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Abstract

Background/Objectives: Heart rate variability (HRV) has been widely investigated as
a predictor of disease and mortality across diverse patient populations; however, there
remains no consensus on the optimal set or combination of time and frequency domain nor
on nonlinear features for reliable prediction across clinical contexts. Given the relevance of
the COVID-19 pandemic and the unique clinical profiles of these patients, this retrospective
observational study explored the potential of HRV analysis for early prediction of in-
hospital mortality using ECG signals recorded during the initial moments of ICU admission
in COVID-19 patients. Methods: HRV indices were extracted from four ECG leads (I, II, III,
and aVF) using sliding windows of 2, 5, and 7 min across observation intervals of 15, 30, and
60 min. The raw data posed significant challenges in terms of structure, synchronization,
and signal quality; thus, from an original set of 381 records from 321 patients, after data
pre-processing steps, a final dataset of 82 patients was selected for analysis. To manage
data complexity and evaluate predictive performance, two feature selection methods, four
feature reduction techniques, and five classification models were applied to identify the
optimal approach. Results: Among the feature aggregation methods, compiling feature
means across patient windows (Method D) yielded the best results, particularly for longer
observation intervals (e.g., using LDA, the best AUC of 0.82 ± 0.13 was obtained with
Method D versus 0.63 ± 0.09 with Method C using 5 min windows). Linear Discriminant
Analysis (LDA) was the most consistent classification algorithm, demonstrating robust
performance across various time windows and further improvement with dimensionality
reduction. Although Gradient Boosting and Random Forest also achieved high AUCs
and F1-scores, their performance outcomes varied across time intervals. Conclusions:
These findings support the feasibility and clinical relevance of using short-term HRV
as a noninvasive, data-driven tool for early risk stratification in critical care, potentially
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guiding timely therapeutic decisions in high-risk ICU patients and thereby reducing in-
hospital mortality.

Keywords: HRV; mortality; ICU; COVID-19

1. Introduction
The autonomic nervous system (ANS) regulates different involuntary mechanisms

essential for maintaining internal homeostasis, including the function of organs, tissues,
and metabolic systems. It is divided into the sympathetic and parasympathetic systems,
which act in opposition. The sympathetic system prepares the body for action, activat-
ing the cardiovascular system and raising heart rate, cardiac output, contractility, and
blood pressure. Conversely, the parasympathetic system promotes rest and recovery by
decreasing these functions as a way to store energy [1]. Dysregulation of either branch is
associated with various diseases, with sympathetic overactivity notably contributing to
conditions such as hypertension, congestive heart failure, cardiac tachyarrhythmias, and
sudden cardiac death [1,2].

A way of assessing autonomic function is by analyzing heart rate variability (HRV),
which is the variation in time intervals between consecutive heartbeats using an electrocar-
diogram (ECG). HRV captures the complex, dynamic interplay between the heart and brain
through nonlinear autonomic processes, serving as a marker of neurocardiac regulation
and adaptability to different internal and external stimuli. As such, it is influenced by
factors such as blood pressure, gas exchange, vascular tone, and gastrointestinal activity [3].
Adequate HRV is synonymous with good adaptability, characterizing healthy individuals
with efficient compensatory mechanisms, whereas low HRV is often associated with abnor-
mal and insufficient adaptation of the autonomic nervous system. Therefore, changes in
HRV patterns can be used to assess patients’ health status [3].

Despite there still not being a consensus in the literature on the optimal set of features
or the most effective combination of parameters to quantify HRV—likely because all are cal-
culated from RR intervals and often show a significant degree of correlation—various kinds
of information can be used [4]. This includes time-domain, frequency-domain, and non-
linear measures, each offering distinct perspectives on autonomic function. Time-domain
indices quantify the variability in successive heartbeat intervals, reflecting fluctuations in
the duration of cardiac cycles. Their analysis relies on statistical methods, among which
the most used are calculated from RR intervals (Figure 1 in the ECG). The most common
are the standard deviation of normal RR intervals (SDNN), representing overall variability
within a given time window, and the root mean square of successive differences (RMSSD),
which captures short-term variability and is a marker of parasympathetic activity.

Frequency-domain parameters estimate power distribution across four main frequency
bands—ultra-low (ULF), very low (VLF), low (LF), and high frequency (HF)—although
other bands may be analyzed depending on recording duration. The ULF band (≤0.003 Hz)
reflects RR interval fluctuations over 5 min to 24 h; VLF (0.0033–0.04 Hz) comprises rhythms
with 25–300 s periods; LF (0.04–0.15 Hz) corresponds to 7–25 s cycles and is influenced by
respiration; and HF (0.15–0.40 Hz), or the respiratory band, is more strongly affected by
respiration. The LF/HF ratio is often used to estimate the balance between sympathetic
and parasympathetic nervous system activity under controlled conditions [3,5,6]. Finally,
nonlinear methods assess the unpredictability of a time series, reflecting the complexity of
HRV regulation, thereby needing a larger number of RR intervals. These methods have
been increasingly applied to predict the behavior of biological phenomena, proving to
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be strong mortality predictors. Among the most used nonlinear approaches are heart
rate asymmetry, heart rate fragmentation, and the Poincaré plot [7,8]. The NeuroKit2
library [9] provides a total of 91 HRV indices, including time-domain, frequency-domain,
and nonlinear measures. An overview of these parameters is presented in Table 1, with
detailed descriptions available in Supplementary Table S1.

Figure 1. Histogram of absolute frequencies, illustrating distribution of RR intervals in a 2 min space,
using the data from our study.

In this article, we focus our study on the use of HRV as a predictor of ICU mortal-
ity in COVID-19 patients. Prior research has demonstrated its potential in other critical
care contexts. For example, using five-minute Holter ECG segments from 55 patients,
Bishop et al. [10] focused on the frequency domain and found that reduced VLF power
was significantly associated with 30-day mortality (OR = 0.6, 95% confidence interval
(CI): 0.396–0.911, p = 0.016). Moridani et al. [11] reported that nonlinear recurrence quan-
tification analysis (RQA) parameters were more sensitive to physiological decline than
traditional HRV metrics like LF/HF and SD2/SD1 ratios, and significant changes in RQA
measures were observed even in episodes further from death. Liu et al. [12] focused on
a different approach, exploring measures of heart rate n-variability (HRnV) to predict
30-day hospital mortality in 66 septic patients, showing that HRnV-based models improved
predictive accuracy (AUC = 0.77, 95% CI: 0.70–0.84) compared to models using only vital
signs and conventional HRV. Indeed, many studies have already suggested the usefulness
of HRV measures in predicting outcomes in critically ill patients with different clinical
conditions. However, there is still limited information on how HRV relates specifically to
COVID-19 in the ICU, despite the severe impact of the disease during the pandemic [13,14].

Since viral infections can affect the ANS, it has been proposed that SARS-CoV-2 may
also be involved in ANS dysfunction. This is supported by observations of irregular heart
rhythms and blood pressure changes in patients with COVID-19 [15]. SARS-CoV-2 can acti-
vate the sympathetic nervous system and elicit an inflammatory response, with the vagus
nerve playing a central role in modulating this process. As a key neuroimmunomodulator,
the vagus nerve communicates peripheral inflammation to the brain and reflexively inhibits
it. Mol et al. [14] explored the prognostic value of HRV, hypothesizing that inadequate
vagal inhibition of the immune response may influence the risk of adverse outcomes—an
effect measurable through HRV analysis. Their study analyzed 10-second, single 12-lead
ECG recordings from 271 patients at hospital admission, using SDNN to predict 3-week
survival and ICU admission. The results showed that lower HRV was predictive of ICU



J. Clin. Med. 2025, 14, 5312 4 of 22

admission within the first week (HR = 0.51, 95% CI: 0.29–0.90), highlighting its potential
as a noninvasive marker for risk stratification in COVID-19 patients. Their findings also
emphasised the relationship between reduced HRV and vagus nerve dysfunction, which
may contribute to the hyperinflammation and ARDS observed in more severe COVID-19
cases. Komaenthammasophon et al. further supported this connection by linking de-
creased HRV to elevated inflammatory markers and higher mortality in 65 ICU COVID-19
patients. Among the biomarkers, high-sensitivity C-reactive protein showed the most
significant increase in association with lower HRV, while reduced SDNN values (the only
HRV parameter that was calculated) were most strongly correlated with mortality [13].

Table 1. Time-domain, frequency-domain, and nonlinear HRV features.

Time Domain Frequency Domain Nonlinear

MeanNN LF SD1 DFA alpha1 Width

SDNN HF SD2 DFA alpha1 Peak

RMSSD VHF SD1/SD2 DFA alpha1 Mean

SDSD TP S DFA alpha1 Max

CVNN LFHF CSI DFA alpha1 Delta

CVSD LFn CVI DFA alpha1 Asymmetry

MedianNN HFn CSI_Modified DFA alpha1 Fluctuation

MadNN LnHF GI DFA alpha1 Increment

MCVNN SI DFA alpha2

IQRNN AI DFA alpha2 Width

SDRMSSD PI DFA alpha2 Peak

Prc20NN SD1d DFA alpha2 Mean

Prc80NN SD1a DFA alpha2 Max

pNN50 C1d DFA alpha2 Delta

pNN20 C1a DFA alpha2 Asymmetry

MinNN SD2d DFA alpha2 Fluctuation

MaxNN SD2a DFA alpha2 Increment

HTI C2d ApEn

TINN C2a SampEn

SDNNd ShanEn

SDNNa FuzzyEn

Cd MSEn

Ca CMSEn

PIP RCMSEn

IALS CD

PSS HFD

PAS KFD

DFA alpha1 LZC

As discussed and supported by the existing literature, HRV tends to vary inversely
with clinical severity and patients’ prognosis in the ICU, regardless of the underlying
condition [16]. However, the methodologies, extracted parameters, and modeling tech-
niques used to assess HRV vary significantly. While time-domain features like SDNN
reflect both vagal and sympathetic activity, and thereby are more commonly used in
COVID-19 research, other valuable parameters like RMSSD which also capture the vagal
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tone [14] remain underexplored. Moreover, some studies focus on frequency-domain
analysis, while others incorporate nonlinear methods, suggesting that combining multiple
domains may enhance predictive performance. To address these gaps, this study adopts a
more extensive approach by extracting 83 HRV features across time (19 features), frequency
(8 features), and nonlinear (56 features) domains. By applying four feature reduction
methodologies and five different classification models, the goal of this article is to identify
the most informative combinations of HRV features for accurately predicting ICU mortality
in COVID-19 patients.

2. Materials and Methods
This is a retrospective observational study involving COVID-19 patients admitted to

the ICU at Hospital de São José, a tertiary care facility in Lisbon, between 24 June 2020 and
16 February 2022.

The data collection process complied with all legal and ethical requirements, includ-
ing patient anonymity, written informed consent, and approval by the hospital’s Ethics
Committee (1043/2021, 20 May 2020). The study was conducted within the scope of the
Predictive Models of COVID-19 Outcomes for Higher Risk Patients Towards a Precision
Medicine (PREMO) project.

COVID-19 diagnosis was confirmed with real-time polymerase chain reaction tests for
SARS-CoV-2. After collecting medical records and files of all patients admitted to the ICU
for COVID-19 during the specified period, individuals under 18 years of age were excluded.
The inclusion criteria were defined in the pre-processing section of the methodology.

Regarding the patients’ baseline demographic characteristics, age categories were
defined according to the World Health Organization (WHO) criteria for elderly individuals.
COVID-19 waves were established based on the pandemic timeline in Portugal using
the dates reported in Von Rekowski et al. [17]. Obesity was defined according to the
WHO guidelines as a BMI of 30.0 or higher. In cases where the BMI was not available,
patients’ clinical medical records were reviewed to confirm a history of obesity. Respiratory
support included the need for invasive mechanical ventilation (IMV) and/or extracorporeal
membrane oxygenation (ECMO) at any time during ICU admission.

In the following subsections, we outline the main tools and methodologies used in
the study. The overall methodology follows the pipeline depicted in Figure 2. We begin
with data presentation and pre-processing steps, followed by the signal analysis method-
ologies and the classification models used to predict patient mortality. All the pipeline was
implemented in Python 3.12 using Numpy, Matplotlib, Scipy, and Scikit-learn 1.7 [18].

Figure 2. HRV analysis methodology: from raw physiological data to automated interpretation. The
top panel illustrates RR interval detection from the ECG signal, which forms the basis for feature
extraction. The bottom panel outlines the subsequent steps of the HRV analysis pipeline.
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2.1. Pre-Processing

The analysis conducted in this study relied on physiological signal data collected from
ICU patients. Prior to the development of predictive models, it was necessary to explore and
structure the available data to enable meaningful interpretation and consistent processing.

The patient files containing the recorded signals were stored in HDF5 format [19].
The file structure was organized into two main groups: signals and timestamp (TS) (see
Figure 3). The signals group included a range of physiological signals collected during
patients’ hospitalizations, along with their respective sampling frequencies (FS), typically
set at either 128 Hz or 256 Hz.

Figure 3. Hierarchy of the HDF5 files used in this study. Each file contains signals, storing the
biomedical waveforms along with their sampling frequencies, and TS, containing the corresponding
timestamp data. The biomedic data and time data entries reflect the actual recorded signals and their
temporal alignment, respectively. FS refers to the sampling frequency associated with each signal.

Each recording corresponded to a continuous monitoring period and included a
variable number of signals, depending on the clinical apparatus connected to the patient
at the time. The majority of the records included ECG leads I, II, III, and aVF, along
with photoplethysmogram, intra-arterial blood pressure, and respiratory waveforms. In
some cases, additional signals such as capnography and ECG leads aVL and aVR were
also available.

Each file was organized according to hospital bed assignment and defined time inter-
vals. A single file could contain multiple recordings, sometimes from different patients and
hospitalizations. In many cases, data from multiple ICU admissions were merged into a
single file. This partial association reflected the logistical challenges and systemic disarray
experienced by hospitals during the COVID-19 pandemic. The duration of the files varied
widely, with maximum duration being approximately ten days and the minimum duration
around one hour.

The dataset used in this study comprises 381 records associated with 321 patients,
indicating that some patients had more than one entry. All this information is distributed
across 245 individual files.

A pre-processing step was essential to isolate each patient recording. This involved
identifying transitions between patients by detecting prolonged gaps in the signal or TS
data, which could be recognized through signal and/or TS plots. In the TS, interruptions
in the data recording were identified by abrupt changes in the signal slope, marking the
end and beginning of different recording segments. However, in some cases, monitoring
systems were not reset between patient transitions, and as a result, these changes were not
reflected in the TS data. Such instances were identified through visual inspection of the
biomedical signals, where patient changes without system restarts appeared as prolonged
periods with near-zero slope. It is important to note that each biomedical signal was
recorded independently, leading to variability in the number and duration of detected
interruptions across signals.
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To accurately separate patient records, a minimum duration threshold was defined, as
many brief temporal gaps did not represent actual patient transitions. These short gaps
were often not repeated across the other signals and were therefore excluded. Only points
where the difference to the subsequent point exceeded twenty minutes were retained,
forming intervals. Additionally, gaps shorter than three seconds were merged to avoid
unnecessary fragmentation of a single interval into multiple segments.

Using signal overlap analysis, interruptions that were simultaneously present in all TS
signals and all biomedical signals were identified. The start and end points of each interval
were defined to represent the smallest region of concurrent interruption in all signals. These
intervals were saved and later matched with clinical metadata to determine which ones
corresponded best to the documented ICU admissions.

Figure 4 illustrates the steps followed for data validation and for the detection of
individual hospitalizations in each record.

Figure 4. Detection of the different records in each file.

The extracted signal segments were then categorized according to their need for ad-
ditional processing. For each hospitalization, a list of all validated time intervals was
generated. These intervals were matched against ICU admission episode numbers and
discharge dates recorded in the clinical database to accurately assign the biomedical sig-
nals to their corresponding ICU admissions. Discrepancies between the registered ICU
admission and discharge dates and those detected by the algorithm were individually
analyzed. Hence, cases in which the ICU admission dates did not align with the start of the
signal segments identified by the algorithm, as well as those involving patient readmission,
were excluded. After the separation of ICU admissions was complete, the next step was
to select in each file the segments that would be used to extract features. Since this study
focuses on the initial moments of ICU admission (the first 15, 30, and 60 min), files that did
not contain data from this period were excluded. Furthermore, files were excluded if the
discrepancy between the admission to the ICU identified by the algorithm and the one on
the patient’s chart exceeded 3 h. In cases of patient readmission, only the first admission
record was considered.

Following this selection process, a total of 82 valid records were retained, each cor-
responding to a unique patient. A brief description of these patients’ demographic and
clinical characteristics can be observed in Table 2. A large percentage of the patients were
elderly (46.3%), and most were male, which is typical for COVID-19 cases. Only a small
proportion of patients belonged to the first wave of the pandemic, likely because ICUs
were overwhelmed at that time, and the data signal was difficult to extract—during the
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first wave, there were more overlapping patient records within single files, as well as less
systematic record-keeping. Most patients had between 1 and 3 comorbidities, with arterial
hypertension, dyslipidemia, and diabetes being the most frequent; these are common
comorbidities in Portugal, especially considering the patients’ median age was 57 years.
A significant percentage required IMV, a common feature related to ARDS in COVID-19
patients, which was the most frequent admission motive (47.6%). In total, there were
66 discharges and 16 deaths.

Table 2. Demographic and clinical baseline characteristics of patients selected for HRV analysis. Con-
tinuous variables are presented as median (25th percentile–75th percentile) and categorical variables
as number (n) and percentage (%). For variables with missing data, the number of observations used
(n) is indicated. Abbreviations: ECMO—extracorporeal membrane oxygenation.

Overall (N = 82, 100%)

Age, years 57.00 (44.00–71.00)

Age category

<60 years 44 (53.7)

≥60 years 38 (46.3)

Gender

Female 28 (34.1)

Male 54 (65.9)

BMI, Kg/m2 27.68 (25.09–29.40), n = 77

Geographic origin

Portugal 64 (78.0)

Other European countries 5 (6.1)

Africa 6 (7.3)

America 3 (3.7)

Asia 4 (4.9)

COVID-19 wave

First 3 (3.7)

Second 15 (18.3)

Third 24 (29.3)

Fourth 27 (32.9)

Fifth 13 (15.9)

Number of comorbidities

0 28 (34.1)

1 13 (15.9)

2 12 (14.6)

3 15 (18.3)

4 8 (9.8)

5 3 (3.7)

6 3 (3.7)
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Table 2. Cont.

Overall (N = 82, 100%)

Kinds of comorbidities

Arterial hypertension 34 (41.5)

Diabetes 16 (19.5)

Dyslipidemia 20 (24.4)

Ischemic heart disease 4 (4.9)

Heart failure 5 (6.1)

Stroke 3 (3.7)

Chronic respiratory disease 6 (7.3)

Chronic renal disease 9 (11.0)

Chronic liver disease 3 (3.7)

Solid cancer 5 (6.1)

Hematologic cancer 2 (2.4)

Autoimmune disease 3 (3.7)

Hypothyroidism 8 (9.8)

Obesity 26 (31.7)

Respiratory support

Invasive mechanical ventilation 52 (63.4)

ECMO 20 (24.4)

Admission motive

Respiratory failure / insufficiency 39 (47.6)

Sepsis 12 (14.6)

Shock 5 (6.1)

Neurological impairment 4 (4.9)

Renal dysfunction 1 (1.2

Cardiac arrest 3 (3.7)

Polytrauma 2 (2.4)

Other reasons 16 (19.5)

ICU length of stay, days 6.00 (3.00–11.50)

ICU outcome

Discharged 66 (80.5)

Deceased 16 (19.5)

Due to variability in signal acquisition, not all ECG leads were consistently recorded
across all patients. Consequently, the number of patients included in the final analysis
varied depending on the specific lead under consideration. The distribution of patients
per lead, distinguishing between discharges and deaths, is presented in Table 3. The
rationale for retaining data from all four leads was to enable performance comparisons
across them, providing insight into how lead selection may influence the extracted HRV
features. By evaluating model performance using different leads, the study also aimed to
assess the adaptability of the models to varying ECG configurations commonly encountered
in clinical settings.
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Table 3. Distribution of patients per ECG lead.

Lead Total Discharges Deaths

ECG I 64 51 13

ECG II 77 61 16

ECG III 60 47 13

ECG AVF 68 53 15

2.2. Feature Extraction, Selection, and Classification

For the computation of HRV features, various time window lengths have been used
in the literature, typically selected based on the dynamics of the patient or user. In the
ICU, due to the fast dynamics of physiological signals, shorter time windows are generally
preferred [20]. In this study, we selected window lengths of 2, 5, and 7 min, applying sliding
windows with a 50% overlap between consecutive segments. These window lengths will
be referred to as intervals, denoted as inter2, inter5, and inter7, respectively. The signal
analysis was limited to the initial phase of ICU admission, with mortality predictions based
on data recorded during the first 15, 30, and 60 min/time periods (T).

To illustrate the procedure, we show an example in Figure 5, using an ECG signal
of 15 min and using 2 min windows. In this situation, approximately 13 windows were
generated assuming that the RR intervals were extracted continuously, as for patients
1 and 2 in the figure (top and center). For patient 3 (bottom part of the figure) there was
an acquisition interruption, which led to the presence of fewer windows of 2 min. In
general, the actual number of windows varied between patients due to interruptions in
individual signal recordings, resulting in different window counts for the 15, 30, or 60 min
time periods.

Each record was processed individually, beginning with the detection of R-peaks,
using the Hamilton approach [21] and computation of the RR time series. From there,
a total of 91 features were computed, including 25 time-domain features, 10 frequency-
domain features, and 56 nonlinear domain features (7 indices derived from the Poincare
plot, 4 heart rate fragmentation parameters, 16 heart rate asymmetry indices, and 29 indices
related to complexity and fractal physiology). However, only 83 features were retained for
analysis, as some could not be calculated for the selected window sizes.

For feature reduction, several approaches were employed: (i) variance thresholding—
simple unsupervised method that removes all features whose variance does not meet some
threshold; (ii) k-best selection—selects the 10 best features ranked by the ANOVA F-value
between label/feature; (iii) tree-based feature selection—based on impurity criteria [22];
(iv) and a SHapley Additive explanation (SHAP)-based selection [23]—rooted in coopera-
tive game theory and used to evaluate the importance of prediction parameters in the model.
This combination of methods aimed to identify the most relevant set of characteristics to
predict ICU mortality.

Following feature selection, two distinct approaches were applied to aggregate the infor-
mation of each window length, namely, Method C (Consensus) and Method D (Decreased).

In Method C, for each lead and hospitalization period (15, 30 and 60 min), all feature
observations were retained across all windows within the specified interval, treating each
window as an individual sample. As a result, a single patient could contribute multiple
instances, which would mean that the total number of samples would exceed the actual
number of patients. In this case, the classifier was applied to each sample independently,
and final patient-level predictions were determined using a majority voting scheme (the
mode) across all windows Figure 6.
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Figure 5. Example for the 15 min signal analysis.

Figure 6. Method C—majority voting approach.

In contrast, Method D followed a more compressed, patient-level approach. For each
lead, the mean value of each feature was calculated across all windows (inter2, inter5, and
inter7) and time periods (15, 30, or 60-min). This resulted in one aggregated feature vector
per patient, allowing the classifier to operate on a single sample per patient Figure 7. This
method reduced the number of samples to match the number of patients.

In comparison with each other, the two methods differ primarily in how they handle
temporal variability and feature aggregation. While Method C treats each window as an
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independent sample, resulting in a higher number of instances per patient and requiring
majority voting to determine the final classification, Method D aggregates the features
across all windows, producing a single observation per patient. Thus, Method C emphasizes
short-term variability within the observation period, whereas Method D captures a more
stable, averaged representation of the patient’s signal.

The classification models applied to both Method D and Method C included Lin-
ear Discriminant Analysis (LDA), Random Forest (RF), Support Vector Machines (SVM),
Gradient Boosting Classifier (GB), and Multilayer Perceptron (MLP) [24]. A 5-fold cross-
validation strategy was employed in order to reliably evaluate the performance of these
models. To illustrate this, consider a dataset comprising 50 patients, with each split or fold
encompassing 10 patients. The model is trained using 80% of the data from each fold and
tested on the remaining 20%. Since Method C retains the feature observations across the
various windows, the number of rows in each fold may vary. Furthermore, the model will
predict life or death for each instance independently, and then the final prediction result is
determined by the most frequent prediction among the instances of each patient.

In relation to the metrics employed for the evaluation of the classification outcomes, it
is imperative to acknowledge the imbalanced nature of the dataset in this study. The dataset
exhibits a preponderance of negative instances, a circumstance that has the potential to
engender erroneous metrics, such as accuracy, if the model is predominantly predicting
negative outcomes. To this end, the ensuing measures have been utilized for the purpose
of evaluating the efficacy of the prediction model:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 · Precision · Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

AUC (5)

where TP: True positive cases;
TN: True negative cases;
FP: False positive cases;
FN: False negative cases.

The precision or the positive predictive value is the proportion of true positive predic-
tions among all positive predictions (Equation (1)). The recall or the true positive rate is
defined as the proportion of positive data points that are correctly identified as positive
with respect to all data points that are positive. The calculation of this indicator involves the
ratio of correct predictions to the total number of input samples (Equation (2)). The F1-score
can be defined as the harmonic mean between recall and precision, which is expressed
in the range [0,1]. This metric is typically indicative of the precision (i.e., the accuracy
with which instances are classified) and robustness (i.e., the ability to detect significant
instances) of the classifier (Equation (3)). The receiver operation curve (ROC), which plots
true positive rate versus false positive rate at various thresholds, was used to estimate
the area under the ROC—(AUC)—which measures the overall ability of the model to
distinguish between the two classes of the outcome.
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Figure 7. Method D—mean of each feature across all windows.

3. Results
The performance of the classification models was evaluated across both Method C and

Method D for three different time periods of signal observation 15, 30, and 60 min. The eval-
uation was based on 5-fold cross-validation, and the main performance metrics considered
were F1 and AUC (mean and standard deviation F1 ± Std and AUC ± Std), although recall
(mean and standard deviation Rec ± Std) and precision (mean and standard deviation
Prec ± Std) were also computed for deeper analysis. The classification accuracy (mean
and standard deviation Acc ± Std) was computed in some cases, and the confusion matrix
accumulated through the several folds is also shown, with TN, FP, FN, and TP denoting
the true negative, false positive, false negative, and true positive values, respectively.

3.1. Comparison Between Methods

To understand the effect of feature aggregation strategies, a comparative analysis was
performed between Method C (all windows as independent instances with majority voting)
and Method D (mean aggregation across windows per patient). As summarized in Table 4,
this comparison was performed using a single ECG lead (lead I) across all classification
methods, varying observation time periods (T) of 15, 30, and 60 min and window lengths
of 2, 5, and 7 min—represented by inter2, inter5, and inter7, respectively.

The results indicate that Method D consistently outperformed Method C, especially
in terms of the F1-score, across nearly all configurations. This suggests that the averaging
strategy adopted in Method D may provide a more robust and noise-resistant representation
of HRV dynamics for patient-level classification, even when using a relatively simple linear
classifier such as LDA.

Notably, Method C showed higher variance and, in several cases, reduced performance—
likely due to the increased number of instances per patient introducing intra-patient vari-
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ability and diluting relevant patterns during the voting process. This reinforces the idea that
temporal aggregation can enhance model generalization, particularly in clinical settings
where interpretability and reliability are critical.

Table 4. Results for ECG lead I, comparing performance of Method C and Method D, all models, across
varying observation time periods (15, 30, and 60 min), and window lengths (2, 5, and 7 min). Results
are sorted by F1-score. Abbreviations: Red—feature reduction method; inter—interval; T—time
period; M—method; Pre ± Std—precision mean and standard deviation; Rec ± Std—recall mean and
standard deviation; F1 ± Std—F1-score mean and standard deviation; AUC ± Std—AUC mean and
standard deviation; TN—true negative; FP—false positive; FN—false negative; TP—true positive.

Red Inter T M Model Prec ± Std Rec ± Std F1 ± F1 Std AUC ± Std TN FP FN TP

All inter5 60 D LDA 0.52 ± 0.11 0.80 ± 0.25 0.61 ± 0.14 0.82 ± 0.13 44 8 3 9

VT inter7 60 D LDA 0.43 ± 0.13 0.68 ± 0.29 0.51 ± 0.17 0.74 ± 0.17 42 10 5 7

VT inter2 30 D LDA 0.38 ± 0.12 0.70 ± 0.25 0.47 ± 0.13 0.71 ± 0.16 38 14 4 8

VT inter7 30 D LDA 0.35 ± 0.20 0.70 ± 0.40 0.45 ± 0.25 0.74 ± 0.19 40 12 4 8

VT inter2 60 D GB 0.53 ± 0.40 0.52 ± 0.41 0.45 ± 0.32 0.72 ± 0.20 48 4 7 5

SB inter7 30 D LDA 0.37 ± 0.25 0.55 ± 0.40 0.44 ± 0.30 0.70 ± 0.22 44 8 6 6

SB inter5 60 D GB 0.37 ± 0.31 0.53 ± 0.45 0.43 ± 0.36 0.72 ± 0.22 47 5 6 6

SH inter7 60 D LDA 0.45 ± 0.28 0.52 ± 0.26 0.42 ± 0.14 0.67 ± 0.15 43 9 7 5

VT inter5 60 D MLP 0.50 ± 0.45 0.37 ± 0.37 0.41 ± 0.39 0.66 ± 0.21 49 3 7 5

All inter5 60 C MLP 0.80 ± 0.40 0.28 ± 0.16 0.41 ± 0.22 0.63 ± 0.10 50 1 9 4

All inter2 60 D LDA 0.40 ± 0.23 0.43 ± 0.23 0.41 ± 0.21 0.63 ± 0.13 43 9 6 6

SH inter5 60 D GB 0.33 ± 0.28 0.53 ± 0.45 0.41 ± 0.34 0.71 ± 0.21 46 6 6 6

SB inter2 15 D LDA 0.43 ± 0.33 0.43 ± 0.23 0.40 ± 0.22 0.63 ± 0.09 43 9 6 6

All inter5 60 D MLP 0.47 ± 0.45 0.37 ± 0.37 0.40 ± 0.39 0.65 ± 0.21 48 4 7 5

VT inter5 60 D LDA 0.36 ± 0.34 0.47 ± 0.32 0.40 ± 0.33 0.60 ± 0.22 38 14 6 6

KB inter2 60 D LDA 0.48 ± 0.32 0.42 ± 0.33 0.39 ± 0.23 0.64 ± 0.15 45 7 7 5

SH inter5 60 C MLP 0.60 ± 0.49 0.30 ± 0.27 0.39 ± 0.34 0.64 ± 0.14 50 1 9 4

KB inter5 60 D GB 0.42 ± 0.38 0.40 ± 0.37 0.38 ± 0.32 0.66 ± 0.17 48 4 7 5

3.2. Impact of Time Interval

To evaluate the influence of the observation time period on the classification perfor-
mance, we show the results for ECG lead I using the full set of HRV features (without
feature selection), a constant window size of 5 min, and a single classifier model—LDA.
Table 5 presents the results obtained with Method C and Method D across three observation
time periods: 15, 30, and 60 min.

The results show that Method D clearly benefited from longer observation periods,
with progressive improvements in classification metrics, especially for F1-score and preci-
son. This suggests that averaging the HRV features over a longer monitoring time period
enhances signal stability and strengthens the representation of the patient’s physiological
state, which improves mortality prediction.

In contrast, Method C did not show the same consistent improvement. The variation
in performance across different time periods was less pronounced and, in some cases,
unstable, which was likely due to the increased number of samples per patient introducing
greater intra-class variability and sensitivity to transient fluctuations in the signal.
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These results indicate that when using a per-patient feature aggregation strategy
(Method D), extending the initial observation time period from 15 to 60 min can significantly
enhance model performance. However, for strategies relying on per-window classification
with voting (Method C), the benefit of longer observation time periods is less clear and
may depend on additional factors such as feature robustness or window quality.

Table 5. Results for ECG lead I, comparing the performance of time period, with no feature reduction,
and LDA model, evaluated with Method C and Method D, with a fixed window length of 5 min.
Abbreviations: T—analyzed time period; M—method; Pre ± Std—precision mean and standard
deviation; Rec ± Std—recall mean and standard deviation; F1 ± Std—F1-score mean and standard
deviation; AUC ± Std—AUC mean and standard deviation; TN—true negative; FP—false positive;
FN—false negative; TP—true positive.

T M Prec ± Std Rec ± Std F1 ± Std AUC ± Std TN FP FN TP

60 D 0.52 ± 0.11 0.80 ± 0.25 0.61 ± 0.14 0.82 ± 0.13 44 8 3 9

30 D 0.28 ± 0.27 0.40 ± 0.37 0.29 ± 0.25 0.60 ± 0.21 41 11 8 4

15 D 0.16 ± 0.14 0.35 ± 0.37 0.19 ± 0.16 0.50 ± 0.22 34 18 9 3

60 C 0.30 ± 0.40 0.20 ± 0.27 0.24 ± 0.32 0.58 ± 0.14 49 2 10 3

30 C 0.37 ± 0.37 0.18 ± 0.15 0.23 ± 0.19 0.55 ± 0.06 47 4 10 3

15 C 0.12 ± 0.15 0.12 ± 0.15 0.11 ± 0.14 0.46 ± 0.05 41 10 11 2

3.3. Model Comparison

To evaluate the impact of the classification algorithm on prediction performance, we
conducted a comparative analysis using ECG lead III, the full set of HRV features (without
feature reduction), and Method D for feature aggregation. The feature extraction was
performed with 5 min windows, and the classification models were tested across three
observation time periods—15, 30, and 60 min from the beginning of ICU admission. The
models under comparison included LDA, RF, SVM, GB, and MLP.

The results, summarized in Table 6, reveal that GB consistently achieved the highest
F1-scores across all observation intervals, which was followed by RF, confirming the
effectiveness of ensemble learning approaches in handling complex and redundant feature
sets derived from HRV.

Despite not being among the top performers in terms of raw scores, LDA exhibited
notable consistency across time intervals, with relatively stable performance. This suggests
a degree of robustness, which can be advantageous in clinical contexts that prioritize model
interpretability and reliability. In contrast, the SVM model failed to identify any true
positives (TP = 0) in this setting, resulting in an F1-score of zero. This outcome highlights
a critical limitation: Although SVM may perform well in other contexts, in this scenario,
it lacked the sensitivity needed to detect high-risk patients. Such behavior significantly
undermines its usefulness in mortality prediction tasks, where minimizing false negatives
is crucial. The MLP classifier showed intermediate performance, particularly improving
with shorter observation intervals, but it also exhibited greater variability, possibly due to
the limited sample size and the model’s sensitivity to parameter tuning.

These findings underscore the superior performance of ensemble classifiers, par-
ticularly GB, and suggest caution when applying SVM to unbalanced clinical datasets,
especially when the positive class (deceased) is critical to identify.
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Table 6. Results for ECG lead III, comparing performance of classification models, without feature
reduction, using a fixed window length of 5 min, with Method D for feature aggregation, across three
observation time periods (15, 30, and 60 min). For each model, the results are sorted by time period.
Abbreviations: W—time period; M—method; Acc ± Std—accuracy mean and standard deviation;
Pre ± Std—precision mean and standard deviation; Rec ± Std—recall mean and standard deviation;
F1 ± Std—F1-score mean and standard deviation; TN—true negative; FP—false positive; FN—false
negative; TP—true positive.

Model W M Acc ± Std Pre ± Std Rec ± Std F1 ± Std TN FP FN TP

GB 15 D 0.85 ± 0.10 0.63 ± 0.37 0.57 ± 0.39 0.53 ± 0.28 46 2 7 5

GB 30 D 0.77 ± 0.10 0.18 ± 0.22 0.25 ± 0.39 0.18 ± 0.23 43 5 9 3

GB 60 D 0.73 ± 0.03 0.30 ± 0.37 0.35 ± 0.37 0.23 ± 0.19 41 7 9 3

LDA 15 D 0.70 ± 0.07 0.25 ± 0.13 0.42 ± 0.33 0.28 ± 0.15 38 10 8 4

LDA 30 D 0.78 ± 0.09 0.33 ± 0.28 0.32 ± 0.37 0.31 ± 0.30 43 5 8 4

LDA 60 D 0.70 ± 0.07 0.18 ± 0.15 0.35 ± 0.37 0.22 ± 0.18 39 9 9 3

MLP 15 D 0.77 ± 0.06 0.28 ± 0.39 0.27 ± 0.39 0.21 ± 0.26 43 5 9 3

MLP 30 D 0.80 ± 0.09 0.33 ± 0.42 0.27 ± 0.39 0.26 ± 0.33 45 3 9 3

MLP 60 D 0.75 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 45 3 12 0

RF 15 D 0.82 ± 0.11 0.47 ± 0.45 0.37 ± 0.37 0.38 ± 0.37 46 2 9 3

RF 30 D 0.77 ± 0.06 0.20 ± 0.40 0.05 ± 0.10 0.08 ± 0.16 45 3 11 1

RF 60 D 0.80 ± 0.07 0.20 ± 0.40 0.05 ± 0.10 0.08 ± 0.16 47 1 11 1

SVC 15 D 0.80 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 48 0 12 0

SVC 30 D 0.80 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 48 0 12 0

SVC 60 D 0.80 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 48 0 12 0

3.4. Feature Reduction Strategies

Given the high dimensionality of the HRV feature set (83 features), we evaluated
the impact of feature reduction on model performance. The goal was to assess whether
reducing the number of features could improve classification accuracy and generalizability
and to identify the most relevant HRV indices for predicting ICU mortality. The evaluated
feature reduction techniques included variance thresholding (VT), K-best selection (KB),
tree-based selection (SB), and SHAP-based selection (SH).

The results, presented in Table 7, show that for LDA, all feature reduction methods
improved performance, consistently increasing the F1-score across all time intervals, sug-
gesting that LDA, being a linear model, benefits significantly from a compact feature set.
In contrast, for GB and RF, the effect of feature reduction was more nuanced. While some
reduced feature sets led to slight improvements in F1-score, the gains were not consistent
across all selection methods, and in some cases, the reduced feature sets even led to slightly
lower F1-scores.

This behavior aligns with the nature of tree-based methods, which are inherently
robust to irrelevant features due to their internal structure and embedded feature selection.
These findings highlight that the impact of feature selection is model-dependent. While
linear models such as LDA can greatly benefit from reducing noise and redundancy in the
input data, ensemble models like GB are capable of handling high-dimensional feature
spaces without requiring aggressive pre-processing, though they may still benefit in some
cases from targeted feature selection.
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Table 7. Comparative performance across feature reduction strategies—using ECG lead III and
a 30 min observation window, with a fixed interval of 2 min; Method D for feature aggrega-
tion; and classification models LDA, RF, and GB. Abbreviations: Red—feature reduction method;
Pre ± Std—precision mean and standard deviation; Rec ± Std—recall mean and standard deviation;
F1 ± Std—F1-score mean and standard deviation; AUC ± Std—AUC mean and standard deviation;
TN—true negative; FP—false positive; FN—false negative; TP—true positive.

Red Model Prec ± Std Rec ± Std F1 ± Std AUC ± Std TN FP FN TP

All LDA 0.13 ± 0.19 0.30 ± 0.40 0.16 ± 0.20 0.52 ± 0.19 35 13 10 2

All RF 0.33 ± 0.42 0.25 ± 0.39 0.24 ± 0.32 0.61 ± 0.18 46 2 9 3

All GB 0.23 ± 0.29 0.25 ± 0.39 0.23 ± 0.31 0.58 ± 0.19 44 4 9 3

KB LDA 0.63 ± 0.31 0.52 ± 0.26 0.50 ± 0.15 0.70 ± 0.15 43 5 7 5

KB RF 0.83 ± 0.21 0.62 ± 0.32 0.66 ± 0.23 0.79 ± 0.17 46 2 6 6

KB GB 0.43 ± 0.39 0.45 ± 0.46 0.43 ± 0.41 0.68 ± 0.25 44 4 8 4

SB LDA 0.63 ± 0.31 0.52 ± 0.26 0.48 ± 0.11 0.71 ± 0.12 43 5 7 5

SB RF 0.53 ± 0.32 0.55 ± 0.40 0.49 ± 0.29 0.74 ± 0.19 45 3 7 5

SB GB 0.33 ± 0.42 0.25 ± 0.39 0.24 ± 0.32 0.60 ± 0.19 45 3 9 3

SH LDA 0.52 ± 0.41 0.47 ± 0.32 0.39 ± 0.22 0.66 ± 0.16 41 7 8 4

SH RF 0.40 ± 0.37 0.35 ± 0.37 0.33 ± 0.30 0.65 ± 0.18 46 2 9 3

SH GB 0.40 ± 0.39 0.30 ± 0.25 0.33 ± 0.28 0.61 ± 0.11 44 4 8 4

VT LDA 0.15 ± 0.18 0.30 ± 0.40 0.19 ± 0.23 0.51 ± 0.17 34 14 8 4

VT RF 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.49 ± 0.02 47 1 12 0

VT GB 0.30 ± 0.40 0.15 ± 0.20 0.20 ± 0.27 0.53 ± 0.12 44 4 10 2

4. Discussion
This study focused on exploring the potential of HRV indices as predictors of ICU

mortality in patients with COVID-19. HRV indices were extensively extracted from the time
domain (19 features), frequency domain (8 features), and nonlinear domain (56 features),
resulting in a high-dimensional dataset. To manage this complexity and evaluate predictive
performance, two feature selection methods, four feature reduction methodologies, and
five classification models were employed. When comparing feature selection strategies,
aggregating feature means across patient windows (Method D) demonstrated superior
results, especially over longer time periods. In terms of model classifiers, LDA was the al-
gorithm that produced more consistent results, offering stable performance across different
windows lengths and improving further with feature reduction. On the other hand, GB and
RF also achieved very good F1-scores but were not so consistent across all time intervals.

The effectiveness of LDA concerning models involving HRV features was already
demonstrated in previous studies. For instance, in the study by Chen et al. [25], LDA
was the best-performing model among the 15 models tested for predicting mortality in
2343 ICU patients with heart failure, achieving the highest accuracy, recall, and F1-score. A
web-based calculator was even developed based on this LDA model to make predictions
regarding survival, using 44 features (including clinical data and HRV features). GB
performed comparably well, while SVM showed the weakest performance, similarly to our
study’s findings.

Similarly, in a study by Chiew et al. [26], HRV features were combined with clinical
data in order to develop machine learning models to predict 30-day hospital mortality in
214 sepsis patients from the emergency department. Those based on GB outperformed
other machine learning approaches as well as conventional scoring systems like the Quick
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Sequential Organ Failure Assessment, National Early Warning Score, and Modified Early
Warning Score.

In our study, analyzing the most frequently selected features in all models and reduc-
tion methods, several indices consistently emerged. These include the minimum interval
between beats (MinNN), Very High Frequency (VHF), Approximate Entropy (ApEn), Katz
Fractal Dimension (KFD), and several complexity and entropy measures such as Multiscale
Entropy (MSEn), Composite Multiscale Entropy (CMSEn), Fuzzy Entropy, Shannon En-
tropy, Lempel–Ziv Complexity (LZC), and Correlation Dimension (CD). The prominence of
nonlinear and complexity-based features suggests that the dynamic and fractal properties
of HRV provide valuable information about patients’ physiological states according to the
study by Sassi et al. [27].

When focusing specifically on the two best-performing combinations (with feature
selection) in terms of F1-score—K-best with LDA and SHAP-based feature selection with
LDA—additional discriminative features were identified, including the mean and median
of NN intervals (MeanNN, MedianNN), percentile-based measures (Prc20NN, Prc80NN)
and multifractal indices from detrended fluctuation analysis. Notably, twelve features were
shared across both combinations, including MinNN, VHF, ApEn, Shannon Entropy, Fuzzy
Entropy, MSEn, CMSEn, CD, KFD, and LZC.

These findings are further supported by the SHAP beeswarm plot shown in Figure 8,
representing the individual contribution of each HRV feature to the model’s prediction. The
vertical axis displays the different features, while the horizontal axis shows the SHAP value,
indicating how much each feature value contributes to the deviation from the model’s
average output. Each dot corresponds to one observation in the dataset, and its color
reflects the magnitude of the feature value (blue for low values and red for high values).
Consistent with the previous selection analysis, features such as MedianNN, Prc20NN,
and MeanNN emerged as highly influential, with higher values positively impacting the
model output. Additionally, nonlinear features like DFA-alpha1, HFD, and CMSEn also
demonstrated substantial contributions, reinforcing the importance of signal complexity
and fractal properties. Interestingly, lower values of DFA-alpha1 and HFD were generally
associated with negative SHAP values, potentially indicating that reduced complexity in
RR dynamics correlates with a greater likelihood of hospital discharge.

Figure 8. Beeswarm plot illustrating the contribution of each HRV feature to the model’s output
based on SHAP values. Each dot represents a data instance, with color indicating the normalized
feature value (blue = low, red = high), and the position on the x axis representing the SHAP value
(impact on model prediction). Positive SHAP values indicate a contribution toward the predicted
class, while negative values indicate the opposite.
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Limitations

Despite the promising results obtained in this study, several limitations must be ac-
knowledged. First, the dataset used was collected in a single hospital during the COVID-19
pandemic, which may limit the generalizability of the findings to other institutions or
to non-COVID-19 ICU populations. Hence, future studies involving larger, multicenter
cohorts are necessary to validate the obtained results. Moreover, while the raw data pro-
vided a valuable real-world scenario, they presented considerable variability in structure,
signal quality, and annotation consistency, requiring extensive pre-processing and data
curation. Although this was addressed through a robust pipeline, some signal loss and
patient exclusions were inevitable.

Second, the prediction models relied exclusively on ECG-derived HRV features. While
HRV captures important aspects of autonomic regulation, incorporating other physiolog-
ical signals (e.g., respiratory rate, SpO2, blood pressure) or clinical variables (e.g., age,
comorbidities, laboratory results) might improve predictive performance and allow for
a more comprehensive risk assessment, and in the future, we will perform data fusion.
Furthermore, due to limited access to complete clinical data for some patients, it was only
possible to confirm after the analysis that approximately 5% had a history of ischemic heart
disease and around 6% had heart failure. Although no patients with documented severe
arrhythmias or malignant rhythm disturbances were included, it is very difficult to be
entirely certain given the missing information in some patient records. Therefore, while
some influence on HRV from underlying cardiovascular disease cannot be entirely ruled
out, its overall impact on our findings is likely limited. Additionally, HRV is sensitive to
noise, ectopic beats, and other abnormal cardiac events, which are more frequent in ICU
patients. Although R-peak detection and basic artifact removal were applied, residual
artifacts may still have affected feature quality.

Third, the analysis of HRV itself presents intrinsic limitations. HRV measures assume
stationarity within the analysis windows—an assumption that may not always hold in
critically ill patients. Furthermore, although short windows (2 to 7 min) were chosen to
match early prediction goals, some nonlinear or frequency-domain features are known to
be less reliable in short segments. Several features had to be discarded in some cases due
to insufficient data points, which affected the consistency of the features across samples.
Additionally, HRV is sensitive to noise and ectopic beats, which are more frequent in
ICU patients; although R-peak detection and basic artifact removal were applied, residual
artifacts may still have affected feature quality.

Fourth, the sample size—although reasonable—remains limited, especially when
broken down by the lead, time interval, and analysis methods. This affects the statistical
power of certain comparisons and increases the risk of overfitting, particularly in more
complex models. Future validation in larger and multicentric datasets is essential, as well
as validation with data not coming from COVID-19.

Finally, although the study focused on early prediction (within 15, 30, and 60 min
of ICU admission), the temporal evolution of HRV during the hospitalization was not
considered. Analyzing HRV dynamics over time could offer additional insights into patient
deterioration or recovery patterns, and sequence analysis with Recurrent Neunral Networks
(RNNs), such as Long Short-Term Memory (LSTM), is planned in the future.

5. Conclusions
This work was developed based on a real-world database collected during the COVID-

19 pandemic, where the raw data posed significant challenges in terms of structure, syn-
chronization, and signal quality. The ability to work with such complex and heterogeneous
data is itself a key contribution of this study, highlighting the importance of robust pre-
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processing pipelines in clinical data analysis in challenging conditions, such as during
COVID-19 pandemic.

We explored whether short-term HRV features, extracted from ECG signals recorded
during the very first period of ICU admission, could be used to predict patient mortality.
This question is of high clinical relevance, since early identification of high-risk patients en-
ables clinicians to adapt therapeutic strategies, potentially improving outcomes in intensive
care settings. In pandemic contexts such as COVID-19, where ICU resources are limited
and patient deterioration can be rapid, such predictive tools cloud have a significant impact
on clinical decision making.

Our results show that meaningful mortality prediction can be achieved using only
the first 15 to 60 min of ECG data. Method D, which aggregates HRV features across short
windows, demonstrated superior performance compared to treating each time window
individually. Among the classification models tested, GB and RF achieved the highest
F1-scores. However, LDA stood out for its remarkable stability and consistent performance
across different leads, time intervals, and feature selection strategies—often ranking among
the top-performing models. This reinforces its potential value as a clinically interpretable
and computationally efficient approach.

Feature reduction techniques also played an important role, particularly when com-
bined with LDA, where they contributed to enhanced performance. In contrast, more
complex models like GB benefited less consistently from dimensionality reduction.

Overall, this study reinforces the potential of HRV analysis as a noninvasive, low-cost,
and readily available tool for early mortality risk stratification in the ICU. Future work will
aim to expand this approach to larger datasets, include additional physiological signals, and
move toward the development of real-time, clinically integrated decision support systems.
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