
RESEARCH ARTICLE

Linear modeling of brain activity during selective attention
to continuous speech: the critical role of the N1 effect in event-related
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Abstract
Recent studies have suggested a cortical representation of speech through superposition of evoked responses to acoustic

edges, an idea closely related to regression-based modeling approaches for studying cortical synchronization to speech via

magneto- or electroencephalography (M/EEG). However, it is still unclear to what extent speech-evoked event-related

potentials (ERPs) contribute to these techniques. The present study addressed this question by re-analyzing an EEG data set

obtained during a selective auditory attention task in which participants focused on one of two competing speakers.

Segmenting the EEG based on acoustic edges revealed ERPs with clear P1-N1-P2 complexes and enhanced N1 compo-

nents elicited by attended streams (N1 effect). Comparisons between ERPs and regression results revealed that temporal

response functions were highly similar spatiotemporally to the corresponding ERPs and that stimulus reconstruction

accuracies were driven by a consistent enhancement of ERPs including the N1 effect. These observations point to a direct

link between ERPs to acoustic edges in speech and the linear modeling techniques. In particular, the improvement in

signal-to-noise ratio produced by consistent attention-related enhancements of the N1 component was found to be critical

for achieving tracking of selectively attended speech, presumably facilitating the higher-order processing of the selected

stream.

Keywords Event-related potentials � N1 effect � Selective auditory attention � Speech tracking � Stimulus reconstruction �
Temporal response functions

Introduction

The investigation of selective auditory attention has a long

history in electroencephalographic (EEG) research. His-

torically, the underlying neural mechanisms have been

studied extensively over the last fifty years using event-

related potentials (ERPs) (see Picton 2010 for review). In

their seminal works, Hillyard and colleagues (Hillyard

et al. 1973; Picton and Hillyard 1974) observed that

selectively attending to a sequence of brief auditory stimuli

in a top-down manner causes an enhancement of the N1

component (having a typical latency of 80-120ms in the

auditory ERP compared to the response evoked by an

ignored sequence (N1 effect). Hillyard et al. (1973) origi-

nally interpreted the auditory N1 effect as a gain control

operation, such that it would result in an improved signal-

to-noise ratio (SNR) between cortical activity related to

relevant input compared to unrelated background activity.
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While the aforementioned traditional ERP paradigm

creates a rather artificial listening scenario, its principal

idea can be easily extended to a more naturalistic analog by

considering a dual-speaker cocktail party scenario in which

a listener may want to focus on one speaker and ignore the

other. From a neurophysiological point of view, attending

to a speaker’s voice produces modulation of brain activity

through synchronization of neural responses to speech

features, which can be generalized in a non-specific manner

as neural tracking (Zion-Golumbic et al. 2013; Di Liberto

et al. 2022). As tracking implies a continuous process, the

analysis methods would also require an adaptation to the

continuous nature of ongoing speech compared to transient

auditory stimuli with well-defined onsets and offsets. In

recent years, methods based on linear regression have been

rapidly growing in popularity to overcome this obstacle.

Supported by the provision of freely available data pro-

cessing toolboxes (Crosse et al. 2016; Brodbeck et al.

2023), these modeling approaches have led to remarkable

insights into the neural tracking of sensory inputs and have

been utilized in studies investigating, for example, multi-

modal interactions (e.g., Crosse et al. 2015), music per-

ception (e.g., Weineck et al. 2022), pitch processing (e.g.,

Brodbeck and Simon 2022), linguistic processing (e.g.,

Gillis et al. 2021), speech intelligibility (e.g., Vanthornhout

et al. 2018; Muncke et al. 2022), effects of hearing aid

processing strategies (e.g., Alickovic et al. 2020, 2021;

Mai et al. 2022), and selective attention (e.g., Schäfer et al.

2018; Teoh et al. 2022). In these regression-based frame-

works, continuous relations may be linearly modeled in

forward or backward direction. The former approach

results in a temporal response function (TRF) representing

a characteristic brain response optimized to map a specific

stimulus feature to an observed response (see Holdgraf

et al. 2017 for review). The latter method implements a

stimulus reconstruction (SR) procedure and generates a

decoder that can be applied to the observed response to

approximate the original stimulus feature. The similarity

between this estimation and the actual stimulus represen-

tation is then used to quantify the degree of neural tracking

(Holdgraf et al. 2017). Studies that have employed these

two approaches are reviewed below.

Although forward-modeled TRFs and classical ERPs

have mostly been analyzed separately, investigations of the

relation between them have revealed some distinct simi-

larities. Throughout the literature, modeled TRFs have

closely resembled the morphology of ERPs, as they con-

sisted of short oscillatory waveforms with clear compo-

nents (Lalor et al. 2009; Lalor and Foxe 2010; Power et al.

2012; Crosse et al. 2015; Di Liberto et al. 2015; Fiedler

et al. 2019; Drennan and Lalor 2019; Lesenfants and

Francart 2020; Muncke et al. 2022; Weineck et al. 2022).

Furthermore, studies of selective auditory attention have

consistently reported waveform modulations, mainly in the

N1 latency range, for TRFs fitted to attended and ignored

auditory streams, in line with the SNR-enhancing auditory

N1 effect (Ding and Simon 2012a, b; Fiedler et al.

2017, 2019; Kaufman and Zion-Golumbic 2023). Along

these lines, it was also shown that an increased SNR

between tracking- and non-tracking-related activity was

important for obtaining accurate TRF estimations (Crosse

et al. 2021). Because TRFs and the corresponding SR

decoders are mathematically related (Haufe et al. 2014), it

would be expected that the N1 effect and the resulting SNR

enhancement would translate to both forward and back-

ward modeling approaches. Indeed, a consistent outcome

of SR analyses in selective attention studies has been

reliably higher reconstruction accuracies for attended

compared to ignored auditory streams (O’Sullivan et al.

2015; Fuglsang et al. 2017; Puschmann et al. 2017;

Hausfeld et al. 2018; Schäfer et al. 2018; Wong et al.

2018; O’Sullivan et al. 2019; Alickovic et al. 2020; Teoh

et al. 2022; Mai et al. 2022).

An important finding that may provide a link between

continuous and event-related approaches to speech analysis

was recently made by Oganian et al. (2023). By segment-

ing ongoing magnetoencephalographic (MEG) data based

on acoustic edges in speech as represented by salient

intensity dynamics, they identified event-related activity

that closely resembled the P1-N1-P2 complex of the

auditory ERP. It seems reasonable to assume that a similar

effect may be present in EEG recordings and that the N1

component of the speech-evoked ERP in multi-speaker

scenarios would exhibit an N1 enhancement analogous to

that observed in auditory ERPs to simple tone pips or clicks

(Hillyard et al. 1973; Picton and Hillyard 1974). If so, a

consistent SNR improvement in favor of an attended

speaker compared to any distracting sources produced by

enhanced N1 components in speech-evoked ERPs to

acoustic edges may facilitate the neural tracking of the

attended speech. In addition, it should be noted that the

dominant spectral content of the N1 component is located

within the theta range (4-8Hz) (Klimesch et al. 2004;

Trenado et al. 2009; Low and Strauss 2011; Bernarding

et al. 2017; Corona-Strauss and Strauss 2017), a frequency

band known to be significantly involved in the neural

synchronization to speech (Luo and Poeppel 2007; Kerlin

et al. 2010; Giraud and Poeppel 2012; Di Liberto et al.

2015; Chalas et al. 2023).

Considering the evidence discussed above, we propose

that the observed results in regression-based analyses of

selective speech tracking may be attributed in large mea-

sure to the generation of speech-evoked ERPs including the

well-established N1 effect and the accompanying SNR

improvement. In order to address this question, we re-an-

alyzed a published EEG data set (Fuglsang et al. 2018) that
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was previously used to study speech tracking in deterio-

rated acoustic scenes (Fuglsang et al. 2017) and the effects

of different regularization techniques on forward and

backward model estimations (Wong et al. 2018). These

EEG data were obtained in a selective attention task in

which participants were cued on each trial (lasting 50s) to

attend to one of two concurrent speakers perceived at

azimuth angles of �60�. Our analyses were based on the

premise that speech-evoked ERPs may be extracted in

response to salient intensity dynamics of the speech

envelope, as has been demonstrated using MEG recordings

(Oganian et al. 2023). Given the close conceptual rela-

tionship between the proposed mechanism of repeated

ERPs to speech and the linear forward modeling approach,

we first hypothesized a direct correspondence between

speech-evoked ERPs and modeled TRFs, with similar

effects of selective auditory attention manifested through

the N1 effect. Our second hypothesis was that the consis-

tency of the attention effect on speech-evoked ERPs as

quantified by the stability of the instantaneous ERP phase

in the theta band, which could be interpreted as a measure

of sustained SNR enhancement, would correlate with the

decoding performance of the SR approach. These working

hypotheses are illustrated in schematic form in Fig. 1.

Indeed, the present results suggest a fundamental relation

between top-down modulation of ERPs to salient changes

in speech dynamics and linear regression analyses utilizing

the corresponding speech feature representation.

Materials and methods

Data availability statement

The analyzed data set was created within the Cognitive

Control of a Hearing Aid (COCOHA) project and is freely

and publicly available (Fuglsang et al. 2018). Sections2.5

Participants, Auditory stimuli, Experimental procedure,

and Data acquisition provide a summary of the informa-

tion given in the associated publications (Fuglsang et al.

2017, 2018; Wong et al. 2018). Starting with Section EEG

preprocessing, we report the additional processing that we

applied to the raw data set in its distributed format for the

present analyses.

Participants

While the original study comprised 29 participants (13

females, 4 left-handed) aged between 19 and 30 years with

normal hearing and no neurological disorder history as

stated via self-report (Fuglsang et al. 2017), the available

data set includes a subset of 18 subjects (Fuglsang et al.

Fig. 1 Summary of the experimental design and our working

hypotheses. Participants engaged in a dual-speaker selective auditory

attention task in which they had to focus on one of two competing

speakers while multi-channel EEG recordings were obtained. Con-

tinuous speech stimuli were presented via insert earphones, perceived

at �60� from the midline, and the to-be-attended location was

randomly assigned across 20 trials (each lasting 50s). Our first

hypothesis was that speech-evoked ERPs and modeled TRFs would

be highly correlated if both are obtained from the same stimulus

representation, including similar effects of selective auditory attention

with enhanced mean N1 amplitudes in responses elicited by the

attended speech. The second main hypothesis was that SR perfor-

mance would be better for the attended speech due to highly phase-

locked N1 responses elicited by acoustic edges, compared to the

inconsistent N1 responses with low SNR elicited by the ignored

speech. This would produce a more accurate neural representation of

the attended speech that could be interpreted to reflect a sustained

attention-driven SNR enhancement in favor of the attended stream.
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2018). Participants were required to sign an informed

consent form following the regulations of the Declaration

of Helsinki and were financially compensated for their

voluntary participation. The study design was approved by

the Science Ethics Committee for the Capital Region of

Denmark.

Auditory stimuli

Auditory stimuli were fictional stories in the Danish lan-

guage that were narrated by two professional speakers

(male and female) and segmented into consecutive epochs

of 50s. All speech recordings were performed in an ane-

choic chamber at the Technical University of Denmark,

and stimuli were provided with a sampling frequency of

44.1kHz. As the purpose of the original publication was to

investigate cortical tracking of speech in real-world sce-

narios (Fuglsang et al. 2017), stimuli were modified to

mimic different degrees of reverberation as well as dif-

ferent speaker positions. Different perceived speaker

positions were achieved by convolving the speech stimuli

with impulse responses derived from non-individualized

head-related transfer functions (HRTF) for azimuth angles

of �60�, an elevation of 0�, and a source distance of 2.4m.

HRTFs were obtained from simulated auditory scenes

(ODEON V13.02, Odeon A/S, Denmark) with either ane-

choic properties or low (� 189m3 room volume) and high

(� 39000m3 room volume) degrees of reverberation,

resulting in three acoustic conditions. The original exper-

iment consisted of 70 trials with 20 trials for each of these

three conditions and 10 trials of an additional anechoic

single-speaker scenario in which only the male speaker was

presented. Since the aim of the present study was to

investigate pure selective attention effects without any

influences from acoustic degradation, all further analyses

were based on the 20 anechoic dual-speaker trials. Speech

stimuli were presented via insert earphones (ER-2, Ety-

motic Research, Inc., USA) at an intensity level of

65dB SPL and normalized to have the same root-mean-

square amplitude in all dual-speaker scenarios.

Experimental procedure

Since the experimental procedure differed between two

participant groups, we refer to the original publication

(Fuglsang et al. 2017) for all details and only report the

procedure for the data set included here. In each experi-

mental trial, a dual-speaker scenario was created by

simultaneously presenting a single speech segment from

one speaker perceived at þ60� and the competitor at �60�.
Participants had to engage in a selective attention task by

attending to the speech stream they were cued to before

trial onset while focusing their gaze on a fixation cross and

reducing movements as much as possible. A subsequent

analysis of comprehension questions related to the content

of the target story, which were asked after each trial, val-

idated the subjects’ compliance (Fuglsang et al. 2017). To

avoid any undesired systematic biases due to the experi-

mental procedure, the order of the acoustic conditions, the

gender and position of the target stream as well as the

presentation order of the stories were randomized across

trials. All recordings took place in an electrically shielded

and soundproof room.

Data acquisition

EEG acquisition was coordinated by a biopotential

recording system (ActiveTwo, BioSemi, The Netherlands)

with a 64-channel cap configured according to the inter-

national 10-20 system. Additional electrophysiological

recordings included the signals from the left and right

mastoids as well as vertical and horizontal electrooculo-

grams for both eyes. All data were digitized at 512Hz along

with trigger signals indexing the onset and offset of each

trial within each participant’s measurement session.

EEG preprocessing

Data processing was implemented in MATLAB� (R2022a,

The MathWorks, Inc., USA), and all reported filtering

procedures were conducted via forward and backward

passes with 3rd order Butterworth filters providing 3dB

attenuation at the cutoff frequencies. Raw EEG data were

decimated to 256Hz and bandpass-filtered from 1-45Hz.

Noisy channels were removed based on their time courses

and power spectra in EEGLAB (V2022.0, Delorme and

Makeig 2004), and the remaining EEG channels were re-

referenced to the average of the mastoids. Following an

independent component analysis (ICA) decomposition of

the EEG data, artifactual components were removed after

visual inspection informed by the ICLabel plugin (Pion-

Tonachini et al. 2019), and the data were back-projected to

sensor-space. ICA decomposition was achieved via the

AMICA algorithm (Palmer et al. 2008, 2012), which has

been shown to outperform other blind source separation

techniques in maximizing near-dipolarity while minimiz-

ing mutual information of independent components

(Delorme et al. 2012). Previously discarded EEG channels

were finally interpolated using EEGLAB’s default routine

for spherical interpolation to obtain complete data sets, and

all channels were corrected for their DC-offset.
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Speech envelope processing

The subsequent EEG analyses carried out in our laboratory

were based on envelope representations of speech stimuli.

Envelope extraction was carried out following similar

procedures to those previously implemented by Oganian

and colleagues (Oganian and Chang 2019; Oganian et al.

2023), but was adapted to include signal transformations

commonly applied in electrophysiological speech tracking

analyses. Raw speech waveforms were decomposed by a

gammatone filter bank (Patterson et al. 1992; Slaney 1993)

into 128 subbands with center frequencies between 100Hz

and 8000Hz. Individually extracted narrowband Hilbert

envelopes were power-law-transformed (x0:3) to simulate

loudness perception within the auditory system (Stevens

1955) and subsequently averaged to obtain the broadband

envelope. To emphasize salient dynamics, broadband

envelopes were converted to speech onset envelopes via

lowpass filtering at 25Hz followed by differentiation and

halfwave rectification (Hambrook and Tata 2014). The

resulting train of gaussian-like pulses was expected to

correlate with acoustic edges in speech, and consequently

to provide appropriate markers for segmentation of ongo-

ing EEG into transient speech-evoked responses.

Speech-evoked ERP extraction

Speech-evoked ERPs were obtained for each participant,

EEG channel, and for the attended and the ignored con-

dition. Preprocessed EEG data were lowpass-filtered at

30Hz, and speech onset envelopes were decimated to

256Hz. To exclude any edge artifacts from filtering, the

first and last second of data in each trial were discarded.

The subsequent definition of EEG segmentation markers

was based on the statistical properties of intensity

dynamics in speech envelopes and extended the method of

Oganian et al. (2023) by introducing a segmentation

threshold. In particular, the corresponding 40 speech onset

envelopes were pooled within participants (2 envelopes per

trial and 20 trials in total), the global standard deviation

renv was calculated across all envelope amplitude values,

and a threshold was set at 2renv. All envelopes were sub-

sequently converted into trigger sequences by inserting

segmentation markers at all time instances at which the

envelopes changed from sub- to suprathreshold amplitudes

as illustrated in Fig. 2. ERPs were then extracted over the

interval �500ms to 2000ms relative to trigger onsets, and

data were pooled across all trials. Following a channel-wise

baseline correction by subtracting the mean amplitude

between �50ms and 0ms, sweeps in which any of the

channels exceeded absolute amplitudes of 100lV were

identified as artifacts and excluded from analysis. This

procedure yielded a minimum of 2614 responses for each

subject to both attended and ignored stimuli, corresponding

to approximately 2.7 triggers per second. Accordingly,

2614 artifact-free ERPs were randomly selected per con-

dition for each participant and submitted to further analy-

sis. Comparisons of ERPs and TRFs were carried out over

the time interval from �50ms to 500ms.

Speech-evoked ERP consistency analysis

To examine the consistency of speech-evoked ERPs,

instantaneous phase (IP) information was extracted from

analytic continuous wavelet transforms using generalized

Morse wavelets wc;b (Lilly and Olhede 2009). As opposed

to the commonly applied Morlet wavelet, Morse wavelets

provide perfect analyticity (i.e., no support at negative

frequencies); a desirable property for obtaining accurate

transform coefficients (Lilly and Olhede 2009). All selec-

ted sweeps were processed with wavelets from the dual-

parameter family w3;3:29 to maximize symmetry in time and

frequency with an almost minimal Heisenberg area and one

full oscillation cycle at the wavelet peak frequency within

the central energy window. ERPs were analyzed within the

time frame of �500ms to 2000ms with respect to the

speech onset envelope segmentation markers with 17

scales per octave within 2-32Hz. The extracted IP angles

were subsequently used to compute the wavelet phase

synchronization stability (WPSS; also called phase-locking

factor (Tallon-Baudry et al. 1996) or inter-trial phase-co-

herence (van Diepen and Mazaheri 2018)), which provides

a measure of morphologic waveform consistency across a

set of responses; this measure has been employed in dif-

ferent forms for various analyses within the auditory

domain including listening effort (Strauss et al. 2010;

Bernarding et al. 2013; Wisniewski 2017), selective

attention (Low and Strauss 2011; Fuglsang et al. 2020),

and tinnitus (de-)compensation (Strauss et al. 2008; Haab

et al. 2019). Specifically, the WPSS at a particular wavelet

scale and translation was quantified as the mean resultant

vector length of a set of unit vectors oriented according to

the corresponding IP angles at that time-frequency point

across all single sweeps, with values bounded between 0

and 1 for perfect desynchronization and synchronization,

respectively. The ERP WPSS matrices were computed for

each participant, EEG channel, and condition, and trimmed

to span the range from �50ms to 500ms.

Although similar methods have been applied to inves-

tigate the generative processes of ERPs, i.e., phase-reset vs.

additive mechanisms (Makeig et al. 2002; Mishra et al.

2012), it is questionable whether these methods provide

unequivocal evidence for one or the other process (Yeung

et al. 2004; Burgess 2012). Therefore, for the present
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purposes, the WPSS is considered only as a mathematical

tool to quantify response consistency without implying any

evidence regarding the generative processes of speech-

evoked ERPs.

Encoding and decoding preprocessing

Linear modeling procedures were carried out using the

same EEG data and speech onset envelopes that were used

for ERP segmentation (see filtering, decimation, and

trimming procedures in Section Speech-evoked ERP

extraction), and each EEG channel was additionally cen-

tered around 0lV. A subject-dependent normalization was

applied to the EEG data by dividing all amplitude values

by the global standard deviation across all channels and

trials. Decimated envelopes were normalized within par-

ticipants by dividing all amplitude values by the global

standard deviation across all conditions and trials.

Encoding/forward modeling

Neurophysiological forward models of speech tracking

interpret the neural response r at a single channel as the

sum of a convolution between a continuous speech feature

representation s and a TRF h which represents a channel-

specific stereotypical impulse response, and an unexplained

noise component �. By considering observations at integer

multiples of the sampling period t ¼ t1; t2; . . .; tT , multiple

data channels with indices n ¼ 1; 2; . . .;N, and a range of

time lags s between smin and smax relative to t with

s 2 R1�L, the forward model can be expressed as

rðt; nÞ ¼
XL

l¼1

sðt � slÞhðsl; nÞ þ �ðt; nÞ

which evaluates how the stimulus is encoded in the neural

activity at channel n and time t (Holdgraf et al. 2017).

Commonly, TRFs are identified via optimization proce-

dures to minimize the mean-squared-error between the

actual and predicted neural responses. Ignoring the con-

stant term of the linear model and introducing a compact

matrix notation with the multi-channel data set r 2 RT�N , a

matrix of concatenated, lagged versions of a single-channel

stimulus feature S 2 RT�L, the identity matrix I 2 RL�L,

and a regularization scalar k to penalize large filter weights

and thereby mitigate overfitting, the multi-channel solution

h 2 RL�N can be efficiently obtained via ridge regression,

h ¼ ðSTSþ kIÞ�1STr

which resembles a regularized version of an optimal

Wiener filter (Wiener 1964). Instead of estimating the

model parameters using ridge regression, the weights can

also be obtained using different regularization techniques,

e.g., low-rank approximation, shrinkage, Tikhonov regu-

larization, or elastic net regression (Wong et al. 2018).

Since these methods have been found to perform similarly

well (Wong et al. 2018) and the ridge regression is com-

monly chosen as the default (Crosse et al. 2016), it was

also used for all modeling procedures in the present study.

Encoding models were fitted in a subject-dependent man-

ner for each EEG channel including time lags from

�250ms to 700ms and incorporating data from all 20 trials

simultaneously. The regularization included 20 logarith-

mically spaced parameters k within a broad range of 10�6

to 106 similar to those used or proposed in previous works

(Crosse et al. 2016; Wong et al. 2018; Crosse et al. 2021).

Fig. 2 Extraction of

segmentation markers from

speech onset envelopes for

speech-evoked ERPs. Triggers

were inserted at each point in

time where a gaussian-like pulse

in the speech onset envelope

first exceeded a pre-defined

threshold. The threshold 2renv
was chosen as twice the

standard deviation across all

pooled envelope samples within

a participant
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However, instead of performing a cross-validation proce-

dure to optimize parameter selection, TRFs were separately

trained on all 20 values, and the resulting filter weights

were averaged. The incorporation of different levels of

smoothing may not have fully maximized modeling accu-

racies to the same extent as, for example, a group-level

parameter optimization (Alickovic et al. 2020, 2021), but

the main priority was put on a different aspect. In partic-

ular, the implemented approach stabilized the regulariza-

tion across participants and conditions to maximize

consistency while reducing impacts of single parameters

that could perform especially well or badly for some data

sets and keeping the complexity of TRF modeling to a

reasonable degree. Repeating the procedure for speech

onset envelopes of attended and ignored streams, this

resulted in a single model per participant, EEG channel,

and condition. TRFs were finally filtered with a 30Hz

lowpass to remove ringing artifacts and baseline-corrected

analogously to the ERPs. For the following illustrations

and comparisons to speech-evoked ERPs, the 200ms buf-

fers at both edges were excluded so as to have matching

epochs for TRFs and ERPs.

Decoding/backward modeling

Neurophysiological backward models of speech tracking

follow the same framework as the forward models but

include a change in the dependent and the independent

variables. These models aim to reconstruct an estimation ŝ

of an original stimulus feature using a spatiotemporal

decoding filter g, as given by

ŝðtÞ ¼
XN

n¼1

XL

l¼1

rðt þ sl; nÞgðsl; nÞ

which highlights the possibility of a multi-variate SR

approach via integration of information across multiple

channels as compared to the univariate forward modeling.

The ridge regression solution can again be obtained via the

reverse correlation technique

g ¼ ðRTRþ kIÞ�1RTs

but now includes a time-lagged version of the neural data

instead of the stimulus (Holdgraf et al. 2017). Decoding

models were fitted in a subject-dependent manner on a

training set of 19 trials including time lags from 0-500ms

and with the same regularization approach as for the

encoding models. The resulting 19 decoders were averaged

and applied to the EEG data of the held-back test trial to

obtain an estimation of the corresponding speech onset

envelope. Afterwards, SR accuracy was assessed by cal-

culating Pearson’s correlation r between the original and

the estimated envelope. The leave-one-out procedure was

repeated until each trial was labeled as test set once, and

models were separately trained and tested for attended and

ignored speech. Finally, SR accuracies within participants

were averaged across trials. The backward modeling pro-

cedure was conducted for each EEG channel individually

to allow channel-wise analysis of speech tracking.

Auditory Attention Decoding

The straightforward selective attention task of the present

study provides an excellent opportunity to compare dif-

ferent measures for their ability to decode auditory atten-

tion to speech as well as to investigate whether they exhibit

similar patterns across EEG channels. In selective speech

tracking studies, the effect of attention has commonly been

studied via the SR approach (see Introduction). According

to the hypotheses of this study (see Fig. 1), SR was

expected to be driven by a consistent generation of speech-

evoked ERPs, which would include an N1 response

enhanced by attention in line with the auditory N1 effect.

Translating this idea to the present analysis methods, this

should be reflected in a comparably stronger ERP WPSS

within the N1 time-frequency area for ERPs to attended

relative to ignored speech. It is known that the theta band, a

critical frequency range in speech tracking studies,

encompasses the dominant spectral content of the N1

component and exhibits WPSS maxima around N1 peak

latencies (see Introduction). Due to the nature of the

wavelet transform, it follows that this phenomenon would

be dominantly captured by analytic wavelets centered at

the N1 peak with center frequencies within the theta fre-

quency range. Assuming a minimum of one cycle of the

center frequency within the central wavelet energy window

to achieve a reasonable time-frequency trade-off as

implemented in the present case, this would result in

wavelet footprints of at least 125-250ms within 4-8Hz and

consequently, a bidirectional energy spread at the center

frequency of approximately 62.5-125ms around the N1

peak. This spreading prevents a perfect differentiation

between pure N1 contributions and influences from

neighboring components such as the P1 and P2. Therefore,

the present wavelet analysis considered information within

a broader time range based on the oscillatory behavior of

ERPs. While not making any assumptions about the

interdependence of adjacent ERP components, the P1-N1-

P2 complex can be interpreted as being composed of a P1-

N1 and a N1-P2 half-cycle with different degrees of theta

and alpha contributions. The P1-N1 complex consists

mainly of activity in the alpha band (Klimesch et al. 2004),

which is consistent with the speech-evoked ERPs to

attended speech at channel Cz shown in Fig. 4A, as the P1-

N1 half-cycle represents an oscillation of 9.1Hz. In con-

trast, the N1-P2 complex correlated with an oscillation of
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5.6Hz, well within the theta band. Due to its significant

involvement in cortical speech tracking and to obtain a

robust WPSS attention decoding measure, the ERP WPSS

maps were reduced to scalar values by averaging within the

theta band from 4-8Hz and in the time window of the N1-

P2 complex. Specifically, the time window was chosen

according to the peak latencies of ERPs to attended speech

at channel Cz with a 20ms buffer before and after the N1

and P2 peaks, respectively. With peak latencies of 136.7ms

(N1) and 226.6ms (P2), this resulted in a time frame of

116.7-246.6ms. In order to be consistent with this WPSS

methodology, attention decoding measures from ERPs and

TRFs were based on N1-P2 amplitudes. N1 and P2

amplitudes were identified as the mean voltage within time

windows with centers chosen again according to the peak

latencies of these components in response to attended

speech at channel Cz. This procedure resulted in time

windows 136.7�20ms and 226.6�20ms for ERPs and

125.0�20ms and 214.8�20ms for TRFs for the N1 and P2,

respectively (see Fig. 4A/C). N1-P2 amplitudes were

finally defined as the difference between P2 and N1

amplitudes. All decoding measures were computed for

each participant, EEG channel, and condition.

Statistical analyses

Statistical contrasts between the attended and the ignored

condition were performed with non-parametric permutation

tests (Holmes et al. 1996; Nichols and Holmes 2001; Maris

and Oostenveld 2007) for waveforms and ERP WPSS

matrices, and with paired t-tests for correlations and

attention decoding measures. All t-tests were conducted

one-tailed as it was expected that attention would have an

enhancing effect on all measures. Non-parametric permu-

tation tests were performed using within-subject averages

as the unit of observations, two-tailed paired t-tests as test

statistic, and 10000 permutations. A cluster-mass-based

approach was applied to correct for multiple comparisons

within channels, with pre-clustering and cluster-level

thresholds of 0.01 and 0.05, respectively.

Results

Speech-evoked ERPs and comparison to TRFs

A topographic display of the grand-average ERPs across

participants to attended and ignored speech is shown in

Fig. 3. While the majority of EEG channels showed similar

waveforms with distinct ERP deflections including the P1-

N1-P2 complex, the components were most pronounced at

frontocentral scalp locations. Focusing on the Cz channel

shown in Fig. 4A, the ERPs for both conditions exhibited

similar morphologies up to the P1 deflection between

75-85ms, with an earlier middle latency component at

about 30ms. The P1 component was followed by diverging

later responses, with substantially higher amplitude

deflections for ERPs to attended speech for several com-

ponents, including the N1 peaking at 136.7ms, P2 at

226.6ms, as well as a later negativity ([300ms). A non-

parametric permutation test confirmed that the effect of

attention on the N1 was significant (see Figs. 3, 4A).

Additionally, the scalp topographies at the N1 peak latency

shown in Fig. 4B demonstrated a broad frontocentral dis-

tribution for ERPs to attended speech and no apparent

pattern for the ignored condition.

The grand-average TRFs at channel Cz across partici-

pants resulting from forward modeling to attended and

ignored speech are shown in Fig. 4C. Like the corre-

sponding ERPs shown in Fig. 4A, waveforms for both

conditions initially followed a similar course with an ear-

lier component at around 20ms and a P1 between 65-75ms.

Again, the N1-P2 complex was noticeably more pro-

nounced in the TRFs to attended speech but exhibited

slightly earlier peak latencies than their ERP equivalents,

with N1 peaking at 125.0ms and P2 at 214.8ms. Never-

theless, the TRF topographies at the N1 peak latency for

attended speech shown in Fig. 4D were nearly identical to

the corresponding ERP topographies, presenting a distinct

frontocentral distribution for the attended and no apparent

pattern for the ignored condition. A non-parametric per-

mutation test again indicated a prolonged significant effect

of attention around the N1 peak latency in the TRFs.

To quantify the similarity between ERPs and TRFs (see

working hypothesis 1 in Fig. 1), two types of correlation

analyses were carried out. Since TRF peaks consistently

preceded ERP peaks, a cross-correlation analysis was

conducted across participants which resulted in an overall

best-fit lag of 4 samples (equal to 15.6ms). After correcting

TRFs for this time shift, the time-dependent similarity

between the ERP and TRF topographies was assessed using

the spatial correlation r2D, which can be interpreted anal-

ogously to Pearson’s correlation r (i.e., r2D ¼ �1 for per-

fectly inverted topographies and r2D ¼ 1 for perfectly

identical topographies) (Murray et al. 2008). Topographic

correlations were computed for each participant and both

conditions from averaged waveforms in a sample-wise

manner over �50ms to 500ms. The grand-averages across

participants of the resulting waveforms are presented in

Fig. 4E, which shows overall moderate to high correlations

and higher post-trigger similarity between the topographies

of ERPs and TRFs to attended speech with a mean corre-

lation of r2D ¼ 0:78 compared to r2D ¼ 0:60 for ignored

speech. The maximum grand-average topographic corre-

lation of r2D ¼ 0:89 was observed at 136.7ms, corre-

sponding to the ERP N1 peak latency for the attended
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condition. The significance of this observation was vali-

dated by a non-parametric permutation test, which identi-

fied a latency range centered at 144.5ms as having

significantly higher correlations for responses to attended

compared to ignored speech, together with earlier as well

as later effects that will not be pursued further.

The second correlation analysis tested the ERP-TRF

waveform similarity at each individual scalp site after time-

lag correction by calculating Pearson’s correlation r

between the grand-average waveforms across participants

over the interval �50ms to 500ms. The results are depicted

in Fig. 4F. Overall, correlations tended to be moderate to

high at posterior scalp sites and highest at frontocentral

sites. While all correlations were significant in themselves

(p\0:001) which provided statistical evidence in favor of

working hypothesis 1 (see Fig. 1), there was a significant

difference (t(63) = 14, p\0:001), with higher correlations

between ERPs and TRFs across the scalp to attended (r =

0.88�0.06; M�SD across channels) relative to ignored

speech (r = 0.81�0.08; M�SD across channels).

Auditory attention decoding performance

Auditory attention decoding performance was tested for

ERP and TRF N1-P2 amplitudes, SR accuracy, and ERP

WPSS averaged within the N1-P2 window across the theta

band. Prior to averaging, the WPSS was computed for all

frequencies from 2-32Hz and tested for group-level effects

of attention at channel Cz. Indeed, the grand-average

WPSS time-frequency plots across subjects shown in Fig. 5

show a strong phase consistency in the theta range for

ERPs to attended but not to ignored speech, which is fur-

ther emphasized in the difference plot. A non-parametric

permutation test confirmed the statistical significance of

this effect, which extended approximately across the first

250ms of the ERPs and ended shortly after the P2 peak of

the grand-average ERP to attended speech. This analysis

demonstrates that attending to a target stream led to a more

consistent response waveform within the theta band with

maximum consistency around the N1 peak latency of the

attended condition.

The channel-wise t-statistics at the group-level for all

attention decoding measures are summarized in Fig. 6 and

reveal two key findings. First, all measures presented a

strong separation between the attended and ignored condi-

tions at the vast majority of channels with a strong

enhancing effect of attention on all measures and overall

highly significant mean t-statistics (ERP N1-P2 amplitude:

4.3�2.4, TRF N1-P2 amplitude: 7.8�4.0, ERP WPSS:

4.3�1.6, SR accuracy: 4.8�1.6; M�SD across channels).

Fig. 3 Topographic overview of speech-evoked ERPs. Grand-average

ERPs across all participants to attended and ignored speech are

represented by solid blue and orange lines, respectively. Grey

shadings indicate periods with significant differences between

conditions as determined by a non-parametric permutation test. The

majority of channels show similar ERP morphologies with compo-

nents especially pronounced over frontocentral scalp regions. The

principal effect of attention was a substantial amplitude increase in

the N1 component.
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Fig. 4 Comparison between speech-evoked ERPs and TRFs resulting

from forward modeling. Grand-average ERPs (A) and TRFs

(C) across all participants at channel Cz to attended and ignored

speech are represented by solid blue and orange lines, respectively.

Colored shadings indicate the interquartile range across participants.

Grey shadings highlight periods during which a non-parametric

permutation test revealed significant differences between conditions.

ERPs as well as TRFs exhibited a significant N1 effect with greater

amplitudes in responses to attended speech. The corresponding N1

topographies of the ERPs (B) and TRFs (D) at their peak latencies

(136.7ms and 125.0ms, respectively) both demonstrate a frontocentral

distribution for responses to attended speech and an absence of any

apparent spatial pattern for ignored speech. A spatial correlation

analysis between corresponding ERPs and lag-corrected TRFs (E;
layout identical to panels A and C) revealed that the topographies

overall showed high similarities for both conditions. However, there

was a significantly greater topographic correlation between ERPs and

TRFs to attended speech around the N1 peak latency as well as during

earlier and later time intervals that were not analyzed further.

Correlations between grand-average ERPs and lag-corrected TRF

waveforms at individual scalp sites (F) revealed that the similarity

across channels was significantly higher between ERPs and TRFs to

attended versus ignored speech.
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Second, and especially important with regard to the present

working hypotheses, the single-channel analyses revealed

pair-wise similarities between the topographic patterns of

the ERP and TRF N1-P2 amplitude t-statistics on the one

hand, and the ERP WPSS and SR accuracy t-statistics on the

other. The t-statistic topographies for ERP and TRF N1-P2

amplitudes exhibited global maxima at midline frontocentral

channels. In contrast, while the maps for SR accuracy and

ERP WPSS also showed higher values over frontocentral

areas, they presented lateralized distributions at frontal and

frontotemporal electrodes with global maxima over the right

hemisphere (electrode site F6 for ERP WPSS and FT8 for

SR accuracy). A topographic correlation analysis validated

the strong similarity between the t-statistic maps of SR

accuracy and ERP WPSS (r2D = 0.89, p\0:001) as well as

between the maps of ERP and TRF N1-P2 amplitude (r2D =

0.95, p\0:001), thereby providing strong statistical evi-

dence in favor of working hypothesis 2 (see Fig. 1).

Discussion

Based on the assumptions that critical speech landmarks

evoke ERPs and selective auditory attention enhances the

N1 component, the main objective of the present work was

to gain insight into how these ERP modulations drive

selective speech tracking in multi-speaker environments.

To this end, speech-evoked ERPs to acoustic edges were

extracted from ongoing EEG recorded during a dual-

speaker selective attention task, and their relation to linear

modeling techniques commonly applied to analyze the

neural representation of speech was analyzed in several

different ways. Taken together, these analyses revealed

three key observations: First, ERPs elicited by acoustic

edges in speech were strongly modulated by attention, with

larger N1 components to attended compared to ignored

streams. Second, forward modeling produced TRF wave-

forms that were remarkably accurate approximations of

speech-evoked ERPs and showed equivalent attention

Fig. 5 Grand-average WPSS

time-frequency plots across

subjects at channel Cz for ERPs

to attended (top) and ignored

(middle) speech as well as the

corresponding difference plot

(bottom). Grey dashed lines

represent the grand-average

speech-evoked ERPs across

subjects (top and middle) and

their difference wave (bottom),

all centered around 0lV with

identical scaling. White outlines

delimit time-frequency areas for

which a non-parametric

permutation test indicated

significant differences between

conditions. The maps show that

the ERP waveform within the

theta range was significantly

more consistent across single

sweeps when speech was

attended. This attention effect

extended approximately across

the first 250ms of the ERPs,

with the global maximum being

precisely aligned with the N1

peak latency of the attended

condition.
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effects. Lastly, SR backward modeling revealed effects of

attention that were in line with those based on the wave-

form consistency of ERPs within a time-frequency area

corresponding to the N1 component as quantified by phase-

locking across sweeps. These results are fully consistent

with our working hypotheses (see Fig. 1) and suggest that

the repeated elicitation of the N1 effect through sustained

allocation of attention plays a critical role in the tracking of

selectively attended speech.

Listening to speech generates auditory ERPs
that are modulated by attention

Segmenting the ongoing EEG based on triggers extracted

from speech dynamics revealed auditory ERPs with dis-

tinct components including a clear P1-N1-P2 complex,

especially in responses to attended streams. Since the

segmentation markers were derived from suprathreshold

events in speech onset envelopes, this suggests a bottom-up

mechanism in the generation of speech-evoked ERPs,

which are triggered by physical properties inherent to

speech. However, the significant N1 amplitude difference

between averaged ERPs to attended and ignored speech

also implicates endogenously driven top-down attention

mechanisms that modulate the ERP generation process.

Salient intensity modulations in speech may be considered

as acoustic edges, i.e., impulse-like events similar to clicks

or tone pips that are traditionally used to evoke auditory

ERPs. In their seminal work, Hillyard and colleagues

(Hillyard et al. 1973; Picton and Hillyard 1974) demon-

strated that the effects of attention on auditory ERPs to

clicks and tones are manifested in the N1 effect; that is,

selectively attending a stream of sounds while ignoring

another leads to an enhanced N1 component in response to

the former. The present results emphasize the importance

and generality of this mechanism by suggesting that the

same N1 effect holds for speech-evoked ERPs if extracted

from appropriate speech representations. Similar atten-

tional modulations may also be expected during selective

listening paradigms using different types of continuous

auditory stimuli such as music or environmental sounds,

which would be a fruitful area for future research.

Speech-evoked ERPs and TRFs represent
the same brain response when obtained
from the same speech representation

In line with our first working hypothesis, the present results

confirm that if forward modeling of speech tracking is

conducted with the same speech representation used as

Fig. 6 Topographic comparison

of attention decoding

performances between N1-P2

amplitudes extracted from

speech-evoked ERPs and TRFs,

ERP WPSS, and SR accuracies.

Note that the topographic plots

are scaled individually to

highlight the patterns across the

scalp. These channel-wise

analyses at the group-level

yielded t-statistic topographies

with high correlations between

maps for ERP and TRF N1-P2

amplitudes as well as between

maps for ERP WPSS and SR

accuracy.
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regressor as that used for ERP trigger extraction, speech-

evoked ERPs and resulting TRFs represent the same brain

response. While there are some minor discrepancies

between the observed ERPs and the derived TRFs, these

can be attributed to two main factors. First, TRFs consis-

tently preceded ERPs by a best-fit lag of 15.6ms. This

discrepancy appears to be a consequence of the imple-

mented ERP extraction method, which was based on sta-

tistical properties of speech onset envelopes, namely the

sample standard deviation. In comparison to the linear

regression approach that essentially performs a precise

deconvolution, trigger extraction for ERPs relied on an

empirically chosen threshold, which may have influenced

the resulting ERP onset and peak latencies. By adjusting

the envelope threshold accordingly, ERP and TRF com-

ponents could in principle be aligned accurately. However,

since the focus here was on response morphologies rather

than absolute latencies, and the chosen parameters yielded

strong ERP-TRF similarities, the standard threshold of

twice the standard deviation was chosen as the default.

Second, ERP and TRF waveforms and between-condition

amplitude differences varied slightly outside of the P1-N1-

P2 time interval. While this could be influenced by the

envelope threshold as well, the regularization applied

during ridge regression may be the dominant factor. Since

regularization constrains TRF weights by penalizing large

coefficients to prevent overfitting, the resulting TRFs may

lose details and become more generalized.

The one-to-one correspondence between speech-

evoked ERPs and the modeled TRFs was strongly con-

firmed by the correlation analyses, which provided

objective evidence for highly similar topographies and

waveforms across channels. In a similar vein, comparable

observations have previously been made when comparing

standard click-evoked auditory brainstem responses to

their TRF representations modeled to speech (Maddox

and Lee 2018) and tone-evoked cortical auditory ERPs to

their TRF counterparts (Reetzke et al. 2021). By

demonstrating a direct link between ERPs and TRFs, the

present findings provide strong support for the hypothesis

that TRFs may be interpreted as reflecting true brain

responses to various kinds of continuous auditory stimu-

lation (Ding and Simon 2013; Crosse et al. 2015; Di

Liberto et al. 2015; Broderick et al. 2018; Verschueren

et al. 2021; Kaufman and Zion-Golumbic 2023). As an

alternative to the forward modeling approach, the impulse

response of the brain to a continuous stimulus can also be

obtained by performing a cross-correlation between

M/EEG and stimulus and the resulting cross-correlation

function closely resembles the corresponding TRF

(Crosse et al. 2016). Therefore, the same principle also

appears to hold for cross-correlation analyses that have

studied cortical responses to speech (Hertrich et al. 2011;

Hambrook and Tata 2014; Schmitt et al. 2022).

SNR enhancement produced by selective
auditory attention and the N1 attention effect
improves TRF and SR modeling in multi-speaker
scenarios

The importance of SNR improvement in favor of cortical

activity related to selectively attended versus ignored

speech, largely due to the N1 effect, becomes apparent in

many analyses, including TRF as well as SR modeling.

Overall, TRF modeling produced highly accurate esti-

mations of speech-evoked ERPs as confirmed by the ERP-

TRF waveform correlations, with highest similarities at

frontocentral channels and a symmetrical pattern across

hemispheres, which corresponds to the typical frontocen-

tral topographies of late auditory ERP components

including the N1 (Picton et al. 1974). The ERP-TRF

waveform correlation analysis revealed that TRFs repre-

sented significantly better estimations of ERPs for attended

compared to ignored speech, emphasizing that selective

attention had enhanced the SNR. This was also supported

by the time-resolved topographic ERP-TRF correlation

analysis, which revealed more similar topographies for

responses to attended speech and reached significance

during several time windows, most prominently in the N1

interval. Similar conclusions can also be drawn from the

TRF and ERP attention decoding analysis, which con-

trasted N1-P2 amplitudes between conditions of attention.

The comparison across channels revealed highly correlated

topographies for group-level t-statistics which provides

further evidence for a direct ERP-TRF correspondence.

Importantly, best separability between conditions was

found at anterior regions where the N1 component was

largest; the distributions showed t-statistic maxima at

frontocentral channels and minima towards posterior

channels. Despite the similar topographies, the mean t-

statistic across channels for TRFs was noticeably larger

than for ERPs (7.8 vs. 4.3). This potentially demonstrates

that the positive effect of consistently enhanced ERP

components on SNR is amplified during TRF estimation,

perhaps because ERPs with clear and consistent deflections

may be modeled especially well and ERPs with subdued

components proportionally worse, which in turn would

increase the separability between TRFs to attended and

ignored speech.

Consistent with our second working hypothesis, the

attention decoding t-statistic scalp maps for the SR accu-

racy and the waveform consistency (WPSS) of speech-

evoked ERP N1-P2 responses in the theta band yielded

highly similar topographies. Although decoding perfor-

mances were again biased towards anterior scalp areas, as
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observed for N1-P2 amplitudes in ERPs and TRFs, their

overall scalp distribution differed considerably. In contrast

to the frontocentral distribution of the N1-P2 amplitudes,

the separability between conditions for the SR accuracy

and the N1-P2 phase consistency was greatest over the

anterior region of the temporal lobe in the right hemi-

sphere. This distribution is congruent with the asymmetric

sampling in time (AST) hypothesis (Poeppel 2003), which

suggests a preferred sampling of speech in time windows

corresponding to gamma periods in the left hemisphere

(� 20-40ms, phonetic information) and windows matching

theta cycles in the right hemisphere (� 150-250ms, syl-

labic information). In accord with this proposal, previous

research has identified a general bias for the right hemi-

sphere to be dominant in the synchronization of M/EEG

theta band activity to spoken sentences (Luo and Poeppel

2007; Ding and Simon 2012b), which has been similarly

demonstrated in studies on selective attention to speech

(Vander Ghinst et al. 2016; Puschmann et al. 2017), sound

envelope tracking (Abrams et al. 2008; Chalas et al. 2022),

and attention decoding (Kerlin et al. 2010). Overall, the

present findings suggest that the consistent generation of an

enhanced N1 component in auditory ERPs to acoustic

edges in selectively attended speech improves the SNR

between goal-related and background cortical activity. By

doing so, it possibly enhances the accuracy of SR modeling

and leads to better attention decoding performance in

multi-speaker scenarios. These effects are also manifested

in the phase consistency of EEG theta band activity, as

discussed below.

Acoustic edges and the N1 component may
contribute to modulations of theta activity
in neural tracking of speech

There are two main competing theories regarding how

brain activity synchronizes to auditory input; the first

involves an active alignment of ongoing neural oscillations

to the stimuli, and the second a superposition of additional

neural activity evoked by the stimuli (Aiken and Picton

2008; Lakatos et al. 2013; Ding and Simon 2014; Kayser

et al. 2015; Zoefel et al. 2018; Zuk et al. 2021). The for-

mer proposal suggests that low frequency neural oscilla-

tions phase-align to auditory stimuli in order to enhance

stimulus processing through optimized excitability (Laka-

tos et al. 2005; Luo and Poeppel 2007; Schroeder et al.

2010; Lakatos et al. 2013; Doelling et al. 2014), a mech-

anism that has been proposed to rely on a syllable-based

theta alignment when considering speech (Luo and Poeppel

2007). In contrast, the syllable-theta correspondence might

also be established by the latter mechanism, with the

addition of evoked N1 activity in the theta band. Theta

speech tracking has been related to speech clarity (Etard

and Reichenbach 2019) and intelligibility (Luo and Poep-

pel 2007; Howard and Poeppel 2010; Ghitza 2012). Simi-

larly, two speech features that have been found to be

important for high intelligibility are syllabic information

(Ghitza 2012) and acoustic edges (Howard and Poeppel

2010), which are proposed to be correlated while they

exhibit similar occurence rates within speech that approx-

imately match the theta band (Ding and Simon 2014;

Oganian et al. 2023); this observation also accords with the

AST hypothesis (Poeppel 2003). In the present study, an

EEG segmentation method based on acoustic edges in

speech (i.e., potentially syllabic information) revealed the

presence of speech-evoked ERPs similar to those reported

in recent studies (Oganian et al. 2023) including consistent

P1-N1-P2 complexes. Importantly, the manifestation of the

N1 component was correlated with phase-locked theta

activity (see also Klimesch et al. 2004; Trenado et al.

2009; Low and Strauss 2011; Corona-Strauss and Strauss

2017), which resulted in an enhanced representation of

speech within the theta band, closing the loop and allowing

an interpretation of theta speech tracking in terms of an

additive evoked response mechanism.

It is important to note that any definitive statement

regarding the extent to which the two proposed mecha-

nisms discussed above contribute to the neural synchro-

nization to speech would require definite knowledge about

the generative origin of ERPs (Sayers et al. 1974; Makeig

et al. 2002; Fell et al. 2004; Mäkinen et al. 2005; David

et al. 2006; Hanslmayr et al. 2007; Min et al. 2007; Sau-

seng et al. 2007; Mishra et al. 2012; Burgess 2012); a

question that is not within the scope of this work. However,

the present findings provide explanations for some of the

effects that have been observed for theta speech tracking

that may be based on the typical behavior of ERPs, e.g., for

the relation of theta activity to speech intelligibility. Pre-

vious studies have found that modifying speech to be

unintelligible by means of speech-noise chimeras (Luo and

Poeppel 2007) or an increase of background noise floor

(Etard and Reichenbach 2019) impairs speech tracking

through theta activity. These modifications can be thought

of as a masking of acoustic edges and syllabic information,

which has been shown to diminish the signal quality of

auditory ERPs to syllables by smearing component

amplitudes and latencies (Billings et al. 2013). Translating

this effect to the aforementioned studies on speech track-

ing, the diminished speech-evoked ERPs due to masking

would consequently impair the cortical representation of

speech by effectively reducing the SNR with respect to

background activity. Due to the absence or smearing of P1-

N1-P2 complexes, this effect would additionally express

itself through the collapse of theta speech tracking.

In summary, it is clear that bottom-up, stimulus-driven

mechanisms have to be complemented by top-down
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attentional processes to achieve successful neural tracking

of speech. Focusing on the situation of selectively attended

speech in a multi-speaker environment, the present findings

indicate that the auditory N1 effect (Hillyard et al. 1973;

Picton and Hillyard 1974) improves the SNR in favor of

the target speech compared to its competitors. The gener-

ation of ERPs with enhanced N1 components could then

provide reliable cues for higher-order cortical networks to

lock on to attended information, ultimately facilitating the

tracking and processing of the desired speech stream.

These observations and the underlying methods can be

directly translated to several use cases. With respect to

scientific research that investigates how the brain syn-

chronizes to selectively attended speech, the present work

suggests that standard ERP processing techniques such as

the analysis of phase stability (WPSS) provide valuable

alternatives to the commonly applied TRF and SR

approaches. Comparing the results of different analysis

methods could thereby help to evaluate the robustness of

any observed effects or reveal additional similarities as

well as potential differences between the outcomes of tra-

ditional ERP and linear modeling approaches. From a

technological perspective, the emergence of smart tech-

nologies such as neuro-steered hearing aids (Geirnaert

et al. 2021) implies a need for stable attention decoding

strategies that can operate online while keeping the com-

putational cost low, for which the presented ERP amplitude

and phase analyses represent promising candidates. Addi-

tionally, the proposed strategies may also be integrated in

clinical settings where they could serve as rapid approaches

for evaluating patients’ attention and language compre-

hension in situations of comprehending natural speech. In

these scenarios, the absence of attention effects on N1

amplitude or phase stability could be related to deficits that

may be worth examining more thoroughly.
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Fiedler L, Wöstmann M, Herbst SK, Obleser J (2019) Late cortical

tracking of ignored speech facilitates neural selectivity in

acoustically challenging conditions. NeuroImage 186:33–42.

https://doi.org/10.1016/j.neuroimage.2018.10.057

Fuglsang SA, Dau T, Hjortkjær J (2017) Noise-robust cortical

tracking of attended speech in real-world acoustic scenes.

NeuroImage 156:435–444. https://doi.org/10.1016/j.neuro

image.2017.04.026

Fuglsang SA, Wong DDE, Hjortkjær J (2018) EEG and audio dataset

for auditory attention decoding (Version 1) [Data set]. Zenodo.

https://doi.org/10.5281/zenodo.1199011
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