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Abstract

Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal
cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic
resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF,
and EGFR—are pivotal to clinical decision-making in precision oncology. However, the
integration of these genomic events with clinical and demographic data remains hindered
by fragmented resources and a lack of accessible analytical frameworks. To address this
challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational ar-
tificial intelligence (AI) system designed to enable natural language-based, integrative
analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs
a modular architecture combining large language models (LLMs), a natural language-
to-code translation engine, and a backend analytics pipeline operating on harmonized
multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this
system is purpose-built for real-time exploration of RTK-RAS biology within CRC co-
horts. The platform supports mutation frequency profiling, odds ratio testing, survival
modeling, and stratified analyses across clinical, genomic, and demographic parameters.
Validation included reproduction of known mutation trends and exploratory evaluation
of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-
HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming
established patterns and revealing novel associations with translational relevance. Among
early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was signifi-
cantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014),
suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients
receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior
overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with
microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy
exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX,
RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified
ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1
mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions:
AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to
precision oncology, enabling integrative, real-time analysis of clinically and biologically
complex questions. Its ability to uncover both canonical and ancestry-specific patterns in
RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate
health burdens—underscores its utility in advancing equitable, personalized cancer care.
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This work demonstrates the translational potential of domain-optimized AI tools to accel-
erate biomarker discovery, support therapeutic stratification, and democratize access to
multi-omic analysis.

Keywords: AI; artificial intelligence; precision medicine; cancer treatment; molecular
insights; RTK-RAS pathway; large language models; AI-agents; cancer genetics

1. Introduction
Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality

globally, with an increasing incidence of early-onset CRC (EOCRC)—diagnosed before age
50—particularly among high-risk populations [1–5]. While the molecular landscape of CRC
is complex, the receptor tyrosine kinase (RTK)-RAS signaling pathway has emerged as a
central driver of tumorigenesis and therapeutic resistance [6–8]. However, characterizing
RTK-RAS pathway dysregulation in EOCRC, particularly among different populations,
remains limited by data fragmentation in genomic datasets and a lack of user-friendly
analytical tools that integrate clinical and genomic data [5,9–16].

The RTK-RAS pathway governs essential processes, including cell proliferation, sur-
vival, and differentiation, and is frequently altered in CRC [5,17]. Mutations in key genes
such as KRAS, NRAS, and BRAF are among the most common genetic alterations in CRC,
with KRAS mutations occurring in approximately 40% of cases [5,17]. These alterations play
a critical role in clinical decision-making, as they confer resistance to anti-EGFR therapies—
one of the primary targeted treatment strategies in metastatic CRC [16–21]. Although
KRAS and NRAS mutations are reportedly more frequent in specific populations [22–24],
emerging evidence suggests that mutation patterns may vary by ancestry. Specifically,
recent work by our group and others indicates that RTK-RAS pathway alterations may be
less prevalent in EOCRC among ancestry-specific subgroups, with enrichment of mutations
in CBL, NF1, and MAPK3 instead [5,25].

Despite the clinical importance of RTK-RAS pathway alterations, most existing bioin-
formatics platforms such as cBioPortal [26] and UCSC Xena [27] are built on static user inter-
faces and require multi-step analysis pipelines, limiting accessibility for non-programmers
and hindering rapid translational discovery. These limitations are particularly pronounced
when evaluating population-specific differences, pathway co-mutations, or survival out-
comes in precision oncology contexts.

While platforms such as cBioPortal and UCSC Xena provide important access to cancer
genomics data, they are often limited by static user interfaces, a lack of customizable multi-
parameter filtering, and the need for bioinformatics expertise to perform complex analyses.
These tools typically require manual selection of filters, exporting of data, and downstream
processing using separate statistical packages—creating barriers for non-programmers and
slowing the pace of translational discovery. In contrast, AI-HOPE-RTK-RAS addresses these
limitations by enabling real-time, natural language-driven exploration of integrated clinical
and genomic datasets. Users can query mutation frequencies, survival outcomes, treatment
responses, and demographic stratifications using plain language, eliminating the need for
coding or manual data wrangling. This approach lowers the barrier to entry, supports
rapid hypothesis generation, and enhances accessibility for clinicians and researchers
across disciplines.

Although several AI-based tools have been developed for cancer research, many rely
on black-box machine learning models focused on prediction or classification tasks, often
lacking interpretability and flexibility. Others, including general-purpose large language
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models (LLMs), are not optimized for domain-specific, structured biomedical data or
pathway-level analysis. In contrast, AI-HOPE-RTK-RAS is a domain-specialized, conver-
sational AI system specifically designed for real-time exploration of RTK-RAS pathway
alterations in colorectal cancer. Built on a fine-tuned biomedical LLM and integrated with a
natural language-to-code engine, the platform enables transparent, user-driven analysis
of large-scale clinical and genomic data without requiring programming expertise. This
differentiates AI-HOPE-RTK-RAS from existing approaches by combining interpretability,
specificity, and ease of use within a precision oncology context.

Recent breakthroughs in artificial intelligence (AI), particularly LLMs, now enable
natural language-driven bioinformatics pipelines that can translate human queries into
executable code [28–33]. While early AI platforms have demonstrated the potential to
streamline multi-omic data analysis [34–39], few are purpose-built to interrogate specific
pathways like RTK-RAS or to support the integration of genomic and clinical data across
CRC cohorts.

To address this gap, we developed AI-HOPE-RTK-RAS (Artificial Intelligence agent
for High-Optimization and Precision Medicine focused on RTK-RAS), a conversational AI
system designed to investigate RTK-RAS pathway alterations in CRC using integrative,
natural language-driven bioinformatics. The platform enables intuitive analysis of muta-
tion frequencies, survival outcomes, treatment resistance patterns, and population-level
stratification. In this study, we (1) developed and deployed AI-HOPE-RTK-RAS to analyze
public CRC datasets, (2) validated its analytical capabilities by reproducing key trends
from RTK-RAS-focused studies, and (3) demonstrated its potential for novel discovery
in EOCRC, including ancestry-informed mutation enrichment and prognostic evaluation.
Together, these efforts establish AI-HOPE-RTK-RAS as a scalable and accessible tool for
RTK-RAS-driven precision oncology research.

2. Materials and Methods
2.1. Overview of AI-HOPE-RTK-RAS Platform

AI-HOPE-RTK-RAS is a specialized conversational artificial intelligence (AI) system
developed to facilitate precision oncology investigations centered on RTK-RAS signaling in
CRC. Designed for real-time interaction, the platform allows researchers and clinicians to
explore large-scale genomic and clinical datasets through intuitive, plain-language prompts
(Figure 1). The system dynamically translates these queries into executable code, performs
on-demand bioinformatics analysis, and delivers interpretive outputs relevant to mutation
frequency, treatment response, and survival outcomes.

AI-HOPE-RTK-RAS is freely available for academic and research use via a public
repository (see Data Availability Statement). The repository includes the full source code,
setup instructions, a modular Python-based backend, and a pretrained natural language
interface powered by a fine-tuned LLaMA 3 model. A web-based version of the platform,
designed for broader clinical research use, is currently under development and will include
secure user authentication and cloud-based computation. The system operates in a Unix-
compatible environment and requires Python ≥ 3.9, PyTorch ≥ 2.0, and GPU support for
optimal performance. AI-HOPE-RTK-RAS is released under the MIT license, allowing for
modification and redistribution with attribution. Current usage is intended for exploratory
and translational research purposes; it is not certified for direct clinical decision-making. A
roadmap for clinical integration includes validation against institutional registries, align-
ment with electronic health record (EHR) standards, and compliance with HIPAA and
IRB protocols.
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Figure 1. AI-HOPE-RTK-RAS conversational workflow for integrative clinical and genomic analysis.
This figure presents the functional pipeline of AI-HOPE-RTK-RAS, an interactive artificial intelligence
platform tailored for exploring RTK-RAS signaling in colorectal cancer (CRC). (a) The process begins
with the user posing a research question in natural language—for example, assessing differences in
survival between early- and late-onset Hispanic/Latino patients with RTK-RAS pathway mutations.
(b) The query is handled through a user-friendly graphical interface, where a large language model
(LLM) interprets the request, translates it into executable code, and defines the parameters for
subgroup comparison. (c) The platform accesses harmonized clinical and genomic datasets—such
as those from TCGA and cBioPortal—focusing on RTK-RAS genes, including KRAS, NRAS, BRAF,
EGFR, ERBB2, CBL, MAPK3, and NF1. Relevant clinical filters (e.g., age, ancestry, treatment exposure)
are applied based on the query intent. (d) Statistical analyses are carried out automatically, generating
results such as survival curves and odds ratios. Outputs are rendered in publication-ready formats
alongside narrative interpretations, enabling efficient exploration of complex CRC datasets through a
precision oncology lens.

2.2. Data Sources and Curation

Publicly available datasets were obtained from the cBioPortal for Cancer Genomics,
with a focus on colorectal adenocarcinomas. The datasets included somatic mutation
profiles, demographic attributes (age, sex, race/ethnicity), clinical variables (tumor location,
MSI status, staging), and treatment history, particularly anti-EGFR exposure. Genes of
interest within the RTK-RAS pathway included KRAS, NRAS, BRAF, EGFR, ERBB2, CBL,
MAPK3, and NF1. All data were reformatted into harmonized, analysis-ready tables using
consistent sample identifiers. Controlled vocabularies (e.g., OncoTree, SNOMED) were
applied to align diagnostic and phenotypic metadata.

Public genomic datasets such as those curated by cBioPortal provide invaluable re-
sources for large-scale, open-access cancer research; however, they are not without limi-
tations. These include underrepresentation of certain racial and ethnic groups, variable
completeness in clinical annotations (e.g., treatment timelines, comorbidities), and inconsis-
tent metadata across studies due to differences in institutional data collection standards. To
address these challenges, AI-HOPE-RTK-RAS incorporates a harmonization pipeline that
standardizes variable naming conventions, aligns phenotypic descriptors using controlled
vocabularies (e.g., SNOMED, OncoTree), and unifies clinical–genomic relationships across
multiple cohorts. This modular integration enables real-time stratification by age, ancestry,



Biomedicines 2025, 13, 1835 5 of 23

mutation status, and treatment exposure, thereby reducing the analytic barriers typically
posed by data fragmentation. While the platform cannot resolve inherent sampling biases
in the original datasets, it provides a transparent, reproducible framework for conducting
stratified analyses and hypothesis generation across heterogeneous populations—especially
in settings where health disparities remain under-characterized.

The datasets used in this study were derived from the curated colorectal cancer cohort
described in a previous publication [5], which integrated publicly available data from
cBioPortal. The final harmonized dataset includes a total of 5553 patients diagnosed
with colorectal adenocarcinoma across multiple studies. This composite dataset includes
somatic mutation profiles, clinical variables (e.g., tumor stage, microsatellite instability
status, treatment history), and demographic attributes (e.g., age, sex, race/ethnicity). The
AI-HOPE-RTK-RAS platform was validated and applied across this full cohort, with
specific subgroup analyses performed on early-onset colorectal cancer (EOCRC) patients
(n = 593) and late-onset CRC patients (n = 4960), including ancestry-specific evaluations in
Hispanic/Latino and non-Hispanic White subpopulations. All sample sizes for individual
analyses are reported in the corresponding figures and Supplementary Materials to facilitate
full transparency and reproducibility.

The colorectal cancer datasets used in this study were based on the following criteria:
(1) availability of somatic mutation data; (2) inclusion of clinical annotations such as age,
tumor stage, microsatellite instability (MSI) status, and treatment exposure; and (3) pres-
ence of demographic information, particularly race/ethnicity. Records lacking essential
variables for stratified analysis (e.g., missing age or survival status) were excluded from
subgroup analyses but retained in broader mutation frequency queries when possible. To
standardize and harmonize datasets across studies, we applied controlled vocabularies and
aligned variable names and formats using a custom data wrangling pipeline. Missing data
were not imputed but handled through pairwise deletion during statistical tests to preserve
validity. Recognizing the potential for sampling and representation bias—especially under-
representation of minority populations—we incorporated ancestry-stratified analyses and
explicitly caution against overgeneralizing rare mutation findings.

2.3. Natural Language Interface and Query Handling

The user interface is powered by a fine-tuned large language model (LLaMA 3),
enabling flexible dialogue-based interaction. Users pose queries in natural language,
such as “Show mutation prevalence of KRAS in EOCRC versus LOCRC,” or “Compare
survival outcomes for patients with BRAF V600E mutations receiving EGFR inhibitors.”
The platform interprets the query intent, checks for ambiguity, and guides users toward
analyzable questions when clarification is needed. Complex filtering—such as stratifying
by age, ancestry, mutation status, or therapy—is handled seamlessly without requiring
programming knowledge.

The natural language interface is powered by a fine-tuned LLaMA 3 model, trained
on a corpus of biomedical text and conversational examples relevant to colorectal cancer
and precision oncology. The model operates within a modular framework comprising
three components: (1) intent recognition, (2) parameter extraction, and (3) code synthesis.
Fine-tuning was performed using low-rank adaptation (LoRA) with a learning rate of
2 × 10−5, batch size of 32, and 3 epochs on a curated dataset of 2500 annotated query–
response pairs. To evaluate query interpretation accuracy, we used a held-out test set of
250 manually labeled queries across diverse analysis types (e.g., mutation frequency, sur-
vival analysis, odds ratio testing). The system achieved a query classification precision
of 0.94, recall of 0.92, and F1-score of 0.93. Ambiguity detection is supported by a rule-
based logic layer that triggers clarification loops when confidence thresholds fall below



Biomedicines 2025, 13, 1835 6 of 23

0.8, reducing the risk of misinterpretation. Empirical testing showed an error rate of 6.4%
for ambiguous or compound queries, most of which were successfully resolved through
system-generated clarification prompts. These performance indicators underscore the
system’s robustness in real-time, user-directed analysis and support its usability for both
novice and expert users.

At the core of AI-HOPE-RTK-RAS is a fine-tuned version of LLaMA 3, a large language
model (LLM) trained to understand and respond to biomedical queries. To adapt the
model for precision oncology applications, we fine-tuned it using a specialized dataset
composed of 2500 example questions and answers related to colorectal cancer, RTK-RAS
pathway alterations, and clinical-genomic associations. This dataset included variations
of real-world queries that a researcher or clinician might ask (e.g., “What is the KRAS
mutation frequency in early-onset patients?” or “Show survival curves for BRAF-mutant
MSS tumors”). Fine-tuning was performed using low-rank adaptation (LoRA), a method
that efficiently adjusts the model’s internal weights without retraining from scratch. This
training process allowed the model to more accurately interpret domain-specific language,
recognize biomedical terminology, and convert user queries into executable code. As a
result, AI-HOPE-RTK-RAS can understand complex, multi-part questions and generate
accurate, real-time analyses without requiring users to write any programming code.

2.4. Backend Analysis Pipeline

AI-HOPE-RTK-RAS conducts statistical analyses using an integrated Python-based
computational core. For binary or categorical variables, Fisher’s exact test and chi-square
test are used to assess group differences, and odds ratios are calculated with 95% confidence
intervals. Continuous variables are summarized using standard descriptive statistics.
Survival analyses utilize Kaplan–Meier estimation with log-rank tests for comparisons;
multivariate Cox proportional hazards models are applied for adjusting covariates. The
system supports mutation co-occurrence analysis, therapeutic stratification, and ancestry-
specific subgroup modeling.

Survival analyses in this study were conducted on defined subsets of the full CRC
cohort to ensure the integrity and interpretability of survival estimates. While the harmo-
nized dataset included 5553 patients, not all cases had complete information on survival
time, vital status, or treatment exposure (e.g., Bevacizumab, FOLFOX). To minimize bias
and avoid imputing missing values, we restricted survival modeling to patient subsets
with fully annotated outcome data and treatment records relevant to each specific analysis.
For example, the Bevacizumab-related survival comparison among KRAS-mutant patients
included only those with confirmed treatment exposure and staging information. This
targeted approach enabled more accurate hazard estimation and preserved the internal
validity of the comparisons, despite reducing the sample size in specific analyses.

Odds ratios were calculated using two-by-two contingency tables via Fisher’s ex-
act test, unless otherwise specified, while survival analyses were performed using the
Kaplan–Meier method with log-rank testing. Confounder adjustment is available through
AI-HOPE-RTK-RAS by explicitly including variables such as tumor stage, microsatellite
instability status, and treatment regimen in natural language queries (e.g., “Generate a
survival curve for KRAS-mutant MSS patients, adjusted by stage and chemotherapy type”).
This functionality enables dynamic and flexible multivariate stratification without requir-
ing manual scripting, although further expansion to include Cox proportional hazards
modeling is planned for future development.

We selected statistical methods based on the nature of the data and the specific com-
parisons being made. Fisher’s exact test was used for categorical comparisons involving
small sample sizes or sparse contingency tables, where it provides accurate p-values, even
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with low cell counts. For larger categorical datasets with sufficient expected frequencies,
the chi-square test was applied to assess group differences. Kaplan–Meier survival anal-
ysis with log-rank testing was used to evaluate differences in time-to-event outcomes
(e.g., overall survival) between groups, as it is widely accepted for unadjusted survival
comparisons. To account for multiple covariates and assess independent effects, we used
multivariate Cox proportional hazards models, which are suitable for estimating hazard
ratios while adjusting for clinical variables such as tumor stage and treatment exposure.
This combination of statistical approaches ensured both methodological appropriateness
and interpretability for clinical and genomic data integration.

2.5. System Infrastructure and Error Handling

To ensure transparency and reproducibility, the platform employs structured prompt-
ing strategies and rule-based logic layers that constrain the output to valid biomedi-
cal operations. A retrieval-augmented generation (RAG) component provides access
to curated reference materials—such as drug–gene interaction databases and pathway
annotations—to enhance the interpretability of results and reduce model hallucinations.
Ambiguous queries trigger clarification loops, and all executed commands are logged with
versioned output.

2.6. Validation Strategy

To validate platform functionality, we replicated known findings from prior RTK-
RAS CRC literature, including mutation frequencies of KRAS, NRAS, and BRAF, and
their association with resistance to EGFR-targeted therapies [16–21]. Additionally, we
assessed previously reported RTK-RAS mutation profiles among patients with EOCRC
from populations with disproportionate health burdens, including the enrichment of
noncanonical alterations such as CBL and NF1 [5].

The validation of AI-HOPE-RTK-RAS was anchored in reproducing key findings from
a previously published study [5], which characterized RTK-RAS pathway alterations in
EOCRC with a focus on high-risk, racially and ethnically diverse populations. Specif-
ically, the platform was used to recapitulate reported mutation frequencies for KRAS,
NRAS, BRAF, and EGFR across early- and late-onset CRC cohorts, as well as to reproduce
stratified survival outcomes and ancestry-specific mutation patterns. We confirmed, for
instance, the lower prevalence of canonical RTK-RAS alterations in EOCRC compared to
late-onset CRC and validated the enrichment of noncanonical mutations (e.g., CBL, MAPK3,
NF1) in Hispanic/Latino EOCRC patients—findings that were previously reported in our
group’s foundational work. By benchmarking AI-HOPE-RTK-RAS against this estab-
lished dataset and analytical framework, we ensured both fidelity of results and continuity
with prior evidence, reinforcing the platform’s validity for translational applications in
precision oncology.

2.7. Comparative Usability Testing

We compared AI-HOPE-RTK-RAS with conventional tools such as cBioPortal and
UCSC Xena for usability and analytical throughput. Performance metrics included query
response time, flexibility in subgroup definition, and the ability to execute multi-parameter
analyses (e.g., filtering by both age and ethnicity). The conversational interface outper-
formed traditional interfaces in efficiency and reduced the need for specialized bioinfor-
matics skills.

2.8. Output Delivery and Visualization

Final outputs are returned as structured analytical reports, featuring cleanly formatted
tables, frequency plots, survival curves, and forest plots. Visualizations are generated
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using Matplotlib 3 and Plotly 4 libraries with export-quality resolution. Each result is
accompanied by a text summary that contextualizes the findings with supporting literature,
enabling immediate interpretation and downstream reporting.

3. Results
The AI-HOPE-RTK-RAS platform enabled flexible, real-time interrogation of CRC

datasets using natural language input to uncover clinically and biologically relevant insights
into RTK-RAS pathway dysregulation. Through integrated cohort filtering by mutation
status, treatment regimen, tumor stage, microsatellite instability, and demographic features,
the system supported automated statistical analysis and visualization, producing results
that both confirmed known patterns and revealed new associations with potential trans-
lational relevance—particularly within EOCRC and populations with disproportionate
health burdens.

3.1. RTK-RAS Alterations in EOCRC by Ancestry

A demographic-stratified analysis compared RTK-RAS pathway mutation frequencies
between early- and late-onset CRC patients. Among those under 50 years old, RTK-RAS
alterations were detected in 67.97% of cases versus 79.9% in older counterparts. This
difference yielded an odds ratio of 0.534 (p = 0.014), suggesting a reduced prevalence of
canonical RTK-RAS alterations in EOCRC, potentially implicating alternative drivers in
tumorigenesis in this subgroup (Figure 2).

Figure 2. AI-HOPE-RTK-RAS analysis of RTK-RAS pathway alterations in early- vs. late-onset
colorectal cancer (CRC) patients. This figure illustrates the application of AI-HOPE-RTK-RAS to
evaluate age-related differences in RTK-RAS pathway alterations among CRC patients using a natural
language query and automated odds ratio framework. (a) The case cohort includes 153 early-onset
CRC (EOCRC) Hispanic/Latino (H/L) patients under the age of 50 (2.8% of the dataset) selected
using demographic filters. The pie chart displays the proportion of selected EOCRC H/L patients
relative to the full sample population. (b) The control cohort consists of 204 late-onset CRC (LOCRC)
H/L patients over the age of 50 (3.7% of the dataset), similarly selected by age and ethnicity. A
pie chart illustrates their representation within the dataset. (c) An odds ratio test compares the
frequency of RTK-RAS pathway alterations between the EOCRC and LOCRC H/L cohorts using
a 2 × 2 table and stacked bar plot. RTK-RAS alterations were present in 67.97% of early-onset and
79.9% of late-onset cases. The resulting odds ratio was 0.534 (95% CI: 0.33–0.865, p = 0.014), indicating
that early-onset H/L patients were significantly less likely to harbor RTK-RAS alterations than their
later-onset counterparts. This result suggests potential differences in molecular pathogenesis by
age within this population and underscores AI-HOPE-RTK-RAS’s capacity to support ancestry- and
age-stratified genomic analyses through natural language-driven precision oncology.

The observed lower prevalence of RTK-RAS alterations in early-onset CRC compared
to late-onset CRC is clinically significant, as it suggests that younger patients may harbor
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alternative oncogenic drivers not typically targeted by current standard-of-care therapies
such as anti-EGFR agents. In real-world settings, this molecular distinction may necessitate
age-stratified approaches to genomic testing and therapeutic planning. It also underscores
the importance of expanding biomarker discovery efforts beyond canonical RTK-RAS genes
to improve treatment options and precision medicine strategies for younger CRC patients,
particularly those from underrepresented populations.

3.2. Stage-Dependent Outcomes in KRAS-Mutant CRC

Analysis of KRAS-mutant patients receiving Bevacizumab revealed stage-related dif-
ferences in survival. Patients diagnosed with Stage I–III disease demonstrated significantly
better overall survival than those with Stage IV tumors (p = 0.0004), underscoring the
prognostic influence of stage and suggesting potential variation in response to targeted
therapies based on disease extent (Figure 3).

The Bevacizumab-treated cohort analyzed in this study consisted of patients with
documented exposure to Bevacizumab, as annotated in the cBioPortal-derived clinical
records. While all included patients received the drug, detailed information regarding the
specific chemotherapy regimen (e.g., FOLFOX, FOLFIRI), dosing frequency, or sequence
of administration was not uniformly available across the datasets. As such, variations in
the treatment protocol may have existed within the cohort. This heterogeneity represents
an inherent limitation of using public clinical-genomic datasets, and although the survival
analysis revealed a clear stage-dependent outcome difference (p = 0.0004), the influence of
specific regimen variations on treatment response could not be directly assessed. Future
studies with harmonized treatment metadata will be essential to further dissect regimen-
specific effects in Bevacizumab-treated subgroups.

We focused this survival analysis on KRAS-mutant patients treated with Bevacizumab
because these tumors are typically resistant to anti-EGFR therapies, and Bevacizumab
remains a widely used alternative in this molecular context. Examining this subgroup
allowed us to evaluate the prognostic impact of disease stage within a clinically relevant
treatment setting. The significantly better survival rate observed in Stage I–III patients
compared to Stage IV (p = 0.0004) reinforces the importance of early detection and may
inform treatment expectations in real-world care. While similar patterns may emerge with
other regimens, the survival effects could vary depending on the mechanism of action and
tumor biology. Future analyses incorporating additional treatment subgroups will help
further clarify these relationships.

3.3. Prognostic Role of MSI in BRAF-Mutant Disease

When evaluating microsatellite status in BRAF-mutant CRC, patients with stable MSI
were significantly more likely to have received chemotherapy (OR = 7.226, p < 0.001). De-
spite this, survival analysis indicated inferior outcomes for the MSI-stable group compared
to the MSI-instability counterparts (p = 0.00001), highlighting the complexity of MSI-related
treatment responses in BRAF-mutant contexts (Figure 4).

The finding that BRAF-mutant patients with microsatellite-stable (MSS) tumors were
significantly more likely to have received chemotherapy (OR = 7.226, p < 0.001) aligns with
current clinical guidelines and therapeutic strategies. MSI-stable tumors, which comprise
the majority of metastatic CRC cases, lack the immunogenic features typically seen in MSI-
high (MSI-H) tumors and are therefore less responsive to immune checkpoint inhibitors. As
a result, MSS patients are more often treated with cytotoxic chemotherapy, particularly in
the metastatic setting. Conversely, MSI-H tumors tend to exhibit a higher tumor mutational
burden and immune infiltration, making them more suitable candidates for immunotherapy.
The greater chemotherapy exposure among MSS patients in our dataset thus reflects
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standard-of-care treatment selection rather than inherent tumor aggressiveness, although
survival outcomes for MSS patients remained poorer in this BRAF-mutant subgroup,
highlighting the need for novel therapeutic approaches.

 

Figure 3. AI-HOPE-RTK-RAS survival analysis of KRAS-mutant colorectal cancer (CRC) patients
treated with Bevacizumab, stratified by tumor stage. This figure highlights AI-HOPE-RTK-RAS’s
capacity to perform integrative survival analysis using clinical, treatment, and mutation-specific
variables. The analysis focuses on CRC patients harboring KRAS mutations who received Beva-
cizumab, stratified by tumor stage. (a) Exploratory analysis summarizes the distribution of patients
across tumor stages. Bar plots show that among KRAS-mutant patients treated with Bevacizumab,
3171 were classified as Stage I–III and 2372 as Stage IV. Proportionally, Stages I–III represented
51.7% of the cohort, while Stage IV accounted for 38.7%, supporting adequate sample sizes for
comparative outcome analysis. (b) Pie charts illustrate the subset of patients selected for survival
comparison: the case group (Stages I–III) included 248 patients (4.5% of the dataset), while the control
group (Stage IV) included 498 patients (9.0%). These visualizations emphasize the relative cohort
sizes in the context of the broader population. (c) A Kaplan–Meier survival curve compares overall
survival between Stage I–III and Stage IV patients within the KRAS-mutant, Bevacizumab-treated
cohort. The analysis reveals a statistically significant survival advantage for patients with primary-
stage disease (Stage I–III), with a p-value of 0.0004. The distinct separation of survival curves and
non-overlapping confidence intervals further supports the observed outcome disparity. This figure
demonstrates AI-HOPE-RTK-RAS’s ability to automate complex stratified survival analyses in a
precision oncology context through conversational AI.
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Figure 4. AI-HOPE-RTK-RAS analysis of BRAF-mutant colorectal cancer (CRC) patients by mi-
crosatellite stability status. This figure illustrates AI-HOPE-RTK-RAS’s capability to interrogate
survival and odds ratio patterns in BRAF-mutant CRC patients stratified by microsatellite stability
(MSI) status and chemotherapy exposure. (a) The bar charts depict the distribution of MSI types
across the dataset. The top panel shows raw counts, with stable MSI (X0) comprising the majority
(n = 4682), followed by unstable MSI (X1, n = 586), indeterminate (X2, n = 188), and unknown
(X3, n = 49). The bottom chart displays proportions, confirming that stable MSI (84.5%) predominates,
with unstable MSI accounting for 10.6% of samples. (b) Based on the query, pie charts display the
relative distribution of selected patients: the case group includes 345 BRAF-mutant CRC patients with
stable MSI (6.2% of the dataset), and the control group includes 247 patients with unstable MSI (4.5%).
These proportions reflect meaningful yet relatively rare molecular subtypes. (c) An odds ratio test is
performed to evaluate the association between MSI status and chemotherapy exposure (specifically
Fluorouracil, Leucovorin, and Oxaliplatin) among BRAF-mutant CRC patients. A stacked bar plot
visualizes the outcome (In_Context vs. Out_of_Context). The odds ratio was 7.226 (95% CI: [4.995,
10.454], p < 0.001), indicating a significantly higher likelihood of chemotherapy use among patients
with stable MSI compared to those with unstable MSI. (d) Kaplan–Meier survival analysis compares
overall survival between the two groups. The curve shows significantly worse outcomes for the
stable MSI cohort relative to the unstable MSI cohort (p = 0.0000), with early divergence of survival
probabilities and non-overlapping confidence intervals. This result underscores the prognostic rele-
vance of MSI status in BRAF-mutant CRC and highlights AI-HOPE-RTK-RAS’s power in generating
clinical-genomic hypotheses using real-world datasets.

The observation that MSS patients received more chemotherapy but experienced worse
survival outcomes may seem counterintuitive, but reflects known biological differences
in tumor behavior and treatment response. MSS tumors are typically less immunogenic
and more aggressive than MSI-H tumors. Because MSI-H tumors often respond well to
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immunotherapy, MSS patients are more likely to be treated with standard chemother-
apy regimens. However, MSS tumors tend to be less responsive to chemotherapy and
have a poorer prognosis overall. This may explain why, despite receiving more treat-
ment, MSS patients in this cohort had worse survival rates compared to their MSI-H
counterparts. This observation highlights the importance of molecular profiling in guiding
treatment strategies.

3.4. Impact of RTK-RAS Alterations on EOCRC Treated with FOLFOX

In patients with EOCRC treated with FOLFOX, the presence of RTK-RAS pathway
alterations was associated with worse survival (p = 0.0262). However, ethnic distribution
between groups was statistically similar (OR = 1.00, p = 1.00), supporting the general
applicability of this finding across the EOCRC H/L population (Figure 5).

The subset of EOCRC patients included in the FOLFOX-related survival analy-
sis was identified based on documented exposure to FOLFOX in the clinical records
available through cBioPortal. However, details regarding the specific FOLFOX regimen
administered—such as oxaliplatin dose intensity, infusion schedule, cycle duration, or
whether the regimen was part of first-line versus adjuvant therapy—were not uniformly
reported across the datasets. Consequently, some variation in FOLFOX protocols likely
existed within the cohort. While this heterogeneity may influence treatment response
and survival outcomes, the platform’s ability to detect a statistically significant association
between RTK-RAS alterations and worse survival in this group (p = 0.0262) suggests a mean-
ingful underlying biological signal. Nonetheless, future work incorporating standardized
treatment metadata will be necessary to refine regimen-specific interpretations.

The observed association between RTK-RAS pathway alterations and poorer survival
among EOCRC patients treated with FOLFOX (p = 0.0262) suggests that RTK-RAS status
may serve as a prognostic marker within this treatment context. This finding has poten-
tial implications for clinical decision-making, as it indicates that standard chemotherapy
regimens like FOLFOX may be less effective in genetically defined subgroups of younger
patients. As precision oncology advances, identifying patients who are less likely to benefit
from conventional therapies could support earlier use of alternative or combination treat-
ment strategies, including targeted agents or clinical trial enrollment. Future studies with
prospective data are needed to validate this association and guide treatment adaptation
based on RTK-RAS mutation status in EOCRC populations.

3.5. Ancestry-Specific Mutation Enrichment

The platform revealed the enrichment of several noncanonical RTK-RAS alterations in
early-onset disease. CBL mutations were nearly five times more common in EOCRC H/L
versus LOCRC H/L patients (OR = 4.842, p = 0.071; Figure S1), and NF1 mutations showed
statistically significant overrepresentation (OR = 2.53, p = 0.045; Figure S2). Comparative
analyses between H/L and non-Hispanic White EOCRC patients confirmed higher fre-
quencies of MAPK3 (OR = 4.26, p = 0.043; Figure S3), CBL (OR = 4.07, p = 0.005; Figure S4),
and NF1 mutations (OR = 2.06, p = 0.021; Figure S5) in the Hispanic/Latino subgroup.

3.6. Tumor Location, Sex, and Prognosis in KRAS- and NF1-Mutated CRC

Further interrogation of KRAS-mutated CRC revealed no significant difference in
female representation (OR = 0.985, p = 0.955) or survival (p = 0.7774) between the proximal
and distal tumor locations (Figure S6). In contrast, patients with NF1-mutated primary
CRC tumors experienced significantly improved survival compared to their NF1 wild-type
counterparts (p = 0.0000), suggesting a possible protective or distinct molecular role of NF1
in early-stage CRC biology (Figure S7).
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Figure 5. AI-HOPE-RTK-RAS analysis of early-onset colorectal cancer (CRC) patients treated with
FOLFOX stratified by RTK-RAS pathway alteration. This figure presents the results of a natural
language query performed using AI-HOPE-RTK-RAS, examining the clinical and genomic impact of
RTK-RAS pathway alterations in early-onset colorectal cancer (EOCRC) patients of Hispanic/Latino
(H/L) ancestry treated with FOLFOX (Fluorouracil, Leucovorin, Oxaliplatin). (a) A histogram
displays the distribution of patient ages across the dataset, with a smooth density curve highlighting
the central tendency and spread. The mean age is 57.92 years, and the median is 57.75 years,
confirming the appropriateness of using <50 years as a cutoff to define EOCRC. (b) Pie charts show the
relative sample sizes of the defined cohorts. The case group includes 824 patients under age 50 with
RTK-RAS pathway alterations and FOLFOX treatment (14.9% of the dataset), while the control group
consists of 430 EOCRC patients without RTK-RAS alterations who also received FOLFOX (7.8%).
These visualizations reflect the selective filtering enabled through AI-HOPE’s natural language-
driven interface. (c) Kaplan–Meier survival curves compare overall survival between the case and
control groups. Although both cohorts were treated with FOLFOX, patients with RTK-RAS pathway
alterations showed moderately worse survival rates, with a p-value of 0.0262. The divergence of the
curves and non-overlapping confidence intervals suggest a potential prognostic effect of RTK-RAS
alterations in early-onset Hispanic/Latino CRC. (d) An odds ratio test was conducted to examine the
enrichment of Hispanic/Latino ethnicity among cases versus controls. The stacked bar plot illustrates
a 2 × 2 comparison of in-context (H/L) and out-of-context (non-Hispanic White-NHW) patients.
The odds ratio was 1.00 (95% CI: [0.687, 1.482], p = 1.00), indicating no significant enrichment of
Hispanic/Latino individuals in either group. This analysis underscores AI-HOPE-RTK-RAS’s ability
to execute multifaceted queries integrating clinical, genomic, and demographic variables to support
precision oncology research.

3.7. Additional Findings and Analytical Capabilities

Beyond hypothesis-driven queries, AI-HOPE-RTK-RAS facilitated the exploratory
investigation of mutation co-occurrence, therapeutic context, and demographic interaction
effects. For example, the platform enabled comparisons of chemotherapy exposure across
MSI subtypes, as well as associations between sex, stage, and survival in genetically defined
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subgroups. The system’s ability to map biological hypotheses onto real-world datasets
through conversational prompts accelerated pattern discovery and hypothesis generation.

AI-HOPE-RTK-RAS also demonstrated strengths in interpretability and transparency,
providing structured visual summaries (e.g., pie charts, bar plots, survival curves) along-
side contextual narrative descriptions. These outputs reduced the analytical barrier
for researchers without programming expertise and allowed for quick iterations of
refined queries.

4. Discussion
The development of AI-HOPE-RTK-RAS marks a significant advancement in precision

oncology, offering a conversational artificial intelligence platform tailored to interrogate
RTK-RAS pathway alterations in CRC. By leveraging large language models to enable
natural language interaction with genomic and clinical datasets, the system addresses
the critical limitations of traditional bioinformatics tools, including static interfaces and
restricted accessibility for non-specialists.

Our findings underscore AI-HOPE-RTK-RAS’s capacity to replicate known associa-
tions while uncovering novel molecular and clinical patterns, particularly among EOCRC
and high-risk populations. The reduced prevalence of canonical RTK-RAS mutations in
EOCRC H/L patients compared to later-onset cohorts (OR = 0.534, p = 0.014) aligns with
recent reports suggesting distinct etiologic and molecular profiles in younger patients.
These differences highlight the importance of age- and ancestry-stratified analyses to avoid
misclassification of risk and misapplication of therapeutic strategies.

Survival analyses further demonstrated AI-HOPE-RTK-RAS’s capability to delineate
prognostic variation across genetically defined subgroups. For instance, among KRAS-
mutant patients treated with Bevacizumab, those with Stage I–III disease had significantly
better outcomes than those with Stage IV tumors (p = 0.0004), emphasizing the prognos-
tic impact of stage even within mutation-defined cohorts. Additionally, our findings in
BRAF-mutant CRC showed that MSI-stable patients were more likely to receive chemother-
apy (OR = 7.226) but experienced worse survival than their MSI-unstable counterparts
(p = 0.00001), consistent with prior literature linking MSI status to immunogenicity and
treatment response.

Importantly, AI-HOPE-RTK-RAS revealed several ancestry-specific mutation pat-
terns that warrant further exploration. Enrichment of noncanonical RTK-RAS genes—
including CBL (OR = 4.07, p = 0.005), MAPK3 (OR = 4.26, p = 0.043), and NF1 (OR = 2.06,
p = 0.021)—in H/L EOCRC patients underscores the need to broaden biomarker discovery
efforts beyond canonical alterations such as KRAS and BRAF [5]. These findings are consis-
tent with recent efforts to characterize high-risk populations in cancer genomics, which
have revealed divergent molecular signatures with implications for targeted therapy and
biomarker development.

AI-HOPE-RTK-RAS also supported the exploration of sex, tumor location, and survival
outcomes in KRAS- and NF1-mutant contexts. While proximal and distal KRAS-mutant
tumors did not differ significantly in survival or sex representation (p = 0.7774; p = 0.955),
NF1-mutated primary CRC cases demonstrated significantly better survival than NF1
wild-type tumors (p = 0.00001), suggesting that NF1 may serve as a favorable prognostic
marker in early-stage disease. This finding is aligned with prior work implicating NF1 in
modulating MAPK signaling and tumor suppressor functions in various cancers [5,40–42].

NF1 plays a critical role as a negative regulator of the RAS-MAPK signaling cas-
cade by accelerating the conversion of active RAS-GTP to inactive RAS-GDP. Inactivating
mutations or loss of function in NF1 disrupts this regulatory checkpoint, resulting in sus-
tained RAS activation and amplified MAPK signaling downstream through RAF, MEK, and
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ERK. In the context of colorectal cancer, this mechanism provides an alternative pathway
for driving tumorigenesis in cases lacking canonical KRAS, NRAS, or BRAF mutations.
Our findings, which show significantly improved survival in NF1-mutated CRC cases
(p = 0.00001), suggest that NF1 alteration may define a biologically distinct subgroup
with differential MAPK pathway engagement and potentially unique therapeutic vulner-
abilities. This aligns with emerging evidence in other cancers where NF1 loss correlates
with MAPK dependency and may inform future strategies for targeted inhibition within
NF1-altered CRC.

Beyond hypothesis testing, AI-HOPE-RTK-RAS enabled exploratory data analysis
through iterative, language-driven workflows that required no coding. This functionality
proved particularly valuable in generating real-time insights into co-mutation frequency,
chemotherapy stratification, and context-aware survival differences. By unifying genomic
and clinical data into a conversational interface, the platform lowered barriers for precision
oncology research and empowered users to pursue complex analyses previously requiring
substantial computational expertise.

Nevertheless, certain limitations merit discussion. First, our analyses were restricted
to publicly available datasets, which may underrepresent minority populations or lack
detailed clinical annotations. Second, while the natural language interface is a major
strength, it relies on accurate query interpretation and context parsing, which may introduce
challenges for ambiguous or nested questions. Continued validation against curated
benchmarks and expanded integration with electronic health records will be essential to
improving generalizability and clinical adoption.

While AI-HOPE-RTK-RAS enables high-resolution stratification across age, ancestry,
and mutation status, we acknowledge that certain subgroup comparisons—particularly
between early-onset and late-onset CRC within specific demographic groups—were based
on modest sample sizes. This limitation may reduce the statistical power to detect small or
rare associations, increasing the risk of type II errors. Nevertheless, several of the observed
differences, such as the reduced prevalence of RTK-RAS alterations in EOCRC (OR = 0.534,
p = 0.014) and enrichment of NF1 and MAPK3 mutations in Hispanic/Latino subgroups
(p = 0.045 and p = 0.043, respectively), reached statistical significance, suggesting that the
detected effects are likely robust. The flexible, conversational nature of AI-HOPE-RTK-RAS
also allows researchers to iteratively refine queries and explore emerging trends that may
warrant further validation in larger or prospective datasets. Future work incorporating
broader population datasets and longitudinal designs will be essential to confirm these
findings and enhance the generalizability of ancestry- and age-specific patterns in RTK-RAS
pathway dysregulation.

Our findings suggest that NF1 mutations may be associated with differential survival
outcomes in early-stage CRC, particularly among patients receiving FOLFOX-based ther-
apy. While these associations are exploratory and drawn from retrospective data, they
highlight a potentially under-recognized biomarker that warrants further prospective val-
idation. Importantly, AI-HOPE-RTK-RAS is not a conventional bioinformatics pipeline
but an intelligent system capable of facilitating such discovery by allowing users to itera-
tively explore mutation-specific prognostic signals using natural language queries. This
feature supports rapid hypothesis generation and can guide the design of future biomarker
validation studies in early-stage CRC cohorts.

This study has several limitations that stem from the use of publicly available ge-
nomic datasets. First, clinical annotations such as treatment details, follow-up time, and
comorbidities were variably reported across studies, which may introduce missing data
and reduce the power or granularity of some subgroup analyses. Second, representation
bias is a known issue in public databases, where certain demographic groups—such as
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racial and ethnic minorities—are often underrepresented. This may limit the general-
izability of ancestry-specific findings, particularly in small cohorts such as the EOCRC
Hispanic/Latino subgroup. Additionally, while harmonization efforts were applied to
standardize the data, variation in sequencing platforms and annotation practices across
contributing studies could introduce batch effects. These limitations underscore the impor-
tance of validating key observations in larger, prospectively collected, and more diverse
datasets before applying them to potential clinical decision-making.

The observed lower prevalence of canonical RTK-RAS alterations in EOCRC sug-
gests the involvement of alternative oncogenic drivers in this subgroup. Previous studies
[5,17,25] point to the WNT and TGF-β signaling pathways as critical contributors to early-
onset tumorigenesis, particularly through aberrant β-catenin activation and SMAD4 loss,
respectively. Additionally, alterations in the PI3K/AKT/mTOR axis, epigenetic regulators
(e.g., ARID1A, KMT2D), and DNA damage response genes (e.g., ATM, CHEK2) have
been reported in EOCRC and may account for oncogenic signaling in RTK-RAS wild-type
tumors. In our analysis, enrichment of noncanonical mutations such as NF1, MAPK3,
and CBL, in EOCRC further supports the notion of distinct molecular mechanisms at play.
These findings underscore the need for expanded, pathway-level analysis beyond RTK-RAS
to better capture the heterogeneity of EOCRC and to identify potential therapeutic targets
tailored to these alternative oncogenic contexts.

The successful implementation of AI-HOPE-RTK-RAS in translational research settings
depends heavily on user adoption and appropriate training. While the platform is designed
for intuitive, natural language-based interaction, enabling non-programmers to perform
complex analyses, realizing its full potential requires users to understand key concepts
in clinical genomics, data stratification, and the interpretation of bioinformatics outputs.
To support this, we have provided comprehensive user documentation, example queries,
and annotated walkthroughs via a public repository (see Data Availability Statement).
Future efforts will include the development of interactive tutorials and workshops aimed
at both research and clinical audiences. By fostering a user-centered design philosophy
and lowering the technical barriers to entry, AI-HOPE-RTK-RAS aims to democratize
access to precision oncology tools and accelerate hypothesis generation across diverse
user communities.

Although statistical significance through p-values provides initial evidence of asso-
ciation, it does not reflect the magnitude or precision of the observed effects. To enhance
interpretability, we contextualized our findings using odds ratios and hazard ratios de-
rived from AI-HOPE-RTK-RAS queries and validated them against prior work [5], which
examined RTK-RAS alterations across large, demographically diverse colorectal cancer
cohorts. For example, the odds ratio of 7.226 for BRAF mutation enrichment in early-
onset microsatellite-stable tumors underscores a potentially actionable distinction in this
subgroup. Confidence intervals for key associations have now been added to the Supple-
mentary Materials to provide further clarity. These additions support a more rigorous
interpretation of clinical relevance and highlight the value of pairing AI-driven insights
with traditional statistical measures for translational impact.

While AI-HOPE-RTK-RAS was designed with accessibility and usability in mind—
enabling natural language interaction and eliminating the need for coding—formal usability
studies evaluating end-user satisfaction, learning curve, and workflow impact have not
yet been completed. This represents an important next step in validating the platform’s
real-world utility, particularly for clinicians, translational researchers, and precision on-
cology teams. Ongoing work includes structured usability testing with domain experts,
human-centered design feedback sessions, and integration pilots in academic medical
centers. These future evaluations will provide quantitative and qualitative evidence of user
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satisfaction and practical benefit, further strengthening the platform’s case for adoption in
diverse precision oncology workflows.

A critical consideration in the development of AI-HOPE-RTK-RAS is the potential for
bias in both the training methodology and the underlying genomic datasets, many of which
underrepresent racial and ethnic minority populations. To help mitigate this issue, our
study deliberately includes data from Hispanic/Latino patients with early-onset colorectal
cancer (EOCRC), enabling ancestry-stratified analyses that address gaps in population-
specific cancer research. While this inclusion improves representation, we recognize that
broader structural limitations remain across publicly available databases. Furthermore, the
training data used to fine-tune the LLaMA 3 model may also reflect linguistic and contextual
biases inherent in existing biomedical corpora. To address these challenges, future versions
of AI-HOPE-RTK-RAS will incorporate more diverse training datasets, expand support for
minority-focused query scenarios, and undergo targeted validation in underrepresented
populations. These efforts aim to ensure that the platform not only increases accessibility
but also advances equity in precision oncology research and application.

AI-HOPE-RTK-RAS leverages a fine-tuned LLaMA 3 large language model embedded
within a modular interpreter framework to process natural language queries. The system
first classifies user intent (e.g., mutation frequency, survival analysis, odds ratio testing),
followed by parameter extraction and real-time code generation. To address vagueness or
ambiguity, the model incorporates a confidence threshold mechanism; if the model confi-
dence falls below 0.80, a clarification loop is triggered to prompt the user for more specific
input. Nested queries—such as “Compare survival in EOCRC Hispanic/Latino patients
with KRAS mutations receiving FOLFOX”—are parsed using dependency resolution logic
that identifies and hierarchically organizes clinical and genomic modifiers. Fault tolerance
is further enhanced by rule-based guards that validate query structure, check for missing
inputs, and return interpretable error messages or suggestions. These design features
allow AI-HOPE-RTK-RAS to manage a wide range of user inputs, from simple lookups
to complex, multi-variable clinical-genomic investigations, while maintaining robustness
and accuracy.

While AI-HOPE-RTK-RAS represents a promising step toward democratizing ac-
cess to complex clinical-genomic analyses, several interpretability, regulatory, and ethical
challenges must be acknowledged before deployment in clinical decision-making. First,
although the platform provides natural language explanations of outputs and is fully open
source, users may need time and regular interaction with the system to build trust in its
capabilities and logic. By allowing researchers and clinicians to openly inspect, test, and
refine its components, we aim to foster transparency and user confidence over time. Second,
regulatory compliance remains a hurdle; AI-HOPE-RTK-RAS is currently intended for
research use only and has not yet been certified for clinical decision support. To promote
reproducibility and responsible deployment, the platform operates using a local, con-
tainerized AI framework, ensuring compliance with data privacy standards and enabling
consistent results across different environments. Third, ethical considerations—including
data bias, privacy protection, and equitable representation—must be actively addressed.
To help mitigate underrepresentation, we trained and validated the platform on multi-
ethnic CRC cohorts, including Hispanic/Latino patients. Nevertheless, continued vigilance
is required to ensure algorithmic fairness, inclusivity, and responsible translation into
clinical settings.

To overcome the limitations associated with the underrepresentation of certain pop-
ulations in existing genomic databases, future development of AI-HOPE-RTK-RAS will
incorporate real-world evidence (RWE) from diverse clinical settings and community health
systems. By integrating RWE—including electronic health records, registry data, and claims
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data—with genomic features, the platform can better reflect the heterogeneity of patient
populations across age, race/ethnicity, geography, and socioeconomic status. Addition-
ally, we recognize the importance of forming partnerships with global consortia such as
the AACR Project GENIE, ICGC-ARGO, and Latin American and Asian cancer networks.
These collaborations would enable access to more representative datasets and facilitate the
validation of AI-HOPE-RTK-RAS across diverse populations. Such efforts are critical for
reducing bias, enhancing model generalizability, and ensuring that AI-powered tools like
ours contribute meaningfully to health equity in cancer care.

AI-HOPE-RTK-RAS differs from conventional bioinformatics pipelines by functioning
as a dynamic, user-driven conversational agent capable of interpreting complex natural
language queries and executing real-time statistical and genomic analyses. While tradi-
tional benchmarking methods apply to fixed pipelines, AI-HOPE-RTK-RAS was validated
by replicating core analyses from our previously published harmonized CRC dataset [5],
including mutation frequency distributions, odds ratio calculations, and survival analy-
ses. These comparisons demonstrated concordance between AI-generated outputs and
established results. This validation approach underscores the system’s reliability and repro-
ducibility while recognizing that future efforts could further refine benchmarking protocols
tailored to interactive AI agents.

As an intelligent conversational agent, AI-HOPE-RTK-RAS dynamically generates
statistical analyses based on user queries rather than the pre-specified analytic workflows
typical of static pipelines. While this flexibility enhances usability and discovery potential,
it also necessitates clarity regarding the statistical foundations underlying its outputs. The
system applies standard methods for odds ratio estimation (e.g., Fisher’s exact test or
logistic regression) and survival analysis (Kaplan–Meier with log-rank tests), and where
applicable, it supports multiple testing correction using the Benjamini–Hochberg proce-
dure. However, given the exploratory nature of real-time queries, users are advised to
interpret unadjusted p-values with caution and consider applying correction strategies
in downstream analyses. Future updates of AI-HOPE-RTK-RAS will expand support for
automated adjustments and contextual alerts to further guide statistical interpretation and
ensure analytical robustness.

Unlike traditional platforms such as cBioPortal and OncoKB, which rely on static, click-
based user interfaces and require substantial manual effort to construct and execute queries,
AI-HOPE-RTK-RAS is a domain-specialized conversational AI agent designed to streamline
analysis through natural language interaction. While these existing tools are invaluable
for data access and visualization, they are not artificial intelligence systems and do not
support real-time, context-aware dialogue or automatic integration of clinical, genomic,
and demographic data. AI-HOPE-RTK-RAS significantly reduces the time and expertise
needed to perform multi-layered analyses, allowing users to ask complex questions—such
as survival differences stratified by age, mutation status, and treatment—in a single, plain-
language query. This capability enhances usability, accelerates hypothesis generation, and
expands access to precision oncology analytics for both experts and non-specialists.

To contextualize the utility of AI-HOPE-RTK-RAS, it is important to contrast it with
non-artificial intelligence agent tools such as cBioPortal, OncoKB, and traditional statistical
pipelines. These platforms typically rely on manual, click-based navigation or require
scripting expertise to perform complex analyses. In contrast, AI-HOPE-RTK-RAS features
a natural language interface that interprets user queries, dynamically generates statisti-
cal code, and produces results on demand. For example, a user can simply ask, “Show
me survival outcomes for BRAF-mutant patients with MSS tumors treated with Beva-
cizumab,” and instantly receive stratified Kaplan–Meier plots and statistical summaries.
While cBioPortal offers strong capabilities for exploratory visualization and OncoKB pro-
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vides curated biomarker annotations, neither supports real-time, conversational analysis
or flexible, user-defined multi-parameter subgrouping. Traditional pipelines, on the other
hand, often require pre-written scripts and offer limited interactivity. By adapting to user
intent, resolving ambiguity, and accelerating hypothesis testing without the need for coding,
AI-HOPE-RTK-RAS significantly broadens access to clinical-genomic interrogation. This
intelligent system enhances precision oncology research by making complex analyses both
intuitive and scalable for users of varying expertise levels.

The development of AI-HOPE-RTK-RAS builds on our previously published suite
of domain-specialized conversational AI systems, including AI-HOPE [43], AI-HOPE-
TGFβ [44], AI-HOPE-PI3K [45], and AI-HOPE-JAK-STAT [46]. Each platform was designed
to interrogate distinct oncogenic pathways in colorectal cancer using natural language-
driven, integrative analyses of clinical and genomic data. Compared to earlier agents,
AI-HOPE-RTK-RAS incorporates several advancements, including improved handling of
nested queries, enhanced ambiguity resolution, and a refined analytics pipeline capable of
real-time stratification across tumor stage, treatment type, and ancestry. While AI-HOPE
provided general pathway interrogation and subsequent agents focused on TGF-β, PI3K,
and JAK-STAT signaling, AI-HOPE-RTK-RAS specifically targets the RTK-RAS axis—one
of the most clinically actionable pathways in colorectal cancer—enabling direct exploration
of alterations in KRAS, NRAS, BRAF, EGFR, and related noncanonical genes such as
NF1 and MAPK3. This progression demonstrates the scalability of our conversational AI
framework and its adaptability to multiple oncogenic contexts, ultimately advancing the
goal of accessible, pathway-specific precision oncology research.

The modular architecture of AI-HOPE-RTK-RAS enables straightforward adaptation
to other oncogenic pathways and cancer types. Our lab has already developed related
AI agents—including AI-HOPE-PI3K, AI-HOPE-TGFβ, AI-HOPE-TP53, and AI-HOPE-
JAK-STAT—each tailored to interrogate specific molecular axes within colorectal cancer.
These agents leverage the same natural language-to-code interface and scalable backend,
facilitating pathway-specific stratification and hypothesis testing. Looking ahead, the
AI-HOPE framework can be further extended to support complex use cases such as clinical
trial matching, where eligibility criteria (e.g., biomarkers, stage, prior treatments) can be
encoded and queried through natural language. Integrating structured eligibility databases
(e.g., clinical trials databases) and linking with genomic and clinical data would allow
real-time identification of trial opportunities, particularly for underrepresented patients.
These enhancements align with our overarching goal of creating a flexible, open-source
ecosystem of AI agents that promote precision oncology across diverse populations and
care settings.

While AI-HOPE-RTK-RAS represents an important step toward democratizing access
to precision oncology tools, several limitations and future directions warrant consideration.
First, integration with institutional clinical systems such as Epic EHR and OnCore trial
management software will be critical for facilitating real-world clinical utility, including
potential support for prospective trial design and patient stratification. Second, validation
against large-scale, harmonized datasets such as AACR GENIE, SEER-Medicare, and data
from the National Cancer Institute’s Cancer Research Data Commons (CRDC) will enhance
generalizability and performance benchmarking. Third, we plan to expand the AI-HOPE
platform with features for AI-assisted clinical trial matching, including eligibility parsing,
biomarker filtering, and temporal treatment modeling. On the technical side, future
iterations will incorporate retrieval-augmented generation (RAG), active learning pipelines
for continual model refinement, and integrated explainability dashboards to improve
clinician trust and regulatory readiness. These specific enhancements aim to bridge the
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gap between advanced computational modeling and practical clinical implementation,
ultimately supporting a more inclusive, adaptive, and data-driven trial design in oncology.

Future work will focus on expanding and validating AI-HOPE-RTK-RAS in real-world
clinical environments. This includes prospective testing in hospital settings, integration
with electronic health records (EHRs) to support decision-making workflows, and align-
ment with regulatory standards such as HIPAA and IRB protocols. Ultimately, these
extensions will allow for broader clinical adoption and enable multi-pathway, multi-cancer
applications of conversational AI in precision oncology.

5. Conclusions
In conclusion, AI-HOPE-RTK-RAS provides a robust, scalable platform for investigat-

ing RTK-RAS biology in CRC, with applications in biomarker discovery, cancer genetics,
and treatment response stratification. By coupling AI-driven querying with real-time,
multimodal data integration, the system offers a new paradigm for accessible, interactive
precision oncology research. Future work will focus on extending AI-HOPE capabilities to
additional pathways, longitudinal datasets, and clinical decision support environments.
In summary, AI-HOPE-RTK-RAS represents a novel class of conversational AI systems
designed specifically for real-time, user-friendly exploration of integrated clinical and
genomic data. Unlike traditional tools that require manual data wrangling, static interfaces,
or coding expertise, AI-HOPE-RTK-RAS allows researchers and clinicians to ask com-
plex, multi-parameter questions in natural language and receive immediate, interpretable
results. This unique approach lowers the barrier to advanced bioinformatics analysis,
supports rapid hypothesis generation, and empowers broader participation in precision on-
cology research—particularly for underrepresented populations and early-onset colorectal
cancer cohorts.
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