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ABSTRACT

Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations
where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical
settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an
outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will
typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is
Fine and Gray’s subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a
subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We
develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring
times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already
takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring
rate, competing events must not be neglected, that is, treated as censoring. When applied to a real-world epidemiological dataset on
chronic kidney disease, the imputation approach resulted in highly plausible predictor-response relationships and CIF estimates
of renal events.

single event of interest, other event types are often recorded in
observational studies and present in survival datasets. Often, the

1 | Introduction

Survival analysis aims to model the time until the occurrence of a
specific event (e.g., progression or death due to a certain disease)
in dependence on a set of covariates. In clinical contexts, time-
to-event data are often collected in observational studies that are
prone to right censoring. Right censoring happens, for example,
when patients drop out of a study or do not experience their
event before the end of the observation period. In addition to a

occurrence of these competing events cannot be assumed to be
independent of the occurrence of the event of interest, especially
if shared underlying (disease) mechanisms or shared risk factors
are present.

An example would be examining kidney failure (KF) as the
event of interest in patients with chronic kidney disease (CKD),
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while death by other causes than KF is a competing event (Hsu
et al. 2017). In the German Chronic Kidney Disease (GCKD)
study (Titze et al. 2015), for instance, 5217 participants with
CKD are followed up annually, so data can be evaluated at
the discrete time points corresponding to 1-year time intervals.
One of the aims of the study is to better understand the
factors underlying the progression of the disease. Potential risk
factors that were collected in the study at baseline included,
for example, leading kidney disease, as well as kidney func-
tion measures, such as serum creatinine, estimated glomerular
filtration rate (eGFR), and U-albumin/creatinine ratio (UACR).
Since CKD is a risk factor for heart failure (HF) and CKD and
HF share common risk factors (Beck et al. 2015), death (e.g.,
from cardiovascular causes) should be considered as a competing
event.

A popular approach to analyzing survival data (i.e., time to first
event) in the presence of competing events is the subdistribution
hazard model by Fine and Gray (1999), which extends the classical
Cox proportional hazard model (Cox 1972). The Fine and Gray
model introduces a subdistribution hazard function, which is
a modification of the hazard function in traditional survival
analysis. This function quantifies the instantaneous rate of the
event of interest occurring, given that the subject has not yet
experienced the event of interest until that time (assuming that
the event of interest will never occur first once a competing event
has already occurred (cf. Fine and Gray 1999).

As with other classical regression approaches, the subdistribution
hazard model is not designed for high-dimensional data set-
tings or complex covariate-risk relationships. In such scenarios,
machine learning models such as deep survival neural networks
(e.g., Giunchiglia, Nemchenko, and van der Schaar 2018; Gupta
et al. 2019; Lee et al. 2018) and random survival forests (RSF) can
be applied (Ishwaran et al. 2008; Schmid, Wright, and Ziegler
2016; Wright, Dankowski, and Ziegler 2017). While neural net-
works can be most beneficial for unstructured data, such as text
and images, random forests might be advantageous for structured
data exploration and for identifying important clinical covariates
(Archer and Kimes 2008). Also, random forests are easy to train
and require less resource-consuming hyperparameter tuning.

While numerous methods for competing events exist in classical
regression, only some implementations of machine learning mod-
els for survival analysis consider competing events. In existing
approaches, competing events in random forests are addressed
by, for example, adapting the split rules (Ishwaran et al. 2014;
Therrien and Cao 2022) or by using pseudo-value regression
approaches (Mogensen and Gerds 2013). The latter method
transforms the categorical event status into a continuous pseudo-
value. Consequently, a random forest with regression trees is
fitted instead of survival trees.

In this paper, we take a different approach for modeling com-
peting risk data with RSF: Rather than introducing new split
rules or new architectures for competing events, we transform
the competing event problem into a single-event problem. This is
achieved by manipulating the (input) dataset via an appropriately
defined imputation scheme. More specifically, we consider three
types of imputation approaches: In the first approach, the dataset
is only preprocessed once before training the RSF. In the other two

approaches, the dataset is adjusted directly at the tree instance of
the forest: at the root node of the trees or at every node of the
trees. As a consequence, well-established split rules and variable
importance measures of single-event RSF can be applied. Also,
the cumulative incidence function (CIF) for the event of interest
can be directly calculated from the output of the single-event RSF.

The idea of using imputed censoring times instead of the observed
competing event time has been applied successfully already for
classical statistical modeling and neural networks: Ruan and Gray
(2008) presented an imputation approach for continuous-time
and semiparametric models based on Kaplan-Meier estimates.
Gorgi Zadeh, Behning, and Schmid (2022) took a similar approach
and proposed a method to train single-event deep neural survival
networks on competing-event data, in which the unobserved
censoring times of subjects with a competing event were imputed
using subdistribution weights.

In this article, we describe the proposed methods and use
a simulation study to evaluate their applicability and perfor-
mance metrics in different situations. Finally, we report on a
first application of the methods to real data obtained in the
GCKD study.

2 | Methods
2.1 | Discrete Survival Analysis for Competing
Risks

The aim of our proposed method is to estimate the CIF for an
event of interest given a set of covariates. In a typical setting
with right-censored data, we assume to follow-up the subjects
i =1,...,n with baseline covariates X; = (x;;, ..., xip)T. Either an
event time T; or a censoring time C; is observed, with the status
indicator A; = I(T; < C;) and the type of event denoted by e;.
For each subject, either the event of interest (¢; =1, A; =1), a
competing event (e; # 1, A; = 1) or a censoring event (A; = 0)
is observed. Just as in Fine and Gray’s modeling approach, all
competing events e; > 1 are combined into one single competing
event, denoted e; = 2. We assume that the event time T; and the
censoring time C; are independent random variables (random
censoring). In a naive approach, where competing events are
ignored and treated as censored, the random censoring assump-
tion may be violated. We further assume that the censoring
mechanism is noninformative, meaning that the distributions of
T; and C; do not share any common parameters. In our approach,
time is modeled on a discrete scale (possibly after grouping
the continuous times into intervals), that is, T; € {1,2,...,k},
where k denotes the maximum observable time (interval). This is
motivated by the observation that most versions of RSF implicitly
treat time as an ordinal variable (Ishwaran et al. 2008), and
that many other available implementations of machine learning
methods also use discrete-time data structures (e.g., Ren et al.
2019).

In this article, we focus on modeling the occurrence of the event
of interest (e; = 1). The CIF for the event of interest is defined as
F,(t|X;) = P(T; < t,e; = 1]X;), so the probability of experiencing
the event of interest at time ¢ or prior with a given set of covariates
X

i
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2.2 | Random Survival Forest for Single Events

The central architecture of the RSF is similar to the standard
random forest approach (Breiman 2001; Ishwaran et al. 2008).
In the first step, a number of (bootstrap) samples are generated.
Next, a survival tree (Hothorn et al. 2004) is grown on each
bootstrap sample. At each tree, mtry covariates are considered
for splitting into child nodes, and the best split is selected. Many
split rules have been proposed, including splitting based on the
maximum log-rank statistic, C-index, Hellinger distance, and
many more (Schmid et al. 2020). In this paper, we use the log-rank
statistic, which can deal with both continuous and discrete-time
data. The tree is grown until it reaches a termination constraint,
for example, tree depth, minimum number of observations, or
if no increase with respect to splitting criteria is possible. A
cumulative hazard function (CHF; H,(¢t]X;)) is calculated at the
terminal nodes of each tree. Averaging across all trees leads to the
ensemble CHF. In settings without competing events, the CIF can
be obtained from the CHF by F,(t|X;) = 1 — exp(—H, (t|X,)).

2.3 | Imputation Using Subdistribution Weights

To enable the algorithm to use split rules designed for single-
event scenarios, we propose first to impute censoring times in
case competing events were observed. For this, we estimate the
subdistribution weights based on the censoring mechanism in the
dataset. The subdistribution weights for subjects who experience
a competing event are defined as in Berger et al. (2020):

_ G-

=——=—, Ti<t<k-1, T,=min(T;,C),
G(T-1)

wy -

for all time points ¢ after the observed competing event time.
Here, G(t) is an estimate of the censoring survival function G(t) =
P(C; > t). Based on the subdistribution weights, we sample a
censoring time with probability P(C; = t) = Aw;, = w;,_; — Wy,.
Thus, the imputation changes the data as follows: For subjects
experiencing a competing event, the competing event time T, _, is
replaced by the estimated censoring time C;. The observed times
T,,-; or C; remain unchanged for subjects with an event of interest
or a censoring recorded. The imputed data are then used as input
data for a single-event RSF, and estimates of the CIF are obtained
as described in the previous subsection.

The RSF architecture allows the introduction of the described
imputation at several stages of the fitting procedure. We propose
the following three options:

1. Single imputation of the entire (training) dataset, performed
outside the RSF architecture.

2. Imputation in the root node of each tree in the dataset. With
this approach, the weights are calculated on the subset of data
in the respective tree only.

3. Imputation in each node of each tree. Here, the weights are

calculated only on the samples present in the respective node.

To gain an understanding of the distribution of the true C;
compared to the imputed C;, or the resulting G(t), for the

three imputation approaches, please see the Illustration subsec-
tion below.

23.1 | Implementation

We incorporated the described imputation approaches in the C++
implementation of the R package ranger (Wright and Ziegler
2017). The implementation involved adding a function to the
survival trees that calculates a life table estimate of the censoring
survival function G(t) analogous to the function estSurvCens
of the R package discSurv (Welchowski et al. 2022). The C++
command line interface has been used for benchmarks described
below. The source code can be found here https://github.com/
cbehning/ranger.

2.4 | Simulation Setup

We conducted a simulation study to investigate whether
subdistribution-based imputation in the case of competing
events can improve the estimation of the CIF in RSF compared
to ignoring the competing events.

2.4.1 | Data-Generating Mechanisms

In each simulation run, we created a set of subjects i =1, ..., n,
with n = 1000. For each subject, we first generated a vector of
50 normally distributed covariates X, ..., X5, ~ N'(0,1). Next,
three time variables were created: a time T,,_, for the event of
interest, a time T,,_, for the competing event, and a censoring
time C;. Afterwards, we sampled from a binary distribution with
parameter q € (0, 1) whether the event of interest (¢; = 1) or the
competing event (e; = 2) was observed (see below). Next, the
status indicator A; was generated as follows: the subject was
censored if the censoring time was before the event time (A; = 0).
If the censoring time for this subject was after the event time, the
subject remained uncensored (A; = 1).

The experimental design used by Beyersmann, Allignol, and
Schumacher (2011) and Berger et al. (2020) was adapted to create
the event times and the censoring times. They simulated the event
times T,,_, based on a time-continuous subdistribution hazard
model defined by

<te=1|X;)

Fl(tlxi) = P(Tcom,i

=1- (1 —-q + q- exp(_t))exp(m(xi)),

where T,,,,; was a true underlying continuous time variable for
the event of interest and 7, (X;) was a linear predictor associated
with the subdistribution time, which is described in more detail
below. The parameter g was associated with the rate of the event
of interest by P(e; = 1|X;) = 1 — (1 — q)®**™&), The continuous
event times for competing events were drawn from an exponential
distribution with

Tcant,ilei =2~ EXP(A = EXP(Uz(Xl))) ’

where 7,(X;) is a linear predictor associated with the competing
event time.
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https://github.com/cbehning/ranger

FIGURE 1 | Specification of the covariate-risk relationships in the simulation Setup 1 for the event of interest (left) and the competing event (right).

To discretize the continuous event times, we categorized the event
times into k = 20 intervals with interval borders obtained by
empirical quantiles of width 5%. The empirical quantiles were
pre-estimated once per parameter g from an independent sample
with 1,000,000 observations.

The discrete censoring times were generated from

k
P(C, = t) = blk+1-0 / > b,
j=1

where the parameter b was associated with the overall censoring
rates. As in Berger et al. (2020), the parameter g was set to g €
{0.2,0.4, 0.8} and the parameter b € {0.85,1, 1.25}, corresponding
to low, medium, and high censoring rates of {24%, 47%, 76%} (see
Figures S1 and S2).

The following two covariate-risk relationships were investigated
in this simulation study.

2.4.2 | Setup 1: Tree-Like Covariate-Risk Relationship

To mimic a rather complex relationship between covariates and
event times, we modified the linear predictor functions used in
Berger et al. (2020) to have a tree-like structure as depicted in
Figure 1. The covariates X, X,, X3, X, X are associated with the
event of interest, and the covariates X, X5, X,, X, are associated
with the competing event. The tree-like predictor function for the
event of interest can be written as follows:

mX) =1(Xy <0.5) - (I(X, <0) - Xy +1(X;; > 0) - X5)

+I(X;; 20.5) - (I(X;3 < 0) - Xy + I(X;5 2 0) - Xy - Xi5),

where I(-) is the indicator function. The predictor for the
competing event is given by

X)) =I1Xn <1 - (IXy <0)- (=Xi) +I(X;; 2 0) - X;5)

+IX;; 2 1) - (I(X;3 < 0) - Xy +I(Xi5 2 0) - Xy - Xi6) -

2.4.3 | Setup 2: Interactions

In a second simulation setting, multiple interaction terms are
included in the data-generating model. Here, the predictors for
the event of interest e; and the competing event e, are specified
as follows:

X)) =2 Xy - Xpp - Xy + Xy - Xig - Xis + X5y - X3 - X

+ Xy - Xis - Xig + Xip - X5 - X))

(X)) = 2 (X - Xis + X - Xig - Xig + X - Xig - Xis

+ Xy - Xis - Xip + Xy - Xi3 - Xia) -

In this setup, the covariates X, X3, and X, are associated with
both events, while X, and X5 are only associated with the event
of interest and X, and X, are only associated with the competing
event. Only the interaction term X, - X; - X, is shared between
both linear predictors. Thus, the dependency structure is similar
to Setup 1, but here X, is added.

As illustrated in Table 1, the simulated datasets included event
times for the event of interest as well as the competing event
and censoring times. The competing event times need to be
replaced by the (true or estimated) censoring times to make the
simulated competing event datasets usable in the single-event
RSF. After replacement, the status for the subjects with competing
event was set to “censored” (A; =0). Table 2 illustrates the
different imputation strategies for obtaining a reference dataset
(A), a dataset preprocessed outside the RSF (B, C), and a dataset
processed within the RSF (D). More specifically, the following
imputation methods to estimate the CIF were compared:

1. Reference: If a subject i experiences the competing event, this
is replaced with the true (simulated) censoring time C; in the
dataset. With these input data, the RSF for single events will
model the true censoring rate and serves as a reference (see
Table 2A).

2. Naive approach: Ignoring the competing event and treating
the competing event time T,,_, as if a censoring happened
(see Table 2B).

3. Impute once (imputeOnce): Single imputed dataset before
fitting the standard single-event RSF implementation (see
Table 2C).

4. Imputeinroot (imputeRoot): RSF implementation with impu-
tation in each root node, thus imputing once in each tree on
all subjects available at the tree’s root node (see Table 2D).

5. Imputein each node (imputeNode): RSF implementation with
imputation in every node, thus imputing multiple times per
tree on the subjects available in the respective node (see
Table 2D).
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TABLE 1 | Example table in a simulation setting. The columns with light gray background {event, T, C} are produced by the data-generating
mechanism but are not available during the training of the forest. The column time refers to T; = min(T;, C;) and the column status is defined by
Ai < €.

i Time Status Event T (o} X, X, X,
1 15 1 1 15 18 —0.4411 —-0.9011 —0.0924
2 7 2 2 7 12 —1.1834 0.7352 —0.1028
3 13 0 1 17 13 0.3930 —1.0282 1.2740
4 10 2 2 10 20 0.0181 -1.8797 —3.5290
5 3 1 1 3 14 0.7355 —1.0863 1.3222
TABLE 2 | TIllustration of data processing: Training time and status generated from data in Table 1. (A) The event time is replaced by the simulated

(true) censoring time (usually not available for training in practice). (B) The competing event time is taken as censoring time, effectively ignoring the
presence of competing events. (C) The censoring time ? is replaced once before fitting the forest by an estimated censoring time (based on weights
w;, computed from the censoring survival function estimated from the entire training dataset). (D) The censoring time ?? is replaced repeatedly by an
estimated censoring time based on weights w;, computed from the censoring survival function estimated from the training data subset available in the

training data subset that is available in the specific node (root node) at the random forest.

A:Simulated C B: Naive approach

C: Impute once D: Impute in forest

i Time Status i Time Status i Time Status i Time Status
1 15 1 1 15 1 1 15 1 1 15 1
2 12 0 2 7 0 2 ? 0 2 7? 0
3 20 0 3 13 0 3 13 0 3 13 0
4 10 0 4 10 0 4 ? 0 4 7? 0
5 3 1 5 3 1 5 3 1 5 3 1

In each simulation run, we divided the dataset into a training
(E) and a test set (%) before applying the methods above.
Splits were stratified by the event types (event of interest,
competing event, censoring). We carried out 1000 simulation
runs for each combination of setup, parameters g and b and
for each imputation method, resulting in an overall number
of 90,000 simulation runs. We chose 1000 runs because this
number guaranteed the width of the reference limits for the
CIF (provided in Figures S6 and S7) to be smaller than 0.1
(ie., 2-1.96 - 1/0.5- (1 —0.5)/1000 = 0.0619 < 0.1). Apart from
the described incorporated imputation approaches, the RSFs
were fitted using the R package ranger from the command
line interface with default parameters. This means fitting
ntree = 500 trees with mtry = 8 covariates selected in each node
(mtry = \/E), the log-rank split rule, sampling with replacement,
and a minimal node size of 3.

2.5 | Illustration

To gain an understanding of the distribution of the imputed
censoring times C; in the imputeOnce method compared to the
true censoring times C; and the censoring times used in the naive
approach (C; = T,,-»), Figure S3 depicts the distribution of C; and
C; for one simulation run. As the censoring times are imputed
multiple times in imputeNode and imputeRoot this visualization
would be less meaningful, and we show the variation across life
table estimates of G instead. To illustrate the variability of the life

table estimates across trees and nodes, Figures S4 and S5 show
examples for a setup, a simulation run, and a combination of b
and q. Here we see that the estimation of G on the subsets in
the trees (imputeRoot) leads to increased variability of G. The
estimation in each node of the trees (imputeNode) increases the
variability even further. The mean squared error between the
true censoring time C; and the imputed censoring times C; was
lowest for imputeOnce and highest for imputeNode (see captions
of Figures S3-S5).

2.6 | Performance Measures
2.6.1 | Calibration Graph

The agreement between the reference and estimated CIFs was
evaluated using calibration graphs. Here, we directly compared
the estimated CIF (averaged over the 1000 simulation runs)
across the different (imputation) methods on the test dataset. The
method containing the simulated true censoring times instead
of the imputed censoring times served as a visual reference
(see Table 2A). Generally, the methods are well calibrated if the
averaged estimated CIF curve agrees closely with the reference.

2.6.2 | C-Index

The concordance index (C-index) was used to evaluate the dis-
criminatory power of the different model fits on the test data. The
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FIGURE 2 | Calibration graph for the test data of Setup 1 for different values of q (columns), determining the rate of the event of interest, and

different censoring rates b (rows). A low value of q corresponds to a low rate of the event of interest, and a low value of b corresponds to a low censoring

rate. In most scenarios, the black dotted line (reference based on true censoring times) visually overlaps with imputeOnce (yellow). (See Figure S1 for

the relative frequencies of the event and censoring rates.) The CIF was averaged over 1000 simulation runs in each setting.

C-index essentially measures how well the ranking of the (time-
averaged) estimated CHFs matches the ranking of the observed
event times. A stronger alignment between these rankings with
higher C-index values implies greater discriminatory power.
The C-index as implemented in the function cIndex in the R
package discSurv (Welchowski et al. 2022; Heyard et al. 2020)
was calculated.

2.6.3 | Brier Score

The predictive performance of the approaches was compared
using the Brier score (Gerds and Schumacher 2006). The Brier
score at time point ¢ is defined as the (estimated) squared
difference between the observed and modeled status (4;) at that
time. The integrated Brier score (IBS) is calculated by integrating
the Brier score over all possible time points t. Lower values imply
a better prediction. The Brier score was calculated using the R
package pec (Mogensen, Ishwaran, and Gerds 2012).

3 | Results

The calibration graphs in Figure 2 (simulation Setup 1) and
Figure 3 (simulation setup 2) show the CIF on the test dataset that
was not seen during training, averaged over 1000 simulation runs.
They include nine different scenarios, that is, nine combinations
of the parameters q and b, where g determines the rate of the
event of interest, and b affects the censoring rate.

In all scenarios, all RSF architectures show similar CIF estimates
for the first time points and tend to diverge for later time
points. Here, the naive approach (gray lines), where competing
events are treated as censoring, always shows the strongest
overestimation and highest deviation from the reference method
(dotted lines). The CIF of the imputeOnce approach visually
overlaps with the dotted reference line that was obtained by
training the single-event RSF on the simulated (true) censoring
times (Reference).

The methods where the imputation is directly implemented in
the nodes of the trees show the highest differences in the setting
with a low censoring rate (b = 0.85, first row). In all settings,
the method with only one imputation in each root node tends
to underestimate the CIF. In contrast, the imputation in each
node tends to overestimate the CIF, especially in the scenario that
corresponds to a low event-of-interest rate and a low censoring
rate (g = 0.2, b = 0.85). For a better understanding of the overlap
of the estimated CIF, Figures S6 and S7 provide reference limits
for the estimated CIF at time points 10, 15, and 20.

Concerning the C-index and the Brier score, all methods perform
similarly Tables S1-S4). The methods that do not impute directly
in the random forest (imputeOnce, naive approach) performed
slightly better with regard to these metrics in Setup 2. However, in
Setup 1, the imputation in the root nodes of the RSF (imputeRoot)
performed similarly to imputeOnce. To further gain insight on
the properties of the simulation design, we divided the 1000
simulation runs into 10 batches. Using these batches, an estimate
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FIGURE 3 | Calibration graph for the test data of Setup 2 for different values of g (columns), determining to the rate of the event of interest, and

different censoring rates b (rows). A low value of q corresponds to a low rate of the event of interest, and a low value of b corresponds to a low censoring
rate. The CIF was averaged over 1000 simulation runs in each setting. In most scenarios, the black dotted line (reference with censoring times from
simulation) visually overlaps with imputeOnce (yellow). (See Figure S2 for the relative frequencies of the event rates.)

of the Monte Carlo error was calculated. The corresponding
results are presented in Figures S8-S15.

In addition to the described performance measures, we calculated
the permutation variable importance (VIMP) on the training
dataset using the time-aggregated CHF as a marker in Harrell’s
C-index (cf. Ishwaran et al. 2008). Figures S16-S20 show the 10
variables with the highest mean permutation VIMP averaged over
1000 simulation runs of the training datasets in Setup 1. Note
that the covariates X, to X; were included in the data-generating
mechanism for the event of interest (only the covariates X, and
X were associated on a continuous level), while the covariates
X,,X;5,X,,X, were associated with the competing event (see
Figure 1). The variables X, and X, are indeed the two most
important variables throughout for the reference, the naive
approach, and imputeOnce, while mostly only X was considered
in the first 10 variables for imputeRoot and imputeNode in the
scenarios with a low and medium rate of the event of interest
(q €{0.2,0.4}). In scenarios with a high rate of the event of
interest (g = 0.8), X,,X;,X,,Xs were included for imputeRoot
and imputeNode.

For Setup 2 (Figures S21-S25), the variables associated with the
event of interest X, to X are among the five most important
variables in all scenarios for the Reference, the naive approach,
and imputeOnce. In contrast, for the approaches imputeRoot and
imputeNode, variables that are not associated with the event of
interest get selected, especially in the scenarios with lower b.
For imputeRoot and imputeNode, all of the variables X; to X,

are only included in the first most important variables when the
censoring rate is high (b = 1.25). For the high censoring scenario,
the variables X, and X, which are associated with the competing
event, are also in the top 10 most important variables.

3.1 | Limitations

We acknowledge that our simulation study has several limita-
tions: First, our study did not have a preregistered study protocol.
This was mainly because we designed our simulation study to
gain insight into the properties of the proposed methodology
and to provide the first empirical evidence on its functioning
(“phase II” in the framework by Heinze et al. 2024). Clearly,
more extended simulations covering a broader range of scenarios
(corresponding to later phases in the framework by Heinze et al.
2024) will have to be based on preregistered protocols. Second, our
simulation study used a rather limited set of values for the param-
eters k, g, and b. We chose these values because they had already
been used in previous simulation studies with competing events
(Beyersmann, Allignol, and Schumacher 2011; Berger et al. 2020),
thus making our design consistent with earlier publications.
Third, simulation Setups 1 and 2 were chosen to represent data-
generating mechanisms with multiple interactions and arbitrary
cut-offs, allowing us to mimic a scenario in which we typically
would not fit a classical Cox proportional hazards model. These
setups could be extended by data-generating mechanisms in
which the competing event and the event of interest do not share
risk factors (not explored in our simulations). They could further
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be extended to high-dimensional data settings where the number
of covariates exceeds the number of observations.

4 | Application to the GCKD Study Data

We applied the methods described above to a subset of the GCKD
study. In the observational, multicenter GCKD study (Titze et al.
2015), 5217 participants with CKD are followed up annually.
Here, we look at data of up to 6.5 years of follow-up (data
freeze: 03/2022), such that k € {1, ..., 7}, corresponding to 1-year
intervals. We focus on one of the main events of interest in the
GCKD study, namely reaching KF (dialysis, transplantation, or
death due to forgoing kidney replacement therapy), while death
by any other cause is considered a competing event (Table S5).
More details on the data collection can be found in the Supporting
Information (Section Application) and has been published, for
example, in Steinbrenner et al. (2023). We included demographic
and family history parameters as well as clinical and laboratory
baseline parameters on categorical and continuous scales in the
analyses. More specifically, we have considered the following
baseline parameters:

* Demographic: age (in years), sex (male/female), alcohol
(low-normal drinking/heavy drinking), smoking (nonsmo-
kers/former smokers/smokers), family status (single/married
or in a stable partnership/separated or divorced/widowed),
number of siblings, number of people living in the
household, employment (fully employed/part time/
housework/pension/job-seeker/training/other), private
insurance (yes/no), professional qualification (still in
training/apprenticeship/master (craftsperson)/university
degree/without degree/other/unknown);

* Clinical: enrollment (inclusion based on low eGFR value
or proteinuria), body mass index (BMI, in kg/m?), hyper-
tension (yes/no), coronary heart disease (CHD: yes/no),
stroke (yes/no), asthma (yes/no), chronic obstructive bron-
chitis (COPD: yes/no), taking painkillers (regularly/when
required/never/unknown);

* Laboratory: serum creatinine (in mg/dL), eGFR (in
mL/min-1.73 m?), UACR (in mg/g), CRP (in mg/L),
low-density lipoprotein (LDL) cholesterol (in mg/dL),
high-density lipoproetin (HDL) cholesterol (in mg/dL);

* Family history: number of siblings with stroke, number of
siblings with kidney disease.

Further, diseases underlying CKD were dummy-coded for each
participant (diabetic nephropathy, vascular nephropathy, sys-
temic disease, primary glomerulopathy, interstitial nephropa-
thy, acute kidney injury, single kidney, hereditary kidney dis-
ease, obstructive nephropathy, miscellaneous, undetermined). In
many of the participants, more than one underlying disease was
present, and a leading kidney disease was assigned by the treating
nephrologist. Both the dummy encoded diseases underlying CKD
and the assigned leading kidney disease are provided as covariates
during the training of the forests, resulting in a total number of
38 covariates. Baseline characteristics are provided in Tables S6—
S10. Note that several covariates are highly correlated, including
individual and leading CKD causes and laboratory parameters.
For example, the eGFR is calculated from the creatinine value,

race, gender, and age using the CKD Epidemiology Collaboration
(EPI) equation (Levey et al. 2009).

We compare the approaches described above on a complete
case subset of the GCKD dataset. The dataset included 4256
participants. Of those, 412 (9.1%) reached KF (event of interest),
and 409 (9.6%) died without reaching KF first (competing event,
participants who died due to forgoing dialysis or transplantation
are considered as KF). The estimated CIF and the 10 covariates
with the highest VIMP can be seen in Figure 4. The CIF is lowest
for the imputeOnce approach and imputeRoot. Due to the high
sample size, imputeRoot and imputeOnce may lead to similar
imputation results. We suspect the CIF of these two approaches
to be the most realistic estimate based on the results of the
simulation study, where the naive approach and imputeNode
generally overestimated the CIF. Although the differences appear
small, they will presumably become even more relevant with the
longer observation period that can be evaluated in the future.
The imputation method proposed by Ruan and Gray (2008)
included analyses of multiple imputed datasets instead of a
single imputation. Therefore, we performed 10 imputations of the
imputeOnce method and compared the pooled results to single
runs (see Table S11). In this application, however, the variability
of the estimated CIF was quite low.

All approaches describe creatinine, UACR, eGFR, the leading
CKD cause, and having a hereditary disease cause as the
first five most important variables. This is followed by
CRP, LDL cholesterol, and having diabetic nephropathy for
imputeNode, imputeRoot, and naive approach. For imputeOnce,
the demographic parameters age and sex were selected next
instead of the laboratory parameters. The order of the selected
covariates differs slightly between the approaches. A table
containing VIMP values for all four methods can be found in
Table S12. Both eGFR and UACR are reasonable covariates, as
their progression is being discussed as a surrogate endpoint for
progression to KF (Levey et al. 2020).

5 | Conclusion

We have proposed three variants of a subdistribution-based
imputation approach to handle competing risks in RSF. Our
simulation study showed that the CIF is well estimated when
imputation already takes place outside the forest on the training
data (imputeOnce).

In survival analysis, the occurrence of competing events must
be appropriately taken into account. The naive approach of
considering competing events as censoring can lead to biased
estimates of the CIF, although our simulation study has shown
that this approach may lead to similar results in terms of C-
index and IBS. Differences in the estimated CIF became apparent,
especially in scenarios with a high censoring rate or a low rate
of the event of interest. By including the naive approach in the
simulation, we wanted to raise awareness for the proper treatment
of competing events when using machine learning applications.

It should be emphasized that the naive approach estimates the
cause-specific CHF of the event of interest, ignoring the hazards
of the competing events. Hence, it cannot be directly transformed
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in years after baseline. Event times were discretized into 1-year intervals. (B) Mean permutation VIMP on the GCKD dataset for the different approaches.

The 10 variables with the highest values are selected for each approach. The VIMP is calculated with respect to the prediction accuracy in the out-of-bag

sample of the trees.

into the event of interest’s CIF. While the CIF for the event of
interest could be derived from a combination of all cause-specific
hazard functions, we chose not to use this approach due to its
complexity in analyzing covariate effects. Instead, we preferred
the Fine and Gray method, as it provides a single (direct) effect
per covariate. With random forests and other machine learning
methods, having such a direct effect per covariate is a major
advantage, in particular when it comes to the interpretation
of measures like variable importance. Furthermore, the Fine
and Gray method can reduce the computational effort, as it
avoids having to fit separate machine learning models (one per
cause-specific hazard). Also, note that the performance of the
cause-specific hazard approach may strongly depend on the
availability of sufficient numbers of observed events in the data.

A major finding of our simulation study is that imputing the
estimated censoring times once before fitting the random forest
(imputeOnce) essentially results in unbiased CIF estimates.
Compared to imputations of the estimated censoring times
in every tree node (imputeNode) or in the root node of the
trees (imputeRoot), imputeOnce showed a systematically better
performance with respect to the calibration graph of the CIF.

The question remains as to why the strategies imputeNode and
imputeRoot resulted in an under/overestimation of the CIF in

our simulation study. We considered the following two possible
explanations:

i. In contrast to single imputation, with imputeNode, the
sample sizes for estimating G(t) are much smaller, especially
in the direction of the terminal nodes, which are usually
very small for RSF (default minimum node size: 3 in our
simulation study). Therefore, the estimation of weights is
less accurate, probably translating into less accurate, or
even biased, estimates of CIF. In the imputeRoot scenario,
the sample size is smaller than that of imputeOnce for
subsamples, while with bootstrapping, there are additional
problems due to ties, which can also lead to biases in the CIF
estimates. We have seen this in the GCKD data: With a large
sample size and a higher number of events, the differences
between imputeOnce and imputeRoot are smaller and the
estimate of G(¢) stabilizes.

ii. With imputeNode, the censoring survival function G(t) is
reestimated in each node and thus on the subset of data that
is available in the specific node. Consequently, due to smaller
sample sizes in the lower levels of the trees, imputeNode
tends to show much higher variability in the estimation
of the censoring survival function than imputeOnce. The
censoring times might thus be imputed with reduced pre-
cision, resulting in a decreased estimation accuracy of the
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CIF. Similar arguments hold for the imputeRoot strategy
(effectively operating on data samples with a reduced size).

In conclusion, the proposed single-imputation strategy
(imputeOnce) allows for converting the competing-risks
setting into a single-event setting. All RSF features and options
(split rules, variable importance measure, etc.) are immediately
available for this setting, making it much more straightforward
to apply RSF in the competing-risks context. Issues for future
research include a comparison to other machine learning
methods and other techniques for dealing with competing events
in RSF. This could, for example, be done in the framework of a
neutral comparison study (see, e.g., the recently published Special
Collection on “Neutral Comparison Studies in Methodological
Research” in Vol. 66 of Biometrical Journal).
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