independent and dependent features.
Multiple linear regression is a simple and comprehensible method (Ray 2019).

dictions. The independent features and the dependent feature must be linearly

related to fit a straight line to the data set (Ray 2019).

Decision tree is easy to implement. It can handle categorical and quantitative

In decision tree, actions are executed by if—then conditions by using a single

Decision tree

values and is easy to interpret and visualize (Ray 2019).

attribute for splitting. The data are split in the nodes and the decisions are in

the leaves (Breiman et al. 1984; Ray 2019).
The random forest contains several decision trees that are applied in parallel

Random forest is an effective tool for prediction and is relatively robust against

Random forest

outliers and noise. Random forest reduced the over-fitting problem and usually

achieves a good bias-variance tradeoff (Singh et al. 2016).

to different subsamples of the data set. For each split, a random subset of the

available features is used for splitting. The result or final value is determined

by majority decisions or averages (Breiman 2001).

k-Nearest-neighbor is a simple technique, non-parametric and quick to imple-

The k-nearest-neighbor is a non-parametric algorithm. k-Nearest-neighbor

k-Nearest-neighbors

ment. In addition, the scheme is very flexible (Ray 2019).

approximates the association between independent variables and the continu-
ous outcome by averaging the values of the k-nearest neighbors (Sreevalsan-

Nair 2020).
Gradient boosting regression Gradient boosting regression creates a sophisticated model based on a combi-

Boosting is one of the most successful techniques introduced to solve complex

problems (Li et al. 2022). Gradient boosting regression is a meaningful and

robust model that is suitable for unclean data (Friedman 2001).

nation of multiple weak individual models, which are mostly decision trees

(Sarker 2021; Li et al. 2022).

Statistical analysis

All statistical analyses were conducted with Python 3.9 (Van
Rossum and Drake 2009) (supplements Table C). First, par-
ticipant characteristics were presented by descriptive statis-
tics [mean =+ standard deviation (SD)]. Two missing values
of the Pittsburgh Sleep Quality Index (PSQI) Score were
replaced by the single imputation method (Glas 2010). Since
the outcome parameters are continuous, the machine learn-
ing models were trained for regression tasks. All variables
were standardized using the z transformation. The final study
population was divided into a training (80%) and a valida-
tion (20%) set. On the training data, fivefold cross-validation
(Refaeilzadeh et al. 2016) was used for hyperparameter tun-
ing using Bayes search (Lindauer et al. 2019) and to train
the final models. The performance of the final models was
evaluated on the validation set. The evaluation was based
on quality criteria including the mean of the reset standard-
ized root mean square error (RMSE), the R squared (R?),
the Wasserstein distance (WSD), and the respective 95%
confidence intervals obtained from the validation set using
1000 replicates. The Shapley additive explanation (SHAP)
(Nohara et al. 2022) was used to determine the feature
importance. This involved assessing the relevance of features
using SHAP values to identify the relative contribution of
the feature to VOzpeak and PPO prediction. In a further step,
the entire procedure described above was performed again
for VOZpeak and PPO separately for females and males to
investigate sex-specific differences. Accordingly, the feature
sex was removed from this part of the analysis.

Results

Characteristics and CPET values of participants
included in the predictions

In total, n =274 potential participants attended the study.
Finally, n=258 (2101, 3'157) adults were included in the
analysis for the prediction of VO2Peak. Of the n=16 excluded
participants, n= 14 did not reach a VO, plateau or at least
two out of three exhaustion criteria and n=2 were excluded
due to missing BIA and CPET values. In the analysis for
predicting PPO, n=272 (2106, 3166) participants were
included. Only n=2 were excluded due to missing CPET
and BIA values. The participants’ characteristics and CPET
values are shown in Table 3.

Model comparison for predicting VOzpeak and PPO
Figure 1 illustrates the performance of the multiple linear

regression and the applied machine learning models con-
cerning the mean of the three quality criteria: RMSE, R and
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Table 3 Participants’ characteristics and CPET values for the predictions (mean + SD)
Characteristics and Prediction of Vozpeak Prediction of PPO
CPET values

Females (n=101) Males (n=157) All (n=258) Females (n=106) Males (n=166) All (n=272)
Age (years) 27.40+9.96 27.17+8.46 27.26+9.06 27.29+9.74 27.52+8.97 27.43+9.26
Height (m) 1.69+0.06 1.81+0.07 1.77+0.09 1.69+0.06 1.81+0.07 1.76 +0.09
Weight (kg) 65.97+9.60 79.97+10.97 74.49+12.48 65.83+9.52 79.96+10.84 74.45+12.42
BMI 23.09+3.24 24.32+2.98 23.84+3.14 23.03+3.20 24.39+2.99 23.86+3.14
Waist-Hip-Ratio 0.76 +0.05 0.83+0.05 0.80+0.06 0.76+0.05 0.83+0.05 0.80+0.06
Rel. FM (%) 27.74 +7.60 17.02+6.73 21.22+8.80 27.78+7.53 17.04+6.83 21.23+8.83
Rel. FFM (%) 72.29+7.61 82.98+6.73 78.79+8.80 72.25+7.54 82.96+6.83 78.78 +8.82
PPO (W) 214 +44 322457 280+74 212 +44 320+60 278 +75
VOZpeak (L/min) 2.53+0.51 3.87+0.65 3.34+0.88 2.52+0.51 3.84+0.66 3.33+0.89
VOzpeak (ml/kg/min) 38.89+8.05 48.89+8.34 44.97+9.56 38.71+7.93 48.60+8.56 44.74 +9.61
TTE (min:s) 09:41 +1:57 10:14 +1:49 10:01 +1:53 09:37+1:56 10:07 £ 1:55 09:55+1:56

SD standard deviation, CPET cardiopulmonary exercise testing, BMI body-mass-index, Rel. FM relative fat mass, Rel. FFM relative fat free
mass, PPO peak power output, VO,,, .. maximal oxygen consumption, 77TE time to exhaustion
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Fig. 1 Quality criteria of the models for the prediction of VOzpeak and PPO. RMSE root mean squared error, R* R squared, WSD Wasserstein dis-
tance, MLR multiple linear regression, DT: decision tree, RF Random forest, KNN k-nearest-neighbor, GBR gradient boosting regression

WSD. The RMSE is a standard statistical parameter and is
used to evaluate model performance. The units of RMSE in
this work are ml/kg/min for the prediction of VOzpeak and W
for the prediction of PPO. The R? represents the proportion
of the variance of the outcome parameter that is explained
by the features of the model. The WSD measures differences
between probability distributions. The smaller the RMSE
and the WSD and the larger the R* the more accurate the
results of the models. The multiple linear regression with
the big feature set has an additional coordinate system, as
all quality criteria differ significantly from those of the other
models. The mean values of the quality criteria and the 95%
confidence intervals can be found in the supplements (Table
D-F).

Machine learning models such as random forest and
gradient boosting regression with the big feature set have
a low RMSE and WSD as well as a high R? and perform
better overall than models with the small feature set. Fig-
ure 2 shows the performance of the sex-separated models
for the prediction of VO2peak and PPO using the mean of
quality criteria.

In the prediction of VO2peak for females, the applied
machine learning models consistently outperformed the
multiple linear regression models. In all sex-separated
models, the machine learning models with the big feature
set perform better overall than the models with the small
set.

@ Springer
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Fig.2 Quality criteria of the models for the prediction of VO, ..
and PPO for females and males. RMSE root mean squared error, R~ R
squared, WSD Wasserstein distance, MLR multiple linear regression,

Feature importance

The ten most impactful features for predicting VO2peak and
PPO were selected for each model by SHAP. SHAP values
are assigned to each feature for prediction. The prediction
result is the sum of the contributions of each feature. The
x-axis represents the impact of each feature on the predic-
tion for each participant represented by a dot and the y-axis
shows the feature in descending order of overall importance.
The color of the gradient denotes the magnitude of the origi-
nal value for that feature. Since random forest and multiple
linear regression performed best among the machine learn-
ing models with the small feature set (Fig. 1) and random
forest with the big feature set consistently performed best
among the sex- separated models, the SHAP values of these
models are shown in Fig. 3. The supplements also contain all
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DT decision tree, RF random forest, KNN k-nearest-neighbor, GBR
gradient boosting regression

figures of the SHAP values of the most accurate model with
the big and the small feature set (Figure A-F).

Discussion

We hypothesized that machine learning models will pro-
vide more accurate predictions of VOZpeak and PPO than
the conventional multiple linear regression technique.
Moreover, we aimed (1) to compare two non-exercise fea-
ture sets to predict VOzpeak and PPO using four machine
learning models as well as multiple linear regression and
(2) to identify the most impactful features. The results
confirm that machine learning models provide more
precise results in comparison to multiple linear regres-
sion. Our analysis further indicates that machine learning
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Random forest and the small feature set Multiple linear regression and the small feature set
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Fig.3 Importance of the features by SHAP with the random forest
and multiple linear regression with the small feature set as well as the
random forest with the big feature set for the prediction of VOzmk
and PPO for females and males. SHAP Shapley additive explanation,

BMI body-mass-index, PAL physical activity level, SMM skeletal
muscle mass, TBW total body water, FM fat mass, FFM fat free mass,
ECW extracellular water, MET metabolic equivalent task
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models with comprehensive features make more accurate
predictions than models containing only anthropometric
and demographic data. In particular, features that include
information about the participant’s body composition seem
to have a relevant impact on the prediction of VOzpeak and
PPO. These results may be helpful in developing new
standards for performing CPETs and improving predic-
tion models for VOZpeak and PPO.

In addition to the four machine learning models deci-
sion tree, random forest, k-nearest-neighbor and gradient
boosting regression, we used multiple linear regression as
a conventional technique that is commonly used in exercise
physiology to predict VO2peak and PPO (Myers et al. 1994,
2001; da Silva et al. 2012; Akay and Abut 2015; Saengsuwan
et al. 2017). Previous literature has already shown that intel-
ligent machine learning models can predict VOZpeak more
accurately than existing multiple linear regression-based
prediction models (Akay and Abut 2015; Liu et al. 2022).
These results are confirmed by our work, which, in contrast
to previous literature, compared machine learning and mul-
tiple linear regression models based on the same population
and the same conditions. Moreover, these indicate that some
predictor variables showed non-linear relationships with V
O;pea and PPO. The applied machine learning models can
effectively analyze and capture these non-linear relations,
explaining their greater performance over the traditional
multiple linear regression technique.

In this study, the random forest proved to be the most
robust prediction model, as it possessed the lowest RMSE,
the highest R2, and typically displayed a lower WSD for
almost all predictions. The random forest estimated VOZpeak
considering both sexes with a mean error of 6.52 ml/kg/
min, a variance explanation of approximately 52% and a
difference in probability distributions of 0.28. The gradient
boosting regression model performed slightly better than
the random forest in predicting PPO when both sexes were
considered. It predicted PPO with a mean error of 43 W, a
variance explanation of about 66% and a difference in the
probability distributions of 0.18. In particular, the multiple
linear regression had an unusually high RMSE and WSD
as well as a negative R? if many features were included in
the prediction. The results were outside the interpretable
range and are due to the fact that the multiple linear regres-
sion cannot handle a large number of predictor variables that
exhibit multicollinearity (Jobson 1991). In contrast to mul-
tiple linear regression, random forest handles outliers and
avoids overfitting by capturing underlying patterns rather
than overlearning the training data (Singh et al. 2016). The
gradient boosting regression is considered a robust method
that can also deal with very heterogeneous data (Friedman
2001). In addition to these advantages, machine learning
models are able to recognize linear relationships between
variables. Therefore, the effectiveness of conventional linear
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methods in predicting VOzpeak and PPO should be critically
reconsidered.

Beside the correct selection of suitable prediction mod-
els, the identification of relevant features is crucial. This
allows practical recommendations regarding the parameters
that should be recorded before conducting a CPET. Previ-
ous literature aimed at individualizing test protocols has
used features that are usually assessed prior CPET, such as
questionnaires on PAL, sex, age, BMI or resting HR (Myers
et al. 2001; da Silva et al. 2012; Cunha et al. 2015; Saeng-
suwan et al. 2017). In our study, we divided the features into
two sets to determine if collecting only anthropometric and
demographic data before conducting a CPET is sufficient
to adapt a ramp protocol to the participant’s characteristics.

Previously, data from the National Health and Nutrition
Examination Survey (Liu et al. 2022) have been used to
develop machine learning models for the prediction of V
O,ax With non-exercise features. In line with our results, the
authors concluded that models with a comprehensive fea-
ture set performed significantly better than previous meth-
ods using a limited number of predictors and mainly linear
models. However, the work was limited by the fact that some
predictor variables cannot be readily implemented in other
healthcare settings. Furthermore, existing studies have often
used submaximal features to predict maximal physical per-
formance, which are less practical and more time-consuming
(Evans et al. 2015; Kokkinos et al. 2018; Abut et al. 2019;
Ashfaq et al. 2022). In our work, only non-exercise features
that are convenient to collect in various environments were
included.

To elaborate which features contribute most to the predic-
tion of VOzpeak and PPO, the results of the SHAP analysis
were considered. As in previous studies (Myers et al. 2001;
da Silva et al. 2012), our findings indicate that sex has a sig-
nificant influence on the prediction when the small feature
set is applied. To determine what accounts for the differ-
ence between males and females, we fitted the models to
the sex-separated data and examined the big feature set in
the following.

Body composition variables proved to be the most influ-
ential features of VOZWlk and PPO. Especially SMM, ECW,
and TBW seem to be important predictors. The SHAP analy-
sis showed that high body composition values associated
with high SMM led to increased VOZpeak and PPO. This can
be explained by the fact that muscle fibers consume oxygen
and fiber cross-sectional areas increase linearly with PPO
(Appelman et al. 2024). Furthermore, there exists a linear
relationship between the power output and the VO, incre-
ment rate.

Subjective features such as health-related questionnaires,
as well as demographic data appeared to be less relevant,
particularly for the prediction of VOzpeak for females and
PPO for both sexes. The SHAP values for the prediction of
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VOzpeak and PPO in males attribute a relevant significance
to the waist—hip ratio and height. This indicates that anthro-
pometric data should continue to be used for the predictions
and should not be completely excluded.

The SHAP analysis showed that it may be beneficial to
determine the body composition of the participant before
conducting a CPET to adapt a ramp protocol on the cycle
ergometer to the characteristics of the participant. With
the prediction of PPO, an adaptation of the protocol can be
implemented quickly. To effectively utilize the predicted V
Ospeax from this work, the VO, and power output relationship
can be considered, which is approximately 10 ml/W/min.
The mean response time of VO, for ramp protocols is about
40 s (Caen et al. 2020). Using these two variables, the rate
of power increase required to reach the predicted VOzpeak in
a given time can be calculated.

A limiting factor of this work is that the PPO is influenced
by the choice of power increase (Poole and Jones 2017). This
reduces the reliability of the models for predicting PPO as
they are based on the ramp protocols performed in this study.
Consequently, we included VOzpeak as an outcome parameter
since it can be achieved despite different power output slopes
(Tannetta et al. 2020). Moreover, the generalizability of the
prediction models is limited to the investigated population,
comprising mainly healthy young European adults who were
physically able to perform a CPET.

The results can help to adjust power increase in a ramp
protocol to achieve volitional exhaustion within a certain
duration. This facilitates the comparison of CPETSs between
different test settings, clinical environments, and studies. In
addition, the results can be used to evaluate the effective-
ness of an intervention to increase PPO or VOzpeak. This
involves adapting the power increase in a CPET before and
after the intervention using the machine learning prediction
models. The results could be used to assess an individual’s
exercise tolerance by using the machine learning prediction
models to determine when an individual's measured Vozpeak
is significantly different from the predicted values. In future
analysis, the machine learning approach can be extended
to predictions for clinical populations by adding disease-
specific features. In addition, the population can be extended
to a wider age range, different body mass classes and lower
fitness levels.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00421-024-05543-x.

Author contributions PZ and DW conceptualized the study. PZ, DW
and MS contributed to the study design. RS and DW helped with the
implementation. CW was the principal investigator. TL, AG, RG, AS
and CW contributed to data analysis and interpretation. CW drafted the
manuscript, and all authors contributed to revisions and approved the
final manuscript. PZ is responsible for the overall content.

Funding Open Access funding enabled and organized by Projekt
DEAL. No funds, grants, or other support was received.

Data availability statement Data are available on reasonable request.

Declarations

Conflict of interest No conflicts of interest, financial or otherwise, are
declared by the authors.

Ethical approval Written informed consent of the participants was
required. The study was reviewed and approved by the ethics commit-
tee of the Leibniz Institute at TU Dortmund University (No. 209 and
date of approval: November 2021).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abut F, Akay MF, George J (2019) A robust ensemble feature selec-
tor based on rank aggregation for developing new VO, pre-
diction models using support vector machines. Turk J Electr
Eng Comput Sci 27:3648-3664. https://doi.org/10.3906/
elk-1808-138

Akay F, Abut F (2015) Machine learning and statistical methods for the
prediction of maximal oxygen uptake: recent advances. MDER.
https://doi.org/10.2147/MDER.S57281

Antunes BM, Campos EZ, Parmezzani SS et al (2017) Sleep quality
and duration are associated with performance in maximal incre-
mental test. Physiol Behav 177:252-256. https://doi.org/10.1016/].
physbeh.2017.05.014

Appelman B, Charlton BT, Goulding RP et al (2024) Muscle abnor-
malities worsen after post-exertional malaise in long COVID. Nat
Commun 15:17. https://doi.org/10.1038/s41467-023-44432-3

Armstrong T, Bull F (2006) Development of the world health organi-
zation Global Physical Activity Questionnaire (GPAQ). J Public
Health 14:66-70. https://doi.org/10.1007/s10389-006-0024-x

Ashfaq A, Cronin N, Miiller P (2022) Recent advances in machine
learning for maximal oxygen uptake (VO,,,,,) prediction: a
review. Inform Med Unlocked 28:100863. https://doi.org/10.
1016/j.imu.2022.100863

Bassett DR, Howley ET (2000) Limiting factors for maximum oxy-
gen uptake and determinants of endurance performance. Med Sci
Sports Exerc 32:70-84. https://doi.org/10.1097/00005768-20000
1000-00012

Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major
cause of chronic diseases. Compr Physiol 2:1143—1211. https://
doi.org/10.1002/cphy.c110025

Breiman L (2001) Random forests. Mach Learn 45:5-32. https://doi.
org/10.1023/A:1010933404324

@ Springer


https://doi.org/10.1007/s00421-024-05543-x
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3906/elk-1808-138
https://doi.org/10.3906/elk-1808-138
https://doi.org/10.2147/MDER.S57281
https://doi.org/10.1016/j.physbeh.2017.05.014
https://doi.org/10.1016/j.physbeh.2017.05.014
https://doi.org/10.1038/s41467-023-44432-3
https://doi.org/10.1007/s10389-006-0024-x
https://doi.org/10.1016/j.imu.2022.100863
https://doi.org/10.1016/j.imu.2022.100863
https://doi.org/10.1097/00005768-200001000-00012
https://doi.org/10.1097/00005768-200001000-00012
https://doi.org/10.1002/cphy.c110025
https://doi.org/10.1002/cphy.c110025
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

3430

European Journal of Applied Physiology (2024) 124:3421-3431

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification
and regression trees. Taylor & Francis. https://doi.org/10.1201/
9781315139470

Buchfuhrer MJ, Hansen JE, Robinson TE et al (1983) Optimizing the
exercise protocol for cardiopulmonary assessment. J Appl Physiol
55:1558-1564. https://doi.org/10.1152/jappl.1983.55.5.1558

Burnley M, Vanhatalo A, Jones AM (2012) Distinct profiles of neuro-
muscular fatigue during muscle contractions below and above the
critical torque in humans. J Appl Physiol 113:215-223. https://doi.
org/10.1152/japplphysiol.00022.2012

Buysee DJ, Reynolds CF, Monk TH et al (1989) Pittsburgh Sleep Qual-
ity Index. J Clin Psychol Med Settings. https://doi.org/10.1037/
t05178-000

Caen K, Boone J, Bourgois JG et al (2020) Translating ramp VO, into
constant power output: a novel strategy that minds the gap. Med
Sci Sports Exerc 52:2020-2028. https://doi.org/10.1249/MSS.
0000000000002328

American College of Sports Medicine (ed) (2021) ACSMs guidelines
for exercise testing and prescription, 11th edn. Wolters Kluwer,
Philadelphia

Cunha F, Midgley A, Montenegro R et al (2015) Utility of a non-
exercise VO, prediction model for designing ramp test pro-
tocols. Int J Sports Med 36:796-802. https://doi.org/10.1055/s-
0034-1395590

da Silva SC, Monteiro WD, Cunha FA et al (2012) Determination of
best criteria to determine final and initial speeds within ramp
exercise testing protocols. Pulm Med 2012:1-10. https://doi.
org/10.1155/2012/542402

Evans HJL, Ferrar KE, Smith AE et al (2015) A systematic review
of methods to predict maximal oxygen uptake from submaxi-
mal, open circuit spirometry in healthy adults. J Sci Med Sport
18:183-188. https://doi.org/10.1016/j.jsams.2014.03.006

Friedman JH (2001) Greedy function approximation: a gradient
boosting machine. Ann Stat 29:1189-1232

Glaab T, Taube C (2022) Practical guide to cardiopulmonary exer-
cise testing in adults. Respir Res 23:9. https://doi.org/10.1186/
$12931-021-01895-6

Glas CAW (2010) Missing data. In: Peterson P, Baker E, McGaw B
(eds) International encyclopedia of education, 3rd edn. Elsevier,
Oxford, pp 283-288

Godin G, Shepard R (1985) A simple method to assess exercise
behavior in the community. Can J Appl Sport Sci 10(3):141—
146. https://doi.org/10.1097/00005768-199706001-00009

Hill DW, Poole DC, Smith JC (2002) The relationship between power
and the time to achieve VO2max. Med Sci Sports Exerc 34:709

Tannetta D, De Almeida AR, Ingram CP et al (2020) Evaluating
the suitability of supra-PO,, verification trials after ramp-
incremental exercise to confirm the attainment of maximum O,
uptake. Am J Physiol Regul Integr Comp Physiol 319:R315—
R322. https://doi.org/10.1152/ajpregu.00126.2020

Jobson JD (1991) Multiple linear regression. In: Jobson JD (ed)
Applied multivariate data analysis: regression and experimental
design. Springer, New York, pp 219-398

Kokkinos P, Kaminsky LA, Arena R et al (2018) A new general-
ized cycle ergometry equation for predicting maximal oxygen
uptake: the Fitness Registry and the Importance of Exercise
National Database (FRIEND). Eur J Prev Cardiolog 25:1077-
1082. https://doi.org/10.1177/2047487318772667

Langer RD, da Costa KG, Bortolotti H et al (2020) Phase angle
is associated with cardiorespiratory fitness and body composi-
tion in children aged between 9 and 11 years. Physiol Behav
215:112772. https://doi.org/10.1016/j.physbeh.2019.112772

Li K, Yao S, Zhang Z et al (2022) Efficient gradient boosting for
prognostic biomarker discovery. Bioinformatics 38:1631-1638.
https://doi.org/10.1093/bioinformatics/btab869

@ Springer

Lindauer M, Feurer M, Eggensperger K, et al (2019) Towards assess-
ing the impact of bayesian optimization’s own hyperparameters.
arXiv. https://doi.org/10.48550/arXiv.1908.06674

Liu Y, Herrin J, Huang C et al (2022) Non-exercise machine learn-
ing models for maximal oxygen uptake prediction in national
population surveys. medRxiv. https://doi.org/10.1101/2022.09.
30.22280471

Myers J (2005) Applications of cardiopulmonary exercise testing in
the management of cardiovascular and pulmonary disease. Int J
Sports Med 26:S49-S55. https://doi.org/10.1055/5-2004-830515

Myers J, Do D, Herbert W et al (1994) A nomogram to predict exer-
cise capacity from a specific activity questionnaire and clinical
data. Am J Cardiol 73:591-596. https://doi.org/10.1016/0002-
9149(94)90340-9

Myers J, Bader D, Madhavan R, Froelicher V (2001) Validation of
a specific activity questionnaire to estimate exercise tolerance
in patients referred for exercise testing. Am Heart J 142:1041—
1046. https://doi.org/10.1067/mhj.2001.118740

Nohara Y, Matsumoto K, Soejima H, Nakashima N (2022) Explana-
tion of machine learning models using Shapley additive expla-
nation and application for real data in hospital. Comput Meth-
ods Programs Biomed 214:106584. https://doi.org/10.1016/].
cmpb.2021.106584

Poole DC, Jones AM (2017) Measurement of the maximum oxygen
uptake Vo, Vo2peak is no longer acceptable. J Appl Physiol
122:997-1002. https://doi.org/10.1152/japplphysiol.01063.2016

Przednowek K, Barabasz Z, Zadarko-Domaradzka M et al (2018)
Predictive modeling of VO, .. based on 20 m shuttle run test
for young healthy people. Appl Sci 8:2213. https://doi.org/10.
3390/app8112213

Ray S (2019) A quick review of machine learning algorithms. In:
2019 international conference on machine learning, big data,
cloud and parallel computing (COMITCon), pp 35-39

Refaeilzadeh P, Tang L, Liu H (2016) Cross-validation. In: Liu L,
Ozsu MT (eds) Encyclopedia of database systems. Springer,
New York, pp 1-7

Ross R, Blair SN, Arena R et al (2016) Importance of assessing
cardiorespiratory fitness in clinical practice: a case for fitness
as a clinical vital sign: a scientific statement from the Ameri-
can Heart Association. Circulation. https://doi.org/10.1161/CIR.
0000000000000461

Saengsuwan J, Nef T, Hunt KJ (2017) A method for predicting peak
work rate for cycle ergometer and treadmill ramp tests. Clin
Physiol Funct Imaging 37:610-614. https://doi.org/10.1111/
cpf.12344

Sarker IH (2021) Machine learning: algorithms, real-world applica-
tions and research directions. SN Comput Sci 2:160. https://doi.
org/10.1007/s42979-021-00592-x

Schembre SM, Riebe DA (2011) Non-exercise estimation of VO,
using the International Physical Activity Questionnaire. Meas
Phys Educ Exerc Sci 15:168-181. https://doi.org/10.1080/10913
67X.2011.568369

Shen T, Liu D, Lin Z et al (2022) A machine learning model to pre-
dict cardiovascular events during exercise evaluation in patients
with coronary heart disease. JCM 11:6061. https://doi.org/10.
3390/jcm11206061

Singh A, Thakur N, Sharma A (2016) A review of supervised
machine learning algorithms. In: 2016 3rd international confer-
ence on computing for sustainable global development (INDI-
ACom), pp 1310-1315

Song Y, Lu Y (2015) Decision tree methods: applications for classi-
fication and prediction. Shanghai Arch Psychiatry 27:130-135.
https://doi.org/10.11919/j.issn.1002-0829.215044

Sreevalsan-Nair J (2020) K-nearest neighbors. In: Daya Sagar BS,
Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of


https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1152/jappl.1983.55.5.1558
https://doi.org/10.1152/japplphysiol.00022.2012
https://doi.org/10.1152/japplphysiol.00022.2012
https://doi.org/10.1037/t05178-000
https://doi.org/10.1037/t05178-000
https://doi.org/10.1249/MSS.0000000000002328
https://doi.org/10.1249/MSS.0000000000002328
https://doi.org/10.1055/s-0034-1395590
https://doi.org/10.1055/s-0034-1395590
https://doi.org/10.1155/2012/542402
https://doi.org/10.1155/2012/542402
https://doi.org/10.1016/j.jsams.2014.03.006
https://doi.org/10.1186/s12931-021-01895-6
https://doi.org/10.1186/s12931-021-01895-6
https://doi.org/10.1097/00005768-199706001-00009
https://doi.org/10.1152/ajpregu.00126.2020
https://doi.org/10.1177/2047487318772667
https://doi.org/10.1016/j.physbeh.2019.112772
https://doi.org/10.1093/bioinformatics/btab869
https://doi.org/10.48550/arXiv.1908.06674
https://doi.org/10.1101/2022.09.30.22280471
https://doi.org/10.1101/2022.09.30.22280471
https://doi.org/10.1055/s-2004-830515
https://doi.org/10.1016/0002-9149(94)90340-9
https://doi.org/10.1016/0002-9149(94)90340-9
https://doi.org/10.1067/mhj.2001.118740
https://doi.org/10.1016/j.cmpb.2021.106584
https://doi.org/10.1016/j.cmpb.2021.106584
https://doi.org/10.1152/japplphysiol.01063.2016
https://doi.org/10.3390/app8112213
https://doi.org/10.3390/app8112213
https://doi.org/10.1161/CIR.0000000000000461
https://doi.org/10.1161/CIR.0000000000000461
https://doi.org/10.1111/cpf.12344
https://doi.org/10.1111/cpf.12344
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1080/1091367X.2011.568369
https://doi.org/10.1080/1091367X.2011.568369
https://doi.org/10.3390/jcm11206061
https://doi.org/10.3390/jcm11206061
https://doi.org/10.11919/j.issn.1002-0829.215044

European Journal of Applied Physiology (2024) 124:3421-3431

3431

mathematical geosciences. Springer International Publishing,
Cham, pp 1-3

Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal
heart rate revisited. ] Am Coll Cardiol 37:153-156. https://doi.
org/10.1016/S0735-1097(00)01054-8

Van Rossum G, Drake FL (2009) Python 3 reference manual. Cre-
ateSpace, Scotts Valley

Vanhatalo A, Fulford J, DiMenna FJ, Jones AM (2010) Influence of
hyperoxia on muscle metabolic responses and the power—dura-
tion relationship during severe-intensity exercise in humans:
a 31P magnetic resonance spectroscopy study. Exp Physiol
95:528-540. https://doi.org/10.1113/expphysiol.2009.050500

Wier LT, Jackson AS, Ayers GW, Arenare B (2006) Nonexercise
models for estimating VO2max with waist girth, percent fat, or
BMI. Med Sci Sports Exerc 38:555. https://doi.org/10.1249/01.
mss.0000193561.64152

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1016/S0735-1097(00)01054-8
https://doi.org/10.1016/S0735-1097(00)01054-8
https://doi.org/10.1113/expphysiol.2009.050500
https://doi.org/10.1249/01.mss.0000193561.64152
https://doi.org/10.1249/01.mss.0000193561.64152

	Machine learning predicts peak oxygen uptake and peak power output for customizing cardiopulmonary exercise testing using non-exercise features
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 
	Trial registration number 

	Introduction
	Materials and methods
	Participants
	Procedures
	Feature selection
	Applied machine learning algorithms
	Statistical analysis

	Results
	Characteristics and CPET values of participants included in the predictions
	Model comparison for predicting O2peak and PPO
	Feature importance

	Discussion
	References




