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Abstract

Recent studies have suggested a cortical representation of speech through superposition of evoked responses to acoustic
edges, an idea closely related to regression-based modeling approaches for studying cortical synchronization to speech via
magneto- or electroencephalography (M/EEG). However, it is still unclear to what extent speech-evoked event-related
potentials (ERPs) contribute to these techniques. The present study addressed this question by re-analyzing an EEG data set
obtained during a selective auditory attention task in which participants focused on one of two competing speakers.
Segmenting the EEG based on acoustic edges revealed ERPs with clear P1-N1-P2 complexes and enhanced N1 compo-
nents elicited by attended streams (NI effect). Comparisons between ERPs and regression results revealed that temporal
response functions were highly similar spatiotemporally to the corresponding ERPs and that stimulus reconstruction
accuracies were driven by a consistent enhancement of ERPs including the N1 effect. These observations point to a direct
link between ERPs to acoustic edges in speech and the linear modeling techniques. In particular, the improvement in
signal-to-noise ratio produced by consistent attention-related enhancements of the N1 component was found to be critical
for achieving tracking of selectively attended speech, presumably facilitating the higher-order processing of the selected
stream.

Keywords Event-related potentials - N1 effect - Selective auditory attention - Speech tracking - Stimulus reconstruction -
Temporal response functions

Introduction

The investigation of selective auditory attention has a long
history in electroencephalographic (EEG) research. His-
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torically, the underlying neural mechanisms have been
studied extensively over the last fifty years using event-
related potentials (ERPs) (see Picton 2010 for review). In
their seminal works, Hillyard and colleagues (Hillyard
et al. 1973; Picton and Hillyard 1974) observed that
selectively attending to a sequence of brief auditory stimuli
in a top-down manner causes an enhancement of the N1
component (having a typical latency of 80-120ms in the
auditory ERP compared to the response evoked by an
ignored sequence (N/ effect). Hillyard et al. (1973) origi-
nally interpreted the auditory N1 effect as a gain control
operation, such that it would result in an improved signal-
to-noise ratio (SNR) between cortical activity related to
relevant input compared to unrelated background activity.
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While the aforementioned traditional ERP paradigm
creates a rather artificial listening scenario, its principal
idea can be easily extended to a more naturalistic analog by
considering a dual-speaker cocktail party scenario in which
a listener may want to focus on one speaker and ignore the
other. From a neurophysiological point of view, attending
to a speaker’s voice produces modulation of brain activity
through synchronization of neural responses to speech
features, which can be generalized in a non-specific manner
as neural tracking (Zion-Golumbic et al. 2013; Di Liberto
et al. 2022). As tracking implies a continuous process, the
analysis methods would also require an adaptation to the
continuous nature of ongoing speech compared to transient
auditory stimuli with well-defined onsets and offsets. In
recent years, methods based on linear regression have been
rapidly growing in popularity to overcome this obstacle.
Supported by the provision of freely available data pro-
cessing toolboxes (Crosse et al. 2016; Brodbeck et al.
2023), these modeling approaches have led to remarkable
insights into the neural tracking of sensory inputs and have
been utilized in studies investigating, for example, multi-
modal interactions (e.g., Crosse et al. 2015), music per-
ception (e.g., Weineck et al. 2022), pitch processing (e.g.,
Brodbeck and Simon 2022), linguistic processing (e.g.,
Gillis et al. 2021), speech intelligibility (e.g., Vanthornhout
et al. 2018; Muncke et al. 2022), effects of hearing aid
processing strategies (e.g., Alickovic et al. 2020, 2021;
Mai et al. 2022), and selective attention (e.g., Schéfer et al.
2018; Teoh et al. 2022). In these regression-based frame-
works, continuous relations may be linearly modeled in
forward or backward direction. The former approach
results in a temporal response function (TRF) representing
a characteristic brain response optimized to map a specific
stimulus feature to an observed response (see Holdgraf
et al. 2017 for review). The latter method implements a
stimulus reconstruction (SR) procedure and generates a
decoder that can be applied to the observed response to
approximate the original stimulus feature. The similarity
between this estimation and the actual stimulus represen-
tation is then used to quantify the degree of neural tracking
(Holdgraf et al. 2017). Studies that have employed these
two approaches are reviewed below.

Although forward-modeled TRFs and classical ERPs
have mostly been analyzed separately, investigations of the
relation between them have revealed some distinct simi-
larities. Throughout the literature, modeled TRFs have
closely resembled the morphology of ERPs, as they con-
sisted of short oscillatory waveforms with clear compo-
nents (Lalor et al. 2009; Lalor and Foxe 2010; Power et al.
2012; Crosse et al. 2015; Di Liberto et al. 2015; Fiedler
et al. 2019; Drennan and Lalor 2019; Lesenfants and
Francart 2020; Muncke et al. 2022; Weineck et al. 2022).
Furthermore, studies of selective auditory attention have
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consistently reported waveform modulations, mainly in the
N1 latency range, for TRFs fitted to attended and ignored
auditory streams, in line with the SNR-enhancing auditory
N1 effect (Ding and Simon 2012a, b; Fiedler et al.
2017, 2019; Kaufman and Zion-Golumbic 2023). Along
these lines, it was also shown that an increased SNR
between tracking- and non-tracking-related activity was
important for obtaining accurate TRF estimations (Crosse
et al. 2021). Because TRFs and the corresponding SR
decoders are mathematically related (Haufe et al. 2014), it
would be expected that the N1 effect and the resulting SNR
enhancement would translate to both forward and back-
ward modeling approaches. Indeed, a consistent outcome
of SR analyses in selective attention studies has been
reliably higher reconstruction accuracies for attended
compared to ignored auditory streams (O’Sullivan et al.
2015; Fuglsang et al. 2017; Puschmann et al. 2017,
Hausfeld et al. 2018; Schifer et al. 2018; Wong et al.
2018; O’Sullivan et al. 2019; Alickovic et al. 2020; Teoh
et al. 2022; Mai et al. 2022).

An important finding that may provide a link between
continuous and event-related approaches to speech analysis
was recently made by Oganian et al. (2023). By segment-
ing ongoing magnetoencephalographic (MEG) data based
on acoustic edges in speech as represented by salient
intensity dynamics, they identified event-related activity
that closely resembled the P1-N1-P2 complex of the
auditory ERP. It seems reasonable to assume that a similar
effect may be present in EEG recordings and that the N1
component of the speech-evoked ERP in multi-speaker
scenarios would exhibit an N1 enhancement analogous to
that observed in auditory ERPs to simple tone pips or clicks
(Hillyard et al. 1973; Picton and Hillyard 1974). If so, a
consistent SNR improvement in favor of an attended
speaker compared to any distracting sources produced by
enhanced N1 components in speech-evoked ERPs to
acoustic edges may facilitate the neural tracking of the
attended speech. In addition, it should be noted that the
dominant spectral content of the N1 component is located
within the theta range (4-8Hz) (Klimesch et al. 2004;
Trenado et al. 2009; Low and Strauss 2011; Bernarding
et al. 2017; Corona-Strauss and Strauss 2017), a frequency
band known to be significantly involved in the neural
synchronization to speech (Luo and Poeppel 2007; Kerlin
et al. 2010; Giraud and Poeppel 2012; Di Liberto et al.
2015; Chalas et al. 2023).

Considering the evidence discussed above, we propose
that the observed results in regression-based analyses of
selective speech tracking may be attributed in large mea-
sure to the generation of speech-evoked ERPs including the
well-established N1 effect and the accompanying SNR
improvement. In order to address this question, we re-an-
alyzed a published EEG data set (Fuglsang et al. 2018) that



Cognitive Neurodynamics (2025)19:110

Page 3 of 18 110

was previously used to study speech tracking in deterio-
rated acoustic scenes (Fuglsang et al. 2017) and the effects
of different regularization techniques on forward and
backward model estimations (Wong et al. 2018). These
EEG data were obtained in a selective attention task in
which participants were cued on each trial (lasting 50s) to
attend to one of two concurrent speakers perceived at
azimuth angles of £60°. Our analyses were based on the
premise that speech-evoked ERPs may be extracted in
response to salient intensity dynamics of the speech
envelope, as has been demonstrated using MEG recordings
(Oganian et al. 2023). Given the close conceptual rela-
tionship between the proposed mechanism of repeated
ERPs to speech and the linear forward modeling approach,
we first hypothesized a direct correspondence between
speech-evoked ERPs and modeled TRFs, with similar
effects of selective auditory attention manifested through
the N1 effect. Our second hypothesis was that the consis-
tency of the attention effect on speech-evoked ERPs as
quantified by the stability of the instantaneous ERP phase
in the theta band, which could be interpreted as a measure
of sustained SNR enhancement, would correlate with the
decoding performance of the SR approach. These working
hypotheses are illustrated in schematic form in Fig. 1.
Indeed, the present results suggest a fundamental relation
between top-down modulation of ERPs to salient changes

Experimental Design

Hypothesis 1

in speech dynamics and linear regression analyses utilizing
the corresponding speech feature representation.

Materials and methods
Data availability statement

The analyzed data set was created within the Cognitive
Control of a Hearing Aid (COCOHA) project and is freely
and publicly available (Fuglsang et al. 2018). Sections2.5
Participants, Auditory stimuli, Experimental procedure,
and Data acquisition provide a summary of the informa-
tion given in the associated publications (Fuglsang et al.
2017, 2018; Wong et al. 2018). Starting with Section EEG
preprocessing, we report the additional processing that we
applied to the raw data set in its distributed format for the
present analyses.

Participants

While the original study comprised 29 participants (13
females, 4 left-handed) aged between 19 and 30 years with
normal hearing and no neurological disorder history as
stated via self-report (Fuglsang et al. 2017), the available
data set includes a subset of 18 subjects (Fuglsang et al.

Hypothesis 2
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Fig. 1 Summary of the experimental design and our working
hypotheses. Participants engaged in a dual-speaker selective auditory
attention task in which they had to focus on one of two competing
speakers while multi-channel EEG recordings were obtained. Con-
tinuous speech stimuli were presented via insert earphones, perceived
at +60° from the midline, and the to-be-attended location was
randomly assigned across 20 trials (each lasting 50s). Our first
hypothesis was that speech-evoked ERPs and modeled TRFs would
be highly correlated if both are obtained from the same stimulus

representation, including similar effects of selective auditory attention
with enhanced mean N1 amplitudes in responses elicited by the
attended speech. The second main hypothesis was that SR perfor-
mance would be better for the attended speech due to highly phase-
locked N1 responses elicited by acoustic edges, compared to the
inconsistent N1 responses with low SNR elicited by the ignored
speech. This would produce a more accurate neural representation of
the attended speech that could be interpreted to reflect a sustained
attention-driven SNR enhancement in favor of the attended stream.

@ Springer
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2018). Participants were required to sign an informed
consent form following the regulations of the Declaration
of Helsinki and were financially compensated for their
voluntary participation. The study design was approved by
the Science Ethics Committee for the Capital Region of
Denmark.

Auditory stimuli

Auditory stimuli were fictional stories in the Danish lan-
guage that were narrated by two professional speakers
(male and female) and segmented into consecutive epochs
of 50s. All speech recordings were performed in an ane-
choic chamber at the Technical University of Denmark,
and stimuli were provided with a sampling frequency of
44.1kHz. As the purpose of the original publication was to
investigate cortical tracking of speech in real-world sce-
narios (Fuglsang et al. 2017), stimuli were modified to
mimic different degrees of reverberation as well as dif-
ferent speaker positions. Different perceived speaker
positions were achieved by convolving the speech stimuli
with impulse responses derived from non-individualized
head-related transfer functions (HRTF) for azimuth angles
of £60°, an elevation of 0°, and a source distance of 2.4m.
HRTFs were obtained from simulated auditory scenes
(ODEON V13.02, Odeon A/S, Denmark) with either ane-
choic properties or low (~ 189m* room volume) and high
(~39000m> room volume) degrees of reverberation,
resulting in three acoustic conditions. The original exper-
iment consisted of 70 trials with 20 trials for each of these
three conditions and 10 trials of an additional anechoic
single-speaker scenario in which only the male speaker was
presented. Since the aim of the present study was to
investigate pure selective attention effects without any
influences from acoustic degradation, all further analyses
were based on the 20 anechoic dual-speaker trials. Speech
stimuli were presented via insert earphones (ER-2, Ety-
motic Research, Inc., USA) at an intensity level of
65dB SPL and normalized to have the same root-mean-
square amplitude in all dual-speaker scenarios.

Experimental procedure

Since the experimental procedure differed between two
participant groups, we refer to the original publication
(Fuglsang et al. 2017) for all details and only report the
procedure for the data set included here. In each experi-
mental trial, a dual-speaker scenario was created by
simultaneously presenting a single speech segment from
one speaker perceived at +60° and the competitor at —60°.
Participants had to engage in a selective attention task by
attending to the speech stream they were cued to before
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trial onset while focusing their gaze on a fixation cross and
reducing movements as much as possible. A subsequent
analysis of comprehension questions related to the content
of the target story, which were asked after each trial, val-
idated the subjects’ compliance (Fuglsang et al. 2017). To
avoid any undesired systematic biases due to the experi-
mental procedure, the order of the acoustic conditions, the
gender and position of the target stream as well as the
presentation order of the stories were randomized across
trials. All recordings took place in an electrically shielded
and soundproof room.

Data acquisition

EEG acquisition was coordinated by a biopotential
recording system (ActiveTwo, BioSemi, The Netherlands)
with a 64-channel cap configured according to the inter-
national 10-20 system. Additional electrophysiological
recordings included the signals from the left and right
mastoids as well as vertical and horizontal electrooculo-
grams for both eyes. All data were digitized at 512Hz along
with trigger signals indexing the onset and offset of each
trial within each participant’s measurement session.

EEG preprocessing

Data processing was implemented in MATLAB® (R2022a,
The MathWorks, Inc., USA), and all reported filtering
procedures were conducted via forward and backward
passes with 3rd order Butterworth filters providing 3dB
attenuation at the cutoff frequencies. Raw EEG data were
decimated to 256Hz and bandpass-filtered from 1-45Hz.
Noisy channels were removed based on their time courses
and power spectra in EEGLAB (V2022.0, Delorme and
Makeig 2004), and the remaining EEG channels were re-
referenced to the average of the mastoids. Following an
independent component analysis (ICA) decomposition of
the EEG data, artifactual components were removed after
visual inspection informed by the ICLabel plugin (Pion-
Tonachini et al. 2019), and the data were back-projected to
sensor-space. ICA decomposition was achieved via the
AMICA algorithm (Palmer et al. 2008, 2012), which has
been shown to outperform other blind source separation
techniques in maximizing near-dipolarity while minimiz-
ing mutual information of independent components
(Delorme et al. 2012). Previously discarded EEG channels
were finally interpolated using EEGLAB’s default routine
for spherical interpolation to obtain complete data sets, and
all channels were corrected for their DC-offset.
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Speech envelope processing

The subsequent EEG analyses carried out in our laboratory
were based on envelope representations of speech stimuli.
Envelope extraction was carried out following similar
procedures to those previously implemented by Oganian
and colleagues (Oganian and Chang 2019; Oganian et al.
2023), but was adapted to include signal transformations
commonly applied in electrophysiological speech tracking
analyses. Raw speech waveforms were decomposed by a
gammatone filter bank (Patterson et al. 1992; Slaney 1993)
into 128 subbands with center frequencies between 100Hz
and 8000Hz. Individually extracted narrowband Hilbert
envelopes were power-law-transformed (x*3) to simulate
loudness perception within the auditory system (Stevens
1955) and subsequently averaged to obtain the broadband
envelope. To emphasize salient dynamics, broadband
envelopes were converted to speech onset envelopes via
lowpass filtering at 25Hz followed by differentiation and
halfwave rectification (Hambrook and Tata 2014). The
resulting train of gaussian-like pulses was expected to
correlate with acoustic edges in speech, and consequently
to provide appropriate markers for segmentation of ongo-
ing EEG into transient speech-evoked responses.

Speech-evoked ERP extraction

Speech-evoked ERPs were obtained for each participant,
EEG channel, and for the attended and the ignored con-
dition. Preprocessed EEG data were lowpass-filtered at
30Hz, and speech onset envelopes were decimated to
256Hz. To exclude any edge artifacts from filtering, the
first and last second of data in each trial were discarded.
The subsequent definition of EEG segmentation markers
was based on the statistical properties of intensity
dynamics in speech envelopes and extended the method of
Oganian et al. (2023) by introducing a segmentation
threshold. In particular, the corresponding 40 speech onset
envelopes were pooled within participants (2 envelopes per
trial and 20 trials in total), the global standard deviation
Oeny Was calculated across all envelope amplitude values,
and a threshold was set at 20,,,. All envelopes were sub-
sequently converted into trigger sequences by inserting
segmentation markers at all time instances at which the
envelopes changed from sub- to suprathreshold amplitudes
as illustrated in Fig. 2. ERPs were then extracted over the
interval —500ms to 2000ms relative to trigger onsets, and
data were pooled across all trials. Following a channel-wise
baseline correction by subtracting the mean amplitude
between —50ms and Oms, sweeps in which any of the
channels exceeded absolute amplitudes of 100uV were
identified as artifacts and excluded from analysis. This

procedure yielded a minimum of 2614 responses for each
subject to both attended and ignored stimuli, corresponding
to approximately 2.7 triggers per second. Accordingly,
2614 artifact-free ERPs were randomly selected per con-
dition for each participant and submitted to further analy-
sis. Comparisons of ERPs and TRFs were carried out over
the time interval from —50ms to 500ms.

Speech-evoked ERP consistency analysis

To examine the consistency of speech-evoked ERPs,
instantaneous phase (IP) information was extracted from
analytic continuous wavelet transforms using generalized
Morse wavelets i, 5 (Lilly and Olhede 2009). As opposed
to the commonly applied Morlet wavelet, Morse wavelets
provide perfect analyticity (i.e., no support at negative
frequencies); a desirable property for obtaining accurate
transform coefficients (Lilly and Olhede 2009). All selec-
ted sweeps were processed with wavelets from the dual-
parameter family v 5 5 to maximize symmetry in time and
frequency with an almost minimal Heisenberg area and one
full oscillation cycle at the wavelet peak frequency within
the central energy window. ERPs were analyzed within the
time frame of —500ms to 2000ms with respect to the
speech onset envelope segmentation markers with 17
scales per octave within 2-32Hz. The extracted IP angles
were subsequently used to compute the wavelet phase
synchronization stability (WPSS; also called phase-locking
factor (Tallon-Baudry et al. 1996) or inter-trial phase-co-
herence (van Diepen and Mazaheri 2018)), which provides
a measure of morphologic waveform consistency across a
set of responses; this measure has been employed in dif-
ferent forms for various analyses within the auditory
domain including listening effort (Strauss et al. 2010;
Bernarding et al. 2013; Wisniewski 2017), selective
attention (Low and Strauss 2011; Fuglsang et al. 2020),
and tinnitus (de-)compensation (Strauss et al. 2008; Haab
et al. 2019). Specifically, the WPSS at a particular wavelet
scale and translation was quantified as the mean resultant
vector length of a set of unit vectors oriented according to
the corresponding IP angles at that time-frequency point
across all single sweeps, with values bounded between 0
and 1 for perfect desynchronization and synchronization,
respectively. The ERP WPSS matrices were computed for
each participant, EEG channel, and condition, and trimmed
to span the range from —50ms to 500ms.

Although similar methods have been applied to inves-
tigate the generative processes of ERPs, i.e., phase-reset vs.
additive mechanisms (Makeig et al. 2002; Mishra et al.
2012), it is questionable whether these methods provide
unequivocal evidence for one or the other process (Yeung
et al. 2004; Burgess 2012). Therefore, for the present
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Fig. 2 Extraction of
segmentation markers from
speech onset envelopes for
speech-evoked ERPs. Triggers
were inserted at each point in
time where a gaussian-like pulse
in the speech onset envelope
first exceeded a pre-defined
threshold. The threshold 2a,,,
was chosen as twice the
standard deviation across all
pooled envelope samples within
a participant
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purposes, the WPSS is considered only as a mathematical
tool to quantify response consistency without implying any
evidence regarding the generative processes of speech-
evoked ERPs.

Encoding and decoding preprocessing

Linear modeling procedures were carried out using the
same EEG data and speech onset envelopes that were used
for ERP segmentation (see filtering, decimation, and
trimming procedures in Section Speech-evoked ERP
extraction), and each EEG channel was additionally cen-
tered around OpV. A subject-dependent normalization was
applied to the EEG data by dividing all amplitude values
by the global standard deviation across all channels and
trials. Decimated envelopes were normalized within par-
ticipants by dividing all amplitude values by the global
standard deviation across all conditions and trials.

Encoding/forward modeling

Neurophysiological forward models of speech tracking
interpret the neural response r at a single channel as the
sum of a convolution between a continuous speech feature
representation s and a TRF & which represents a channel-
specific stereotypical impulse response, and an unexplained
noise component €. By considering observations at integer
multiples of the sampling period t = t;,1,, . . ., t7, multiple
data channels with indices n = 1,2,...,N, and a range of
time lags 7 between t,; and 7, relative to ¢t with
7 € R, the forward model can be expressed as

@ Springer

time (a.u.)

r(t,n) = Z s(t — t)h(t;,n) + €(t,n)
=1

which evaluates how the stimulus is encoded in the neural
activity at channel n and time ¢ (Holdgraf et al. 2017).
Commonly, TRFs are identified via optimization proce-
dures to minimize the mean-squared-error between the
actual and predicted neural responses. Ignoring the con-
stant term of the linear model and introducing a compact
matrix notation with the multi-channel data set r € R7*V, a
matrix of concatenated, lagged versions of a single-channel
stimulus feature S € R7*L, the identity matrix I € R,
and a regularization scalar / to penalize large filter weights
and thereby mitigate overfitting, the multi-channel solution

h € RN can be efficiently obtained via ridge regression,
h = (S'S+ 1) 's"r

which resembles a regularized version of an optimal
Wiener filter (Wiener 1964). Instead of estimating the
model parameters using ridge regression, the weights can
also be obtained using different regularization techniques,
e.g., low-rank approximation, shrinkage, Tikhonov regu-
larization, or elastic net regression (Wong et al. 2018).
Since these methods have been found to perform similarly
well (Wong et al. 2018) and the ridge regression is com-
monly chosen as the default (Crosse et al. 2016), it was
also used for all modeling procedures in the present study.
Encoding models were fitted in a subject-dependent man-
ner for each EEG channel including time lags from
—250ms to 700ms and incorporating data from all 20 trials
simultaneously. The regularization included 20 logarith-
mically spaced parameters A within a broad range of 10~°
to 10° similar to those used or proposed in previous works
(Crosse et al. 2016; Wong et al. 2018; Crosse et al. 2021).
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However, instead of performing a cross-validation proce-
dure to optimize parameter selection, TRFs were separately
trained on all 20 values, and the resulting filter weights
were averaged. The incorporation of different levels of
smoothing may not have fully maximized modeling accu-
racies to the same extent as, for example, a group-level
parameter optimization (Alickovic et al. 2020, 2021), but
the main priority was put on a different aspect. In partic-
ular, the implemented approach stabilized the regulariza-
tion across participants and conditions to maximize
consistency while reducing impacts of single parameters
that could perform especially well or badly for some data
sets and keeping the complexity of TRF modeling to a
reasonable degree. Repeating the procedure for speech
onset envelopes of attended and ignored streams, this
resulted in a single model per participant, EEG channel,
and condition. TRFs were finally filtered with a 30Hz
lowpass to remove ringing artifacts and baseline-corrected
analogously to the ERPs. For the following illustrations
and comparisons to speech-evoked ERPs, the 200ms buf-
fers at both edges were excluded so as to have matching
epochs for TRFs and ERPs.

Decoding/backward modeling

Neurophysiological backward models of speech tracking
follow the same framework as the forward models but
include a change in the dependent and the independent
variables. These models aim to reconstruct an estimation §
of an original stimulus feature using a spatiotemporal
decoding filter g, as given by

S =" r(t+u.n)glu.n)

n=1 I=1

which highlights the possibility of a multi-variate SR
approach via integration of information across multiple
channels as compared to the univariate forward modeling.
The ridge regression solution can again be obtained via the
reverse correlation technique

g=(R'R+)"'R's

but now includes a time-lagged version of the neural data
instead of the stimulus (Holdgraf et al. 2017). Decoding
models were fitted in a subject-dependent manner on a
training set of 19 trials including time lags from 0-500ms
and with the same regularization approach as for the
encoding models. The resulting 19 decoders were averaged
and applied to the EEG data of the held-back test trial to
obtain an estimation of the corresponding speech onset
envelope. Afterwards, SR accuracy was assessed by cal-
culating Pearson’s correlation r between the original and
the estimated envelope. The leave-one-out procedure was

repeated until each trial was labeled as test set once, and
models were separately trained and tested for attended and
ignored speech. Finally, SR accuracies within participants
were averaged across trials. The backward modeling pro-
cedure was conducted for each EEG channel individually
to allow channel-wise analysis of speech tracking.

Auditory Attention Decoding

The straightforward selective attention task of the present
study provides an excellent opportunity to compare dif-
ferent measures for their ability to decode auditory atten-
tion to speech as well as to investigate whether they exhibit
similar patterns across EEG channels. In selective speech
tracking studies, the effect of attention has commonly been
studied via the SR approach (see Introduction). According
to the hypotheses of this study (see Fig. 1), SR was
expected to be driven by a consistent generation of speech-
evoked ERPs, which would include an N1 response
enhanced by attention in line with the auditory N1 effect.
Translating this idea to the present analysis methods, this
should be reflected in a comparably stronger ERP WPSS
within the N1 time-frequency area for ERPs to attended
relative to ignored speech. It is known that the theta band, a
critical frequency range in speech tracking studies,
encompasses the dominant spectral content of the NI
component and exhibits WPSS maxima around N1 peak
latencies (see Introduction). Due to the nature of the
wavelet transform, it follows that this phenomenon would
be dominantly captured by analytic wavelets centered at
the N1 peak with center frequencies within the theta fre-
quency range. Assuming a minimum of one cycle of the
center frequency within the central wavelet energy window
to achieve a reasonable time-frequency trade-off as
implemented in the present case, this would result in
wavelet footprints of at least 125-250ms within 4-8Hz and
consequently, a bidirectional energy spread at the center
frequency of approximately 62.5-125ms around the N1
peak. This spreading prevents a perfect differentiation
between pure N1 contributions and influences from
neighboring components such as the P1 and P2. Therefore,
the present wavelet analysis considered information within
a broader time range based on the oscillatory behavior of
ERPs. While not making any assumptions about the
interdependence of adjacent ERP components, the P1-N1-
P2 complex can be interpreted as being composed of a P1-
N1 and a N1-P2 half-cycle with different degrees of theta
and alpha contributions. The P1-N1 complex consists
mainly of activity in the alpha band (Klimesch et al. 2004),
which is consistent with the speech-evoked ERPs to
attended speech at channel Cz shown in Fig. 4A, as the P1-
N1 half-cycle represents an oscillation of 9.1Hz. In con-
trast, the N1-P2 complex correlated with an oscillation of
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5.6Hz, well within the theta band. Due to its significant
involvement in cortical speech tracking and to obtain a
robust WPSS attention decoding measure, the ERP WPSS
maps were reduced to scalar values by averaging within the
theta band from 4-8Hz and in the time window of the N1-
P2 complex. Specifically, the time window was chosen
according to the peak latencies of ERPs to attended speech
at channel Cz with a 20ms buffer before and after the N1
and P2 peaks, respectively. With peak latencies of 136.7ms
(N1) and 226.6ms (P2), this resulted in a time frame of
116.7-246.6ms. In order to be consistent with this WPSS
methodology, attention decoding measures from ERPs and
TRFs were based on NI1-P2 amplitudes. N1 and P2
amplitudes were identified as the mean voltage within time
windows with centers chosen again according to the peak
latencies of these components in response to attended
speech at channel Cz. This procedure resulted in time
windows 136.7+20ms and 226.6+20ms for ERPs and
125.0+20ms and 214.8+20ms for TRFs for the N1 and P2,
respectively (see Fig. 4A/C). N1-P2 amplitudes were
finally defined as the difference between P2 and N1
amplitudes. All decoding measures were computed for
each participant, EEG channel, and condition.

Statistical analyses

Statistical contrasts between the attended and the ignored
condition were performed with non-parametric permutation
tests (Holmes et al. 1996; Nichols and Holmes 2001; Maris
and Oostenveld 2007) for waveforms and ERP WPSS
matrices, and with paired #-tests for correlations and
attention decoding measures. All t-tests were conducted
one-tailed as it was expected that attention would have an
enhancing effect on all measures. Non-parametric permu-
tation tests were performed using within-subject averages
as the unit of observations, two-tailed paired #-tests as test
statistic, and 10000 permutations. A cluster-mass-based
approach was applied to correct for multiple comparisons
within channels, with pre-clustering and cluster-level
thresholds of 0.01 and 0.05, respectively.

Results
Speech-evoked ERPs and comparison to TRFs

A topographic display of the grand-average ERPs across
participants to attended and ignored speech is shown in
Fig. 3. While the majority of EEG channels showed similar
waveforms with distinct ERP deflections including the P1-
N1-P2 complex, the components were most pronounced at
frontocentral scalp locations. Focusing on the Cz channel
shown in Fig. 4A, the ERPs for both conditions exhibited
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similar morphologies up to the Pl deflection between
75-85ms, with an earlier middle latency component at
about 30ms. The P1 component was followed by diverging
later responses, with substantially higher amplitude
deflections for ERPs to attended speech for several com-
ponents, including the N1 peaking at 136.7ms, P2 at
226.6ms, as well as a later negativity (>300ms). A non-
parametric permutation test confirmed that the effect of
attention on the N1 was significant (see Figs. 3, 4A).
Additionally, the scalp topographies at the N1 peak latency
shown in Fig. 4B demonstrated a broad frontocentral dis-
tribution for ERPs to attended speech and no apparent
pattern for the ignored condition.

The grand-average TRFs at channel Cz across partici-
pants resulting from forward modeling to attended and
ignored speech are shown in Fig. 4C. Like the corre-
sponding ERPs shown in Fig. 4A, waveforms for both
conditions initially followed a similar course with an ear-
lier component at around 20ms and a P1 between 65-75ms.
Again, the NI1-P2 complex was noticeably more pro-
nounced in the TRFs to attended speech but exhibited
slightly earlier peak latencies than their ERP equivalents,
with N1 peaking at 125.0ms and P2 at 214.8ms. Never-
theless, the TRF topographies at the N1 peak latency for
attended speech shown in Fig. 4D were nearly identical to
the corresponding ERP topographies, presenting a distinct
frontocentral distribution for the attended and no apparent
pattern for the ignored condition. A non-parametric per-
mutation test again indicated a prolonged significant effect
of attention around the N1 peak latency in the TRFs.

To quantify the similarity between ERPs and TRFs (see
working hypothesis 1 in Fig. 1), two types of correlation
analyses were carried out. Since TRF peaks consistently
preceded ERP peaks, a cross-correlation analysis was
conducted across participants which resulted in an overall
best-fit lag of 4 samples (equal to 15.6ms). After correcting
TRFs for this time shift, the time-dependent similarity
between the ERP and TRF topographies was assessed using
the spatial correlation r,p, which can be interpreted anal-
ogously to Pearson’s correlation r (i.e., r;p = —1 for per-
fectly inverted topographies and r,p =1 for perfectly
identical topographies) (Murray et al. 2008). Topographic
correlations were computed for each participant and both
conditions from averaged waveforms in a sample-wise
manner over —50ms to 500ms. The grand-averages across
participants of the resulting waveforms are presented in
Fig. 4E, which shows overall moderate to high correlations
and higher post-trigger similarity between the topographies
of ERPs and TRFs to attended speech with a mean corre-
lation of r,p = 0.78 compared to r,p = 0.60 for ignored
speech. The maximum grand-average topographic corre-
lation of r,p = 0.89 was observed at 136.7ms, corre-
sponding to the ERP N1 peak latency for the attended
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Fig. 3 Topographic overview of speech-evoked ERPs. Grand-average
ERPs across all participants to attended and ignored speech are
represented by solid blue and orange lines, respectively. Grey
shadings indicate periods with significant differences between
conditions as determined by a non-parametric permutation test. The

condition. The significance of this observation was vali-
dated by a non-parametric permutation test, which identi-
fied a latency range centered at 144.5ms as having
significantly higher correlations for responses to attended
compared to ignored speech, together with earlier as well
as later effects that will not be pursued further.

The second correlation analysis tested the ERP-TRF
waveform similarity at each individual scalp site after time-
lag correction by calculating Pearson’s correlation r
between the grand-average waveforms across participants
over the interval —50ms to 500ms. The results are depicted
in Fig. 4F. Overall, correlations tended to be moderate to
high at posterior scalp sites and highest at frontocentral
sites. While all correlations were significant in themselves
(»<0.001) which provided statistical evidence in favor of
working hypothesis 1 (see Fig. 1), there was a significant
difference (#(63) = 14, p <0.001), with higher correlations
between ERPs and TRFs across the scalp to attended (r =
0.88+0.06; M=+SD across channels) relative to ignored
speech (r = 0.81£0.08; M=£SD across channels).

Auditory attention decoding performance

Auditory attention decoding performance was tested for
ERP and TRF N1-P2 amplitudes, SR accuracy, and ERP
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majority of channels show similar ERP morphologies with compo-
nents especially pronounced over frontocentral scalp regions. The
principal effect of attention was a substantial amplitude increase in
the N1 component.

WPSS averaged within the N1-P2 window across the theta
band. Prior to averaging, the WPSS was computed for all
frequencies from 2-32Hz and tested for group-level effects
of attention at channel Cz. Indeed, the grand-average
WPSS time-frequency plots across subjects shown in Fig. 5
show a strong phase consistency in the theta range for
ERPs to attended but not to ignored speech, which is fur-
ther emphasized in the difference plot. A non-parametric
permutation test confirmed the statistical significance of
this effect, which extended approximately across the first
250ms of the ERPs and ended shortly after the P2 peak of
the grand-average ERP to attended speech. This analysis
demonstrates that attending to a target stream led to a more
consistent response waveform within the theta band with
maximum consistency around the N1 peak latency of the
attended condition.

The channel-wise r-statistics at the group-level for all
attention decoding measures are summarized in Fig. 6 and
reveal two key findings. First, all measures presented a
strong separation between the attended and ignored condi-
tions at the vast majority of channels with a strong
enhancing effect of attention on all measures and overall
highly significant mean #-statistics (ERP N1-P2 amplitude:
43424, TRF NI1-P2 amplitude: 7.8+4.0, ERP WPSS:
4.341.6, SR accuracy: 4.8£1.6; M+£SD across channels).
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Fig. 4 Comparison between speech-evoked ERPs and TRFs resulting
from forward modeling. Grand-average ERPs (A) and TRFs
(C) across all participants at channel Cz to attended and ignored
speech are represented by solid blue and orange lines, respectively.
Colored shadings indicate the interquartile range across participants.
Grey shadings highlight periods during which a non-parametric
permutation test revealed significant differences between conditions.
ERPs as well as TRFs exhibited a significant N1 effect with greater
amplitudes in responses to attended speech. The corresponding N1
topographies of the ERPs (B) and TRFs (D) at their peak latencies
(136.7ms and 125.0ms, respectively) both demonstrate a frontocentral
distribution for responses to attended speech and an absence of any
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ERP N1 topographies

attended ignored

-0.4 -0.2 0 0.2
ERP amplitude (1. V)
TRF N1 topographies
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-0.6 -0.3 (1] 0.3
TRF amplitude (a.u.)
ERP-TRF waveform correlation
ignored

0.85 0.95

Pearson r
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apparent spatial pattern for ignored speech. A spatial correlation
analysis between corresponding ERPs and lag-corrected TRFs (E;
layout identical to panels A and C) revealed that the topographies
overall showed high similarities for both conditions. However, there
was a significantly greater topographic correlation between ERPs and
TREFs to attended speech around the N1 peak latency as well as during
earlier and later time intervals that were not analyzed further.
Correlations between grand-average ERPs and lag-corrected TRF
waveforms at individual scalp sites (F) revealed that the similarity
across channels was significantly higher between ERPs and TRFs to
attended versus ignored speech.
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Fig. 5 Grand-average WPSS
time-frequency plots across
subjects at channel Cz for ERPs
to attended (top) and ignored
(middle) speech as well as the
corresponding difference plot
(bottom). Grey dashed lines
represent the grand-average
speech-evoked ERPs across
subjects (top and middle) and
their difference wave (bottom),
all centered around OpV with
identical scaling. White outlines 0 100
delimit time-frequency areas for

which a non-parametric 32

permutation test indicated
significant differences between
conditions. The maps show that
the ERP waveform within the
theta range was significantly
more consistent across single
sweeps when speech was
attended. This attention effect
extended approximately across
the first 250ms of the ERPs,
with the global maximum being
precisely aligned with the N1
peak latency of the attended 32
condition.

frequency (Hz

0 100

Second, and especially important with regard to the present
working hypotheses, the single-channel analyses revealed
pair-wise similarities between the topographic patterns of
the ERP and TRF N1-P2 amplitude #-statistics on the one
hand, and the ERP WPSS and SR accuracy #-statistics on the
other. The #-statistic topographies for ERP and TRF N1-P2
amplitudes exhibited global maxima at midline frontocentral
channels. In contrast, while the maps for SR accuracy and
ERP WPSS also showed higher values over frontocentral
areas, they presented lateralized distributions at frontal and
frontotemporal electrodes with global maxima over the right
hemisphere (electrode site F6 for ERP WPSS and FT8 for
SR accuracy). A topographic correlation analysis validated
the strong similarity between the f-statistic maps of SR
accuracy and ERP WPSS (r;p = 0.89, p<0.001) as well as
between the maps of ERP and TRF N1-P2 amplitude (r,p =
0.95, p<0.001), thereby providing strong statistical evi-
dence in favor of working hypothesis 2 (see Fig. 1).
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Discussion

Based on the assumptions that critical speech landmarks
evoke ERPs and selective auditory attention enhances the
N1 component, the main objective of the present work was
to gain insight into how these ERP modulations drive
selective speech tracking in multi-speaker environments.
To this end, speech-evoked ERPs to acoustic edges were
extracted from ongoing EEG recorded during a dual-
speaker selective attention task, and their relation to linear
modeling techniques commonly applied to analyze the
neural representation of speech was analyzed in several
different ways. Taken together, these analyses revealed
three key observations: First, ERPs elicited by acoustic
edges in speech were strongly modulated by attention, with
larger N1 components to attended compared to ignored
streams. Second, forward modeling produced TRF wave-
forms that were remarkably accurate approximations of
speech-evoked ERPs and showed equivalent attention
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Fig. 6 Topographic comparison

of attention decoding 7
performances between N1-P2
amplitudes extracted from
speech-evoked ERPs and TRFs,
ERP WPSS, and SR accuracies.
Note that the topographic plots
are scaled individually to
highlight the patterns across the
scalp. These channel-wise
analyses at the group-level
yielded ¢-statistic topographies
with high correlations between
maps for ERP and TRF N1-P2
amplitudes as well as between
maps for ERP WPSS and SR
accuracy.
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effects. Lastly, SR backward modeling revealed effects of
attention that were in line with those based on the wave-
form consistency of ERPs within a time-frequency area
corresponding to the N1 component as quantified by phase-
locking across sweeps. These results are fully consistent
with our working hypotheses (see Fig. 1) and suggest that
the repeated elicitation of the N1 effect through sustained
allocation of attention plays a critical role in the tracking of
selectively attended speech.

Listening to speech generates auditory ERPs
that are modulated by attention

Segmenting the ongoing EEG based on triggers extracted
from speech dynamics revealed auditory ERPs with dis-
tinct components including a clear P1-N1-P2 complex,
especially in responses to attended streams. Since the
segmentation markers were derived from suprathreshold
events in speech onset envelopes, this suggests a bottom-up
mechanism in the generation of speech-evoked ERPs,
which are triggered by physical properties inherent to
speech. However, the significant N1 amplitude difference
between averaged ERPs to attended and ignored speech
also implicates endogenously driven top-down attention
mechanisms that modulate the ERP generation process.

@ Springer

Salient intensity modulations in speech may be considered
as acoustic edges, i.e., impulse-like events similar to clicks
or tone pips that are traditionally used to evoke auditory
ERPs. In their seminal work, Hillyard and colleagues
(Hillyard et al. 1973; Picton and Hillyard 1974) demon-
strated that the effects of attention on auditory ERPs to
clicks and tones are manifested in the N1 effect; that is,
selectively attending a stream of sounds while ignoring
another leads to an enhanced N1 component in response to
the former. The present results emphasize the importance
and generality of this mechanism by suggesting that the
same N1 effect holds for speech-evoked ERPs if extracted
from appropriate speech representations. Similar atten-
tional modulations may also be expected during selective
listening paradigms using different types of continuous
auditory stimuli such as music or environmental sounds,
which would be a fruitful area for future research.

Speech-evoked ERPs and TRFs represent
the same brain response when obtained
from the same speech representation

In line with our first working hypothesis, the present results
confirm that if forward modeling of speech tracking is
conducted with the same speech representation used as
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regressor as that used for ERP trigger extraction, speech-
evoked ERPs and resulting TRFs represent the same brain
response. While there are some minor discrepancies
between the observed ERPs and the derived TRFs, these
can be attributed to two main factors. First, TRFs consis-
tently preceded ERPs by a best-fit lag of 15.6ms. This
discrepancy appears to be a consequence of the imple-
mented ERP extraction method, which was based on sta-
tistical properties of speech onset envelopes, namely the
sample standard deviation. In comparison to the linear
regression approach that essentially performs a precise
deconvolution, trigger extraction for ERPs relied on an
empirically chosen threshold, which may have influenced
the resulting ERP onset and peak latencies. By adjusting
the envelope threshold accordingly, ERP and TRF com-
ponents could in principle be aligned accurately. However,
since the focus here was on response morphologies rather
than absolute latencies, and the chosen parameters yielded
strong ERP-TRF similarities, the standard threshold of
twice the standard deviation was chosen as the default.
Second, ERP and TRF waveforms and between-condition
amplitude differences varied slightly outside of the P1-N1-
P2 time interval. While this could be influenced by the
envelope threshold as well, the regularization applied
during ridge regression may be the dominant factor. Since
regularization constrains TRF weights by penalizing large
coefficients to prevent overfitting, the resulting TRFs may
lose details and become more generalized.

The one-to-one correspondence between speech-
evoked ERPs and the modeled TRFs was strongly con-
firmed by the correlation analyses, which provided
objective evidence for highly similar topographies and
waveforms across channels. In a similar vein, comparable
observations have previously been made when comparing
standard click-evoked auditory brainstem responses to
their TRF representations modeled to speech (Maddox
and Lee 2018) and tone-evoked cortical auditory ERPs to
their TRF counterparts (Reetzke et al. 2021). By
demonstrating a direct link between ERPs and TRFs, the
present findings provide strong support for the hypothesis
that TRFs may be interpreted as reflecting true brain
responses to various kinds of continuous auditory stimu-
lation (Ding and Simon 2013; Crosse et al. 2015; Di
Liberto et al. 2015; Broderick et al. 2018; Verschueren
et al. 2021; Kaufman and Zion-Golumbic 2023). As an
alternative to the forward modeling approach, the impulse
response of the brain to a continuous stimulus can also be
obtained by performing a cross-correlation between
M/EEG and stimulus and the resulting cross-correlation
function closely resembles the corresponding TRF
(Crosse et al. 2016). Therefore, the same principle also
appears to hold for cross-correlation analyses that have

studied cortical responses to speech (Hertrich et al. 2011;
Hambrook and Tata 2014; Schmitt et al. 2022).

SNR enhancement produced by selective
auditory attention and the N1 attention effect
improves TRF and SR modeling in multi-speaker
scenarios

The importance of SNR improvement in favor of cortical
activity related to selectively attended versus ignored
speech, largely due to the N1 effect, becomes apparent in
many analyses, including TRF as well as SR modeling.

Overall, TRF modeling produced highly accurate esti-
mations of speech-evoked ERPs as confirmed by the ERP-
TRF waveform correlations, with highest similarities at
frontocentral channels and a symmetrical pattern across
hemispheres, which corresponds to the typical frontocen-
tral topographies of late auditory ERP components
including the NI (Picton et al. 1974). The ERP-TRF
waveform correlation analysis revealed that TRFs repre-
sented significantly better estimations of ERPs for attended
compared to ignored speech, emphasizing that selective
attention had enhanced the SNR. This was also supported
by the time-resolved topographic ERP-TRF correlation
analysis, which revealed more similar topographies for
responses to attended speech and reached significance
during several time windows, most prominently in the N1
interval. Similar conclusions can also be drawn from the
TRF and ERP attention decoding analysis, which con-
trasted N1-P2 amplitudes between conditions of attention.
The comparison across channels revealed highly correlated
topographies for group-level t-statistics which provides
further evidence for a direct ERP-TRF correspondence.
Importantly, best separability between conditions was
found at anterior regions where the N1 component was
largest; the distributions showed #-statistic maxima at
frontocentral channels and minima towards posterior
channels. Despite the similar topographies, the mean #-
statistic across channels for TRFs was noticeably larger
than for ERPs (7.8 vs. 4.3). This potentially demonstrates
that the positive effect of consistently enhanced ERP
components on SNR is amplified during TRF estimation,
perhaps because ERPs with clear and consistent deflections
may be modeled especially well and ERPs with subdued
components proportionally worse, which in turn would
increase the separability between TRFs to attended and
ignored speech.

Consistent with our second working hypothesis, the
attention decoding -statistic scalp maps for the SR accu-
racy and the waveform consistency (WPSS) of speech-
evoked ERP N1-P2 responses in the theta band yielded
highly similar topographies. Although decoding perfor-
mances were again biased towards anterior scalp areas, as
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observed for N1-P2 amplitudes in ERPs and TRFs, their
overall scalp distribution differed considerably. In contrast
to the frontocentral distribution of the N1-P2 amplitudes,
the separability between conditions for the SR accuracy
and the N1-P2 phase consistency was greatest over the
anterior region of the temporal lobe in the right hemi-
sphere. This distribution is congruent with the asymmetric
sampling in time (AST) hypothesis (Poeppel 2003), which
suggests a preferred sampling of speech in time windows
corresponding to gamma periods in the left hemisphere
(~20-40ms, phonetic information) and windows matching
theta cycles in the right hemisphere (~ 150-250ms, syl-
labic information). In accord with this proposal, previous
research has identified a general bias for the right hemi-
sphere to be dominant in the synchronization of M/EEG
theta band activity to spoken sentences (Luo and Poeppel
2007; Ding and Simon 2012b), which has been similarly
demonstrated in studies on selective attention to speech
(Vander Ghinst et al. 2016; Puschmann et al. 2017), sound
envelope tracking (Abrams et al. 2008; Chalas et al. 2022),
and attention decoding (Kerlin et al. 2010). Overall, the
present findings suggest that the consistent generation of an
enhanced N1 component in auditory ERPs to acoustic
edges in selectively attended speech improves the SNR
between goal-related and background cortical activity. By
doing so, it possibly enhances the accuracy of SR modeling
and leads to better attention decoding performance in
multi-speaker scenarios. These effects are also manifested
in the phase consistency of EEG theta band activity, as
discussed below.

Acoustic edges and the N1 component may
contribute to modulations of theta activity
in neural tracking of speech

There are two main competing theories regarding how
brain activity synchronizes to auditory input; the first
involves an active alignment of ongoing neural oscillations
to the stimuli, and the second a superposition of additional
neural activity evoked by the stimuli (Aiken and Picton
2008; Lakatos et al. 2013; Ding and Simon 2014; Kayser
et al. 2015; Zoefel et al. 2018; Zuk et al. 2021). The for-
mer proposal suggests that low frequency neural oscilla-
tions phase-align to auditory stimuli in order to enhance
stimulus processing through optimized excitability (Laka-
tos et al. 2005; Luo and Poeppel 2007; Schroeder et al.
2010; Lakatos et al. 2013; Doelling et al. 2014), a mech-
anism that has been proposed to rely on a syllable-based
theta alignment when considering speech (Luo and Poeppel
2007). In contrast, the syllable-theta correspondence might
also be established by the latter mechanism, with the
addition of evoked NI activity in the theta band. Theta
speech tracking has been related to speech clarity (Etard
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and Reichenbach 2019) and intelligibility (Luo and Poep-
pel 2007; Howard and Poeppel 2010; Ghitza 2012). Simi-
larly, two speech features that have been found to be
important for high intelligibility are syllabic information
(Ghitza 2012) and acoustic edges (Howard and Poeppel
2010), which are proposed to be correlated while they
exhibit similar occurence rates within speech that approx-
imately match the theta band (Ding and Simon 2014;
Oganian et al. 2023); this observation also accords with the
AST hypothesis (Poeppel 2003). In the present study, an
EEG segmentation method based on acoustic edges in
speech (i.e., potentially syllabic information) revealed the
presence of speech-evoked ERPs similar to those reported
in recent studies (Oganian et al. 2023) including consistent
P1-N1-P2 complexes. Importantly, the manifestation of the
N1 component was correlated with phase-locked theta
activity (see also Klimesch et al. 2004; Trenado et al.
2009; Low and Strauss 2011; Corona-Strauss and Strauss
2017), which resulted in an enhanced representation of
speech within the theta band, closing the loop and allowing
an interpretation of theta speech tracking in terms of an
additive evoked response mechanism.

It is important to note that any definitive statement
regarding the extent to which the two proposed mecha-
nisms discussed above contribute to the neural synchro-
nization to speech would require definite knowledge about
the generative origin of ERPs (Sayers et al. 1974; Makeig
et al. 2002; Fell et al. 2004; Mikinen et al. 2005; David
et al. 2006; Hanslmayr et al. 2007; Min et al. 2007; Sau-
seng et al. 2007; Mishra et al. 2012; Burgess 2012); a
question that is not within the scope of this work. However,
the present findings provide explanations for some of the
effects that have been observed for theta speech tracking
that may be based on the typical behavior of ERPs, e.g., for
the relation of theta activity to speech intelligibility. Pre-
vious studies have found that modifying speech to be
unintelligible by means of speech-noise chimeras (Luo and
Poeppel 2007) or an increase of background noise floor
(Etard and Reichenbach 2019) impairs speech tracking
through theta activity. These modifications can be thought
of as a masking of acoustic edges and syllabic information,
which has been shown to diminish the signal quality of
auditory ERPs to syllables by smearing component
amplitudes and latencies (Billings et al. 2013). Translating
this effect to the aforementioned studies on speech track-
ing, the diminished speech-evoked ERPs due to masking
would consequently impair the cortical representation of
speech by effectively reducing the SNR with respect to
background activity. Due to the absence or smearing of P1-
N1-P2 complexes, this effect would additionally express
itself through the collapse of theta speech tracking.

In summary, it is clear that bottom-up, stimulus-driven
mechanisms have to be complemented by top-down
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attentional processes to achieve successful neural tracking
of speech. Focusing on the situation of selectively attended
speech in a multi-speaker environment, the present findings
indicate that the auditory N1 effect (Hillyard et al. 1973;
Picton and Hillyard 1974) improves the SNR in favor of
the target speech compared to its competitors. The gener-
ation of ERPs with enhanced N1 components could then
provide reliable cues for higher-order cortical networks to
lock on to attended information, ultimately facilitating the
tracking and processing of the desired speech stream.
These observations and the underlying methods can be
directly translated to several use cases. With respect to
scientific research that investigates how the brain syn-
chronizes to selectively attended speech, the present work
suggests that standard ERP processing techniques such as
the analysis of phase stability (WPSS) provide valuable
alternatives to the commonly applied TRF and SR
approaches. Comparing the results of different analysis
methods could thereby help to evaluate the robustness of
any observed effects or reveal additional similarities as
well as potential differences between the outcomes of tra-
ditional ERP and linear modeling approaches. From a
technological perspective, the emergence of smart tech-
nologies such as neuro-steered hearing aids (Geirnaert
et al. 2021) implies a need for stable attention decoding
strategies that can operate online while keeping the com-
putational cost low, for which the presented ERP amplitude
and phase analyses represent promising candidates. Addi-
tionally, the proposed strategies may also be integrated in
clinical settings where they could serve as rapid approaches
for evaluating patients’ attention and language compre-
hension in situations of comprehending natural speech. In
these scenarios, the absence of attention effects on N1
amplitude or phase stability could be related to deficits that
may be worth examining more thoroughly.

Acknowledgements The authors were partially supported by the
European Regional Development Fund (ERDF) and the state of
Saarland by the "Center for Digital Neurotechnologies Saar (CDNS)"
(Project-ID: EFRE-HS-0000835). The authors would also like to
thank Sgren A. Fuglsang, Daniel D. E. Wong and Jens Hjortkjaer for
creating the analyzed data set and making it freely and publicly
available.

References

Abrams DA, Nicol T, Zecker S, Kraus N (2008) Right-hemisphere
auditory cortex is dominant for coding syllable patterns in
speech. J Neurosci 28(15):3958-3965. https://doi.org/10.1523/
jneurosci.0187-08.2008

Aiken SJ, Picton TW (2008) Human cortical responses to the speech
envelope. Ear Hear 29(2):139-157. https://doi.org/10.1097/aud.
0b013e31816453dc

Alickovic E, Lunner T, Wendt D, Fiedler L, Hietkamp R, Ng EHN,
Graversen C (2020) Neural representation enhanced for speech

and reduced for background noise with a hearing aid noise
reduction scheme during a selective attention task. Front
Neurosci 14:846. https://doi.org/10.3389/tnins.2020.00846

Alickovic E, Ng EHN, Fiedler L, Santurette S, Innes-Brown H,
Graversen C (2021) Effects of hearing aid noise reduction on
early and late cortical representations of competing talkers in
noise. Front Neurosci 15:636060. https://doi.org/10.3389/fnins.
2021.636060

Bernarding C, Strauss DJ, Hannemann R, Seidler H, Corona-Strauss
FI (2013) Neural correlates of listening effort related factors:
influence of age and hearing impairment. Brain Res Bull
91:21-30. https://doi.org/10.1016/j.brainresbull.2012.11.005

Bernarding C, Strauss DJ, Hannemann R, Seidler H, Corona-Strauss
FI (2017) Neurodynamic evaluation of hearing aid features using
EEG correlates of listening effort. Cogn Neurodyn
11(3):203-215. https://doi.org/10.1007/s11571-017-9425-5

Billings CJ, McMillan GP, Penman TM, Gille SM (2013) Predicting
perception in noise using cortical auditory evoked potentials.
J Assoc Res Otolaryngol 14(6):891-903. https://doi.org/10.1007/
$10162-013-0415-y

Brodbeck C, Simon JZ (2022) Cortical tracking of voice pitch in the
presence of multiple speakers depends on selective attention.
Front Neurosci 16:828546. https://doi.org/10.3389/fnins.2022.
828546

Brodbeck C, Das P, Gillis M, Kulasingham JP, Bhattasali S, Gaston P,
Resnik P, Simon JZ (2023) Eelbrain, a Python toolkit for time-
continuous analysis with temporal response functions. eLife
12:¢85012. https://doi.org/10.7554/elife.85012

Broderick MP, Anderson AJ, Liberto GMD, Crosse MJ, Lalor EC
(2018) Electrophysiological correlates of semantic dissimilarity
reflect the comprehension of natural, narrative speech. Curr Biol
28(5):803-809.e3. https://doi.org/10.1016/j.cub.2018.01.080

Burgess AP (2012) Towards a unified understanding of event-related
changes in the EEG: the firefly model of synchronization through
cross-frequency phase modulation. PLoS ONE 7(9):e45630.
https://doi.org/10.1371/journal.pone.0045630

Chalas N, Daube C, Kluger DS, Abbasi O, Nitsch R, Gross J (2022)
Multivariate analysis of speech envelope tracking reveals
coupling beyond auditory cortex. Neurolmage 258:119395.
https://doi.org/10.1016/j.neuroimage.2022.119395

Chalas N, Daube C, Kluger DS, Abbasi O, Nitsch R, Gross J (2023)
Speech onsets and sustained speech contribute differentially to
delta and theta speech tracking in auditory cortex. Cereb Cortex
33(10):6273-6281. https://doi.org/10.1093/cercor/bhac502

Corona-Strauss FI, Strauss DJ (2017) Circular organization of the
instantaneous phase in ERPs and the ongoing EEG due to
selective attention. In: 2017 8th International IEEE/EMBS
Conference on Neural Engineering (NER), pp 625-628. https://
doi.org/10.1109/ner.2017.8008429

Crosse MJ, Butler JS, Lalor EC (2015) Congruent visual speech
enhances cortical entrainment to continuous auditory speech in
noise-free conditions. J Neurosci 35(42):14195-14204. https://
doi.org/10.1523/jneurosci.1829-15.2015

Crosse MJ, Di Liberto GM, Bednar A, Lalor EC (2016) The
multivariate temporal response function (mTRF) Toolbox: a
MATLAB toolbox for relating neural signals to continuous
stimuli. Front Hum Neurosci 10:604. https://doi.org/10.3389/
fnhum.2016.00604

Crosse MJ, Zuk NJ, Di Liberto GM, Nidiffer AR, Molholm S, Lalor
EC (2021) Linear modeling of neurophysiological responses to
speech and other continuous stimuli: methodological consider-
ations for applied research. Front Neurosci 15:705621. https://
doi.org/10.3389/fnins.2021.705621

David O, Kilner JM, Friston KJ (2006) Mechanisms of evoked and
induced responses in MEG/EEG. Neurolmage 31(4):1580-1591.
https://doi.org/10.1016/j.neuroimage.2006.02.034

@ Springer


https://doi.org/10.1523/jneurosci.0187-08.2008
https://doi.org/10.1523/jneurosci.0187-08.2008
https://doi.org/10.1097/aud.0b013e31816453dc
https://doi.org/10.1097/aud.0b013e31816453dc
https://doi.org/10.3389/fnins.2020.00846
https://doi.org/10.3389/fnins.2021.636060
https://doi.org/10.3389/fnins.2021.636060
https://doi.org/10.1016/j.brainresbull.2012.11.005
https://doi.org/10.1007/s11571-017-9425-5
https://doi.org/10.1007/s10162-013-0415-y
https://doi.org/10.1007/s10162-013-0415-y
https://doi.org/10.3389/fnins.2022.828546
https://doi.org/10.3389/fnins.2022.828546
https://doi.org/10.7554/elife.85012
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1371/journal.pone.0045630
https://doi.org/10.1016/j.neuroimage.2022.119395
https://doi.org/10.1093/cercor/bhac502
https://doi.org/10.1109/ner.2017.8008429
https://doi.org/10.1109/ner.2017.8008429
https://doi.org/10.1523/jneurosci.1829-15.2015
https://doi.org/10.1523/jneurosci.1829-15.2015
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnins.2021.705621
https://doi.org/10.3389/fnins.2021.705621
https://doi.org/10.1016/j.neuroimage.2006.02.034

110 Page 16 of 18

Cognitive Neurodynamics (2025)19:110

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent
component analysis. J Neurosci Methods 134(1):9-21. https://
doi.org/10.1016/j.jneumeth.2003.10.009

Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S (2012)
Independent EEG sources are dipolar. PLoS ONE 7(2):e30135.
https://doi.org/10.1371/journal.pone.0030135

Di Liberto GM, O’Sullivan JA, Lalor EC (2015) Low-frequency
cortical entrainment to speech reflects phoneme-level process-
ing. Curr Biol 25(19):2457-2465. https://doi.org/10.1016/j.cub.
2015.08.030

Di Liberto GM, Hjortkjer J, Mesgarani N (2022) Editorial: neural
tracking: closing the gap between neurophysiology and transla-
tional medicine. Front Neurosci 16:872600. https://doi.org/10.
3389/tnins.2022.872600

Ding N, Simon JZ (2012) Emergence of neural encoding of auditory
objects while listening to competing speakers. Proc Natl Acad
Sci 109(29):11854-11859. https://doi.org/10.1073/pnas.
1205381109

Ding N, Simon JZ (2012) Neural coding of continuous speech in
auditory cortex during monaural and dichotic listening. J Neuro-
physiol 107(1):78-89. https://doi.org/10.1152/jn.00297.2011

Ding N, Simon JZ (2013) Adaptive temporal encoding leads to a
background-insensitive cortical representation of speech. J Neu-
rosci 33(13):5728-5735. https://doi.org/10.1523/jneurosci.5297-
12.2013

Ding N, Simon JZ (2014) Cortical entrainment to continuous speech:
functional roles and interpretations. Front Hum Neurosci 8:311.
https://doi.org/10.3389/fnhum.2014.00311

Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic
landmarks drive delta—theta oscillations to enable speech com-
prehension by facilitating perceptual parsing. Neurolmage
85:761-768. https://doi.org/10.1016/j.neuroimage.2013.06.035

Drennan DP, Lalor EC (2019) Cortical tracking of complex sound
envelopes: modeling the changes in response with intensity.
eNeuro 6(3):ENEURO.0082-19. https://doi.org/10.1523/eneuro.
0082-19.2019

Etard O, Reichenbach T (2019) Neural speech tracking in the theta
and in the delta frequency band differentially encode clarity and
comprehension of speech in noise. J  Neurosci
39(29):5750-5759.  https://doi.org/10.1523/jneurosci.1828-18.
2019

Fell J, Dietl T, Grunwald T, Kurthen M, Klaver P, Trautner P,
Schaller C, Elger CE, Fernandez G (2004) Neural bases of
cognitive ERPs: more than phase reset. J Cogn Neurosci
16(9):1595-1604. https://doi.org/10.1162/0898929042568514

Fiedler L, Wostmann M, Graversen C, Brandmeyer A, Lunner T,
Obleser J (2017) Single-channel in-ear-EEG detects the focus of
auditory attention to concurrent tone streams and mixed speech.
J Neural Eng 14(3):036020. https://doi.org/10.1088/1741-2552/
aa66dd

Fiedler L, Wostmann M, Herbst SK, Obleser J (2019) Late cortical
tracking of ignored speech facilitates neural selectivity in
acoustically challenging conditions. Neurolmage 186:33—42.
https://doi.org/10.1016/j.neuroimage.2018.10.057

Fuglsang SA, Dau T, Hjortkjer J (2017) Noise-robust cortical
tracking of attended speech in real-world acoustic scenes.
Neurolmage  156:435-444.  https://doi.org/10.1016/j.neuro
image.2017.04.026

Fuglsang SA, Wong DDE, Hjortkjer J (2018) EEG and audio dataset
for auditory attention decoding (Version 1) [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.1199011

Fuglsang SA, Mircher-Rgrsted J, Dau T, Hjortkjer J (2020) Effects
of sensorineural hearing loss on cortical synchronization to
competing speech during selective attention. J Neurosci

@ Springer

40(12):2562-2572.
2020

Geirnaert S, Vandecappelle S, Alickovic E, de Cheveigné A, Lalor E,
Meyer BT, Miran S, Francart T, Bertrand A (2021) Electroen-
cephalography-based auditory attention decoding: toward neu-
rosteered hearing devices. IEEE Signal Process Mag
38(4):89-102. https://doi.org/10.1109/MSP.2021.3075932

Ghitza O (2012) On the role of theta-driven syllabic parsing in
decoding speech: intelligibility of speech with a manipulated
modulation spectrum. Front Psychol 3:238. https://doi.org/10.
3389/tpsyg.2012.00238

Gillis M, Vanthornhout J, Simon JZ, Francart T, Brodbeck C (2021)
Neural markers of speech comprehension: measuring EEG
tracking of linguistic speech representations, controlling the
speech acoustics. J Neurosci 41(50):10316-10329. https://doi.
org/10.1523/jneurosci.0812-21.2021

Giraud A-L, Poeppel D (2012) Cortical oscillations and speech
processing: emerging computational principles and operations.
Nat Neurosci 15(4):511-517. https://doi.org/10.1038/nn.3063

Haab L, Lehser C, Corona-Strauss FI, Bernarding C, Seidler H,
Hannemann R, Strauss DJ (2019) Implementation and long-term
evaluation of a hearing aid supported tinnitus treatment using
notched environmental sounds. IEEE J Transl Eng Health Med
7:1-9. https://doi.org/10.1109/jtehm.2019.2897570

Hambrook DA, Tata MS (2014) Theta-band phase tracking in the
two-talker problem. Brain Lang 135:52-56. https://doi.org/10.
1016/j.bandl.2014.05.003

Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M,
Freunberger R, Pecherstorfer T, Birbaumer N (2007) Alpha
phase reset contributes to the generation of ERPs. Cereb Cortex
17(1):1-8. https://doi.org/10.1093/cercor/bhj129

Haufe S, Meinecke F, Gorgen K, Dihne S, Haynes J-D, Blankertz B,
Biefmann F (2014) On the interpretation of weight vectors of
linear models in multivariate neuroimaging. Neurolmage
87:96-110. https://doi.org/10.1016/j.neuroimage.2013.10.067

Hausfeld L, Riecke L, Valente G, Formisano E (2018) Cortical
tracking of multiple streams outside the focus of attention in
naturalistic auditory scenes. Neurolmage 181:617-626. https://
doi.org/10.1016/j.neuroimage.2018.07.052

Hertrich I, Dietrich S, Trouvain J, Moos A, Ackermann H (2011)
Magnetic brain activity phase-locked to the envelope, the
syllable onsets, and the fundamental frequency of a perceived
speech signal. Psychophysiology 49(3):322-334. https://doi.org/
10.1111/5.1469-8986.2011.01314.x

Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical
signs of selective attention in the human brain. Science
182(4108):177-180.  https://doi.org/10.1126/science.182.4108.
177

Holdgraf CR, Rieger JW, Micheli C, Martin S, Knight RT,
Theunissen FE (2017) Encoding and decoding models in
cognitive electrophysiology. Front Syst Neurosci 11:61. https://
doi.org/10.3389/fnsys.2017.00061

Holmes AP, Blair RC, Watson JDG, Ford I (1996) Nonparametric
analysis of statistic images from functional mapping experi-
ments. J Cereb Blood Flow Metab 16(1):7-22. https://doi.org/10.
1097/00004647-199601000-00002

Howard MF, Poeppel D (2010) Discrimination of speech stimuli
based on neuronal response phase patterns depends on acoustics
but not comprehension. J Neurophysiol 104(5):2500-2511.
https://doi.org/10.1152/jn.00251.2010

Kaufman M, Zion-Golumbic E (2023) Listening to two speakers:
capacity and tradeoffs in neural speech tracking during selective
and distributed attention. Neurolmage 270:119984. https://doi.
org/10.1016/j.neuroimage.2023.119984

Kayser SJ, Ince RAA, Gross J, Kayser C (2015) Irregular speech rate
dissociates auditory cortical entrainment, evoked responses, and

https://doi.org/10.1523/jneurosci.1936-19.


https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1016/j.cub.2015.08.030
https://doi.org/10.1016/j.cub.2015.08.030
https://doi.org/10.3389/fnins.2022.872600
https://doi.org/10.3389/fnins.2022.872600
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.1152/jn.00297.2011
https://doi.org/10.1523/jneurosci.5297-12.2013
https://doi.org/10.1523/jneurosci.5297-12.2013
https://doi.org/10.3389/fnhum.2014.00311
https://doi.org/10.1016/j.neuroimage.2013.06.035
https://doi.org/10.1523/eneuro.0082-19.2019
https://doi.org/10.1523/eneuro.0082-19.2019
https://doi.org/10.1523/jneurosci.1828-18.2019
https://doi.org/10.1523/jneurosci.1828-18.2019
https://doi.org/10.1162/0898929042568514
https://doi.org/10.1088/1741-2552/aa66dd
https://doi.org/10.1088/1741-2552/aa66dd
https://doi.org/10.1016/j.neuroimage.2018.10.057
https://doi.org/10.1016/j.neuroimage.2017.04.026
https://doi.org/10.1016/j.neuroimage.2017.04.026
https://doi.org/10.5281/zenodo.1199011
https://doi.org/10.1523/jneurosci.1936-19.2020
https://doi.org/10.1523/jneurosci.1936-19.2020
https://doi.org/10.1109/MSP.2021.3075932
https://doi.org/10.3389/fpsyg.2012.00238
https://doi.org/10.3389/fpsyg.2012.00238
https://doi.org/10.1523/jneurosci.0812-21.2021
https://doi.org/10.1523/jneurosci.0812-21.2021
https://doi.org/10.1038/nn.3063
https://doi.org/10.1109/jtehm.2019.2897570
https://doi.org/10.1016/j.bandl.2014.05.003
https://doi.org/10.1016/j.bandl.2014.05.003
https://doi.org/10.1093/cercor/bhj129
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2018.07.052
https://doi.org/10.1016/j.neuroimage.2018.07.052
https://doi.org/10.1111/j.1469-8986.2011.01314.x
https://doi.org/10.1111/j.1469-8986.2011.01314.x
https://doi.org/10.1126/science.182.4108.177
https://doi.org/10.1126/science.182.4108.177
https://doi.org/10.3389/fnsys.2017.00061
https://doi.org/10.3389/fnsys.2017.00061
https://doi.org/10.1097/00004647-199601000-00002
https://doi.org/10.1097/00004647-199601000-00002
https://doi.org/10.1152/jn.00251.2010
https://doi.org/10.1016/j.neuroimage.2023.119984
https://doi.org/10.1016/j.neuroimage.2023.119984

Cognitive Neurodynamics (2025)19:110

Page 17 of 18 110

frontal alpha. J Neurosci 35(44):14691-14701. https://doi.org/
10.1523/jneurosci.2243-15.2015

Kerlin JR, Shahin AJ, Miller LM (2010) Attentional gain control of
ongoing cortical speech representations in a “Cocktail Party’’.
J Neurosci 30(2):620-628. https://doi.org/10.1523/jneurosci.
3631-09.2010

Klimesch W, Schack B, Schabus M, Doppelmayr M, Gruber W,
Sauseng P (2004) Phase-locked alpha and theta oscillations
generate the P1-N1 complex and are related to memory
performance. Cogn Brain Res 19(3):302-316. https://doi.org/
10.1016/j.cogbrainres.2003.11.016

Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE
(2005) An oscillatory hierarchy controlling neuronal excitability
and stimulus processing in the auditory cortex. J Neurophysiol
94(3):1904-1911. https://doi.org/10.1152/jn.00263.2005

Lakatos P, Musacchia G, O’Connel MN, Falchier AY, Javitt DC,
Schroeder CE (2013) The spectrotemporal filter mechanism of
auditory selective attention. Neuron 77(4):750-761. https://doi.
org/10.1016/j.neuron.2012.11.034

Lalor EC, Foxe JJ (2010) Neural responses to uninterrupted natural
speech can be extracted with precise temporal resolution. Eur J
Neurosci  31(1):189-193.  https://doi.org/10.1111/j.1460-9568.
2009.07055.x

Lalor EC, Power AJ, Reilly RB, Foxe JJ (2009) Resolving precise
temporal processing properties of the auditory system using
continuous stimuli. J Neurophysiol 102(1):349-359. https://doi.
org/10.1152/jn.90896.2008

Lesenfants D, Francart T (2020) The interplay of top-down focal
attention and the cortical tracking of speech. Sci Rep. https://doi.
org/10.1038/541598-020-63587-3

Lilly JM, Olhede SC (2009) Higher-order properties of analytic
wavelets. IEEE Trans Signal Process 57(1):146-160. https://doi.
org/10.1109/tsp.2008.2007607

Low YF, Strauss DJ (2011) A performance study of the wavelet-phase
stability (WPS) in auditory selective attention. Brain Res Bull
86(1-2):110-117. https://doi.org/10.1016/j.brainresbull.2011.06.
012

Luo H, Poeppel D (2007) Phase patterns of neuronal responses
reliably discriminate speech in human auditory cortex. Neuron
54(6):1001-1010. https://doi.org/10.1016/j.neuron.2007.06.004

Maddox RK, Lee AKC (2018) Auditory brainstem responses to

continuous natural speech in human listeners. eNeuro
5(1):ENEURO.0441-17.  https://doi.org/10.1523/eneuro.0441-
17.2018

Mai A, Serman M, Best S, Jensen NS, Foellmer J, Schroeer A,
Welsch C, Strauss DJ, Corona-Strauss FI (2022) Speech
Tracking in Complex Auditory Scenes with Differentiated In-
and Out-Field-Of-View Processing in Hearing Aids. In: 2022
44th Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC), pp 798-801. https://
doi.org/10.1109/embc48229.2022.9870826

Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J,
Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of
visual evoked responses. Science 295(5555):690-694. https://
doi.org/10.1126/science.1066168

Mikinen V, Tiitinen H, May P (2005) Auditory event-related
responses are generated independently of ongoing brain activity.
Neurolmage 24(4):961-968.  https://doi.org/10.1016/j.neuro
image.2004.10.020

Maris E, Oostenveld R (2007) Nonparametric statistical testing of
EEG- and MEG-data. J Neurosci Methods 164(1):177-190.
https://doi.org/10.1016/j.jneumeth.2007.03.024

Min B-K, Busch NA, Debener S, Kranczioch C, Hanslmayr S, Engel
AK, Herrmann CS (2007) The best of both worlds: Phase-reset
of human EEG alpha activity and additive power contribute to

ERP generation. Int J Psychophysiol 65(1):58-68. https://doi.
org/10.1016/j.ijpsycho.2007.03.002

Mishra J, Martinez A, Schroeder CE, Hillyard SA (2012) Spatial
attention boosts short-latency neural responses in human visual
cortex. Neurolmage 59(2):1968-1978. https://doi.org/10.1016/j.
neuroimage.2011.09.028

Muncke J, Kuruvila I, Hoppe U (2022) Prediction of Speech
Intelligibility by Means of EEG Responses to Sentences in
Noise. Front Neurosci 16:876421. https://doi.org/10.3389/fnins.
2022.876421

Murray MM, Brunet D, Michel CM (2008) Topographic ERP
analyses: a step-by-step tutorial review. Brain Topogr
20(4):249-264. https://doi.org/10.1007/s10548-008-0054-5

Nichols TE, Holmes AP (2001) Nonparametric permutation tests for
functional neuroimaging: a primer with examples. Hum Brain
Mapp 15(1):1-25. https://doi.org/10.1002/hbm.1058

Oganian Y, Chang EF (2019) A speech envelope landmark for
syllable encoding in human superior temporal gyrus. Sci Adv
5(11):eaay6279. https://doi.org/10.1126/sciadv.aay6279

Oganian Y, Kojima K, Breska A, Cai C, Findlay A, Chang E,
Nagarajan SS (2023) Phase alignment of low-frequency neural
activity to the amplitude envelope of speech reflects evoked
responses to acoustic edges, not oscillatory entrainment. J Neu-
rosci 43(21):3909-3921. https://doi.org/10.1523/jneurosci.1663-
22.2023

O’Sullivan AE, Lim CY, Lalor EC (2019) Look at me when I'm
talking to you: Selective attention at a multisensory cocktail
party can be decoded using stimulus reconstruction and alpha
power modulations. Eur J Neurosci 50(8):3282-3295. https://doi.
org/10.1111/ejn.14425

O’Sullivan JA, Power AJ, Mesgarani N, Rajaram S, Foxe JJ, Shinn-
Cunningham BG, Slaney M, Shamma SA, Lalor EC (2015)
Attentional selection in a cocktail party environment can be
decoded from single-trial EEG. Cereb Cortex 25(7):1697-1706.
https://doi.org/10.1093/cercor/bht355

Palmer JA, Makeig S, Kreutz-Delgado K, Rao BD (2008) Newton
method for the ICA mixture model. In: 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing,
pp 1805-1808. https://doi.org/10.1109/icassp.2008.4517982

Palmer JA, Kreutz-Delgado K, Makeig S (2012) AMICA: an adaptive
mixture of independent component analyzers with shared
components. Technical Report, Swartz Center for Computational
Neuroscience.

Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C,
Allerhand M (1992) Complex Sounds and Auditory Images. In:
Auditory Physiology and Perception, Proceedings of the 9th
International Symposium on Hearing, pp. 429-446. https://doi.
org/10.1016/b978-0-08-041847-6.50054-x

Picton TW (2010) Human auditory evoked potentials. Plural
Publishing, San Diego.

Picton TW, Hillyard SA (1974) Human auditory evoked potentials. II:
Effects of attention. Electroencephalogr Clin Neurophysiol
36:191-200. https://doi.org/10.1016/0013-4694(74)90156-4

Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human
auditory evoked potentials. I: Evaluation of components. Elec-
troencephalogr Clin Neurophysiol 36:179-190. https://doi.org/
10.1016/0013-4694(74)90155-2

Pion-Tonachini L, Kreutz-Delgado K, Makeig S (2019) ICLabel: an
automated electroencephalographic independent component
classifier, dataset, and website. Neurolmage 198:181-197.
https://doi.org/10.1016/j.neuroimage.2019.05.026

Poeppel D (2003) The analysis of speech in different temporal
integration windows: cerebral lateralization as ‘asymmetric
sampling in time’. Speech Commun 41(1):245-255. https://doi.
org/10.1016/s0167-6393(02)00107-3

@ Springer


https://doi.org/10.1523/jneurosci.2243-15.2015
https://doi.org/10.1523/jneurosci.2243-15.2015
https://doi.org/10.1523/jneurosci.3631-09.2010
https://doi.org/10.1523/jneurosci.3631-09.2010
https://doi.org/10.1016/j.cogbrainres.2003.11.016
https://doi.org/10.1016/j.cogbrainres.2003.11.016
https://doi.org/10.1152/jn.00263.2005
https://doi.org/10.1016/j.neuron.2012.11.034
https://doi.org/10.1016/j.neuron.2012.11.034
https://doi.org/10.1111/j.1460-9568.2009.07055.x
https://doi.org/10.1111/j.1460-9568.2009.07055.x
https://doi.org/10.1152/jn.90896.2008
https://doi.org/10.1152/jn.90896.2008
https://doi.org/10.1038/s41598-020-63587-3
https://doi.org/10.1038/s41598-020-63587-3
https://doi.org/10.1109/tsp.2008.2007607
https://doi.org/10.1109/tsp.2008.2007607
https://doi.org/10.1016/j.brainresbull.2011.06.012
https://doi.org/10.1016/j.brainresbull.2011.06.012
https://doi.org/10.1016/j.neuron.2007.06.004
https://doi.org/10.1523/eneuro.0441-17.2018
https://doi.org/10.1523/eneuro.0441-17.2018
https://doi.org/10.1109/embc48229.2022.9870826
https://doi.org/10.1109/embc48229.2022.9870826
https://doi.org/10.1126/science.1066168
https://doi.org/10.1126/science.1066168
https://doi.org/10.1016/j.neuroimage.2004.10.020
https://doi.org/10.1016/j.neuroimage.2004.10.020
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.ijpsycho.2007.03.002
https://doi.org/10.1016/j.ijpsycho.2007.03.002
https://doi.org/10.1016/j.neuroimage.2011.09.028
https://doi.org/10.1016/j.neuroimage.2011.09.028
https://doi.org/10.3389/fnins.2022.876421
https://doi.org/10.3389/fnins.2022.876421
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1126/sciadv.aay6279
https://doi.org/10.1523/jneurosci.1663-22.2023
https://doi.org/10.1523/jneurosci.1663-22.2023
https://doi.org/10.1111/ejn.14425
https://doi.org/10.1111/ejn.14425
https://doi.org/10.1093/cercor/bht355
https://doi.org/10.1109/icassp.2008.4517982
https://doi.org/10.1016/b978-0-08-041847-6.50054-x
https://doi.org/10.1016/b978-0-08-041847-6.50054-x
https://doi.org/10.1016/0013-4694(74)90156-4
https://doi.org/10.1016/0013-4694(74)90155-2
https://doi.org/10.1016/0013-4694(74)90155-2
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/s0167-6393(02)00107-3
https://doi.org/10.1016/s0167-6393(02)00107-3

110 Page 18 of 18

Cognitive Neurodynamics (2025)19:110

Power AJ, Foxe JJ, Forde E-J, Reilly RB, Lalor EC (2012) At what
time is the cocktail party? a late locus of selective attention to
natural speech. Eur J Neurosci 35(9):1497-1503. https://doi.org/
10.1111/j.1460-9568.2012.08060.x

Puschmann S, Steinkamp S, Gillich I, Mirkovic B, Debener S, Thiel
CM (2017) The right temporoparietal junction supports speech
tracking during selective listening: evidence from concurrent
EEG-fMRI. J Neurosci 37(47):11505-11516. https://doi.org/10.
1523/jneurosci.1007-17.2017

Reetzke R, Gnanateja GN, Chandrasekaran B (2021) Neural tracking
of the speech envelope is differentially modulated by attention
and language experience. Brain Lang 213:104891. https://doi.
org/10.1016/j.band1.2020.104891

Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R,
Doppelmayr M (2007) Are event-related potential components
generated by phase resetting of brain oscillations? a critical
discussion. Neuroscience 146(4):1435-1444. https://doi.org/10.
1016/j.neuroscience.2007.03.014

Sayers BM, Beagley HA, Henshall WR (1974) The mechanism of
auditory evoked EEG responses. Nature 247(5441):481-483.
https://doi.org/10.1038/247481a0

Schmitt R, Meyer M, Giroud N (2022) Better speech-in-noise
comprehension is associated with enhanced neural speech
tracking in older adults with hearing impairment. Cortex
151:133-146. https://doi.org/10.1016/j.cortex.2022.02.017

Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P
(2010) Dynamics of active sensing and perceptual selection.
Curr Opin Neurobiol 20(2):172-176. https://doi.org/10.1016/j.
conb.2010.02.010

Schifer PJ, Corona-Strauss FI, Hannemann R, Hillyard SA, Strauss
DJ (2018) Testing the limits of the stimulus reconstruction
approach: auditory attention decoding in a four-speaker free field
environment. Trends Hear 22:233121651881660. https://doi.org/
10.1177/2331216518816600

Slaney M (1993) An Efficient Implementation of the Patterson-
Holdsworth Auditory Filter Bank. Apple Technical Report #35,
Apple Computer, Inc.

Stevens SS (1955) The measurement of loudness. J Acoust Soc Am
27(5):815-829. https://doi.org/10.1121/1.1908048

Strauss DJ, Delb W, D’ Amelio R, Low YF, Falkai P (2008) Objective
quantification of the tinnitus decompensation by synchronization
measures of auditory evoked single sweeps. IEEE Trans Neural
Syst Rehabil Eng 16(1):74-81. https://doi.org/10.1109/tnsre.
2007.911086

Strauss DJ, Corona-Strauss FI, Trenado C, Bernarding C, Reith W,
Latzel M, Froehlich M (2010) Electrophysiological correlates of
listening effort: neurodynamical modeling and measurement.
Cogn Neurodyn 4(2):119-131. https://doi.org/10.1007/s11571-
010-9111-3

Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus
specificity of phase-locked and non-phase-locked 40 Hz visual
responses in human. J Neurosci 16(13):4240-4249. https://doi.
org/10.1523/jneurosci.16-13-04240.1996

Teoh ES, Ahmed F, Lalor EC (2022) Attention differentially affects
acoustic and phonetic feature encoding in a multispeaker
environment. J Neurosci 42(4):682—691. https://doi.org/10.
1523/jneurosci.1455-20.2021

Trenado C, Haab L, Strauss DJ (2009) Corticothalamic feedback
dynamics for neural correlates of auditory selective attention.

@ Springer

IEEE Trans Neural Syst Rehabil Eng 17(1):46-52. https://doi.
org/10.1109/tnsre.2008.2010469

van Diepen RM, Mazaheri A (2018) The caveats of observing inter-
trial phase-coherence in cognitive neuroscience. Sci Rep
8(1):2990. https://doi.org/10.1038/s41598-018-20423-z

Vander Ghinst M, Bourguignon M, de Beeck MO, Wens V, Marty B,
Hassid S, Choufani G, Jousméki V, Hari R, Bogaert PV,
Goldman S, Tiege XD (2016) Left superior temporal gyrus is
coupled to attended speech in a cocktail-party auditory scene.
J Neurosci 36(5):1596-1606. https://doi.org/10.1523/jneurosci.
1730-15.2016

Vanthornhout J, Decruy L, Wouters J, Simon JZ, Francart T (2018)
Speech intelligibility predicted from neural entrainment of the
speech envelope. J Assoc Res Otolaryngol 19(2):181-191.
https://doi.org/10.1007/s10162-018-0654-z

Verschueren E, Vanthornhout J, Francart T (2021) The effect of
stimulus intensity on neural envelope tracking. Hear Res
403:108175. https://doi.org/10.1016/j.heares.2021.108175

Weineck K, Wen OX, Henry MJ (2022) Neural synchronization is
strongest to the spectral flux of slow music and depends on
familiarity and beat salience. eLife 11:€75515. https://doi.org/10.
7554/elife. 75515

Wiener N (1964) Extrapolation, interpolation, and smoothing of
stationary time series. The MIT Press, Cambridge.

Wisniewski MG (2017) Indices of effortful listening can be mined
from existing electroencephalographic data. Ear Hear 38(1):e69—
e73. https://doi.org/10.1097/aud.0000000000000354

Wong DDE, Fuglsang SA, Hjortkjer J, Ceolini E, Slaney M, de
Cheveigné A (2018) A comparison of regularization methods in
forward and backward models for auditory attention decoding.
Front Neurosci 12:531. https://doi.org/10.3389/fnins.2018.00531

Yeung N, Bogacz R, Holroyd CB, Cohen JD (2004) Detection of
synchronized oscillations in the electroencephalogram: an eval-
uation of methods. Psychophysiology 41(6):822-832. https://doi.
org/10.1111/j.1469-8986.2004.00239.x

Zion-Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA,
McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ,
Poeppel D, Schroeder CE (2013) Mechanisms underlying
selective neuronal tracking of attended speech at a “Cocktail
Party’’. Neuron 77(5):980-991. https://doi.org/10.1016/j.neuron.
2012.12.037

Zoefel B, ten Oever S, Sack AT (2018) The involvement of
endogenous neural oscillations in the processing of rhythmic
input: more than a regular repetition of evoked neural responses.
Front Neurosci 12:95. https://doi.org/10.3389/fnins.2018.00095

Zuk NJ, Murphy JW, Reilly RB, Lalor EC (2021) Envelope
reconstruction of speech and music highlights stronger tracking
of speech at low frequencies. PLoS Comput Biol
17(9):e1009358. https://doi.org/10.1371/journal.pcbi.1009358

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.


https://doi.org/10.1111/j.1460-9568.2012.08060.x
https://doi.org/10.1111/j.1460-9568.2012.08060.x
https://doi.org/10.1523/jneurosci.1007-17.2017
https://doi.org/10.1523/jneurosci.1007-17.2017
https://doi.org/10.1016/j.bandl.2020.104891
https://doi.org/10.1016/j.bandl.2020.104891
https://doi.org/10.1016/j.neuroscience.2007.03.014
https://doi.org/10.1016/j.neuroscience.2007.03.014
https://doi.org/10.1038/247481a0
https://doi.org/10.1016/j.cortex.2022.02.017
https://doi.org/10.1016/j.conb.2010.02.010
https://doi.org/10.1016/j.conb.2010.02.010
https://doi.org/10.1177/2331216518816600
https://doi.org/10.1177/2331216518816600
https://doi.org/10.1121/1.1908048
https://doi.org/10.1109/tnsre.2007.911086
https://doi.org/10.1109/tnsre.2007.911086
https://doi.org/10.1007/s11571-010-9111-3
https://doi.org/10.1007/s11571-010-9111-3
https://doi.org/10.1523/jneurosci.16-13-04240.1996
https://doi.org/10.1523/jneurosci.16-13-04240.1996
https://doi.org/10.1523/jneurosci.1455-20.2021
https://doi.org/10.1523/jneurosci.1455-20.2021
https://doi.org/10.1109/tnsre.2008.2010469
https://doi.org/10.1109/tnsre.2008.2010469
https://doi.org/10.1038/s41598-018-20423-z
https://doi.org/10.1523/jneurosci.1730-15.2016
https://doi.org/10.1523/jneurosci.1730-15.2016
https://doi.org/10.1007/s10162-018-0654-z
https://doi.org/10.1016/j.heares.2021.108175
https://doi.org/10.7554/elife.75515
https://doi.org/10.7554/elife.75515
https://doi.org/10.1097/aud.0000000000000354
https://doi.org/10.3389/fnins.2018.00531
https://doi.org/10.1111/j.1469-8986.2004.00239.x
https://doi.org/10.1111/j.1469-8986.2004.00239.x
https://doi.org/10.1016/j.neuron.2012.12.037
https://doi.org/10.1016/j.neuron.2012.12.037
https://doi.org/10.3389/fnins.2018.00095
https://doi.org/10.1371/journal.pcbi.1009358

	Linear modeling of brain activity during selective attention to continuous speech: the critical role of the N1 effect in event-related potentials to acoustic edges
	Abstract
	Introduction
	Materials and methods
	Data availability statement
	Participants
	Auditory stimuli
	Experimental procedure
	Data acquisition
	EEG preprocessing
	Speech envelope processing
	Speech-evoked ERP extraction
	Speech-evoked ERP consistency analysis
	Encoding and decoding preprocessing
	Encoding/forward modeling
	Decoding/backward modeling
	Auditory Attention Decoding
	Statistical analyses

	Results
	Speech-evoked ERPs and comparison to TRFs
	Auditory attention decoding performance

	Discussion
	Listening to speech generates auditory ERPs that are modulated by attention
	Speech-evoked ERPs and TRFs represent the same brain response when obtained from the same speech representation
	SNR enhancement produced by selective auditory attention and the N1 attention effect improves TRF and SR modeling in multi-speaker scenarios
	Acoustic edges and the N1 component may contribute to modulations of theta activity in neural tracking of speech

	Acknowledgements
	References


