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Abstract

Trust in Traditional Thai Medicine (TTM) among Thai people has been reduced due to a lack
of objective standards and the susceptibility of the general population to false information.
The emergence of generative artificial intelligence (Gen AI) has significantly impacted
various industries, including traditional medicine. However, previous Gen AI models
have primarily focused on prescription generation based on Traditional Chinese Medicine
(TCM), leaving TTM unexplored. To address this gap, we propose a novel fast-learning
fine-tuned language model fortified with TTM knowledge. We utilized textual data from
two TTM textbooks, Wat Ratcha-orasaram Ratchaworawihan (WRO), and Tamra Osot Phra
Narai (NR), to fine-tune Unsloth’s Gemma-2 with 9 billion parameters. We developed two
specialized TTM tasks: treatment prediction (TrP) and herbal recipe generation (HRG).
The TrP and HRG models achieved precision, recall, and F1 scores of 26.54%, 28.14%, and
24.00%, and 32.51%, 24.42%, and 24.84%, respectively. Performance evaluation against
TCM-based generative models showed comparable precision, recall, and F1 results with
a smaller knowledge corpus. We further addressed the challenges of utilizing Thai, a
low-resource and linguistically complex language. Unlike English or Chinese, Thai lacks
explicit sentence boundary markers and employs an abugida writing system without spaces
between words, complicating text segmentation and generation. These characteristics pose
significant difficulties for machine understanding and limit model accuracy. Despite these
obstacles, our work establishes a foundation for further development of AI-assisted TTM
applications and highlights both the opportunities and challenges in applying language
models to traditional medicine knowledge systems in Thai language contexts.

Keywords: Generative AI; traditional Thai medicine; artificial intelligence; fine-tuning;
Low-Rank Adaptation; natural language processing

1. Introduction
Traditional Thai Medicine (TTM) has been the foundation of the healthcare system

in Thailand for generations. For centuries, TTM and other traditional medicines (TMs)
have held a significant place in global health, and the WHO recognizes their importance
by incorporating TM knowledge and technologies in primary healthcare [1]. TTM, like
other TM systems, faces the common challenge of being rooted in empirical knowledge
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with limited objective standards. This results in complex and often ambiguous relation-
ships among formulations, individual herbs, and their associated therapeutic effects [2].
While TTM provides affordable healthcare solutions, patients with limited knowledge are
vulnerable to false claims about the efficacy of traditional remedies, which poses signifi-
cant concerns [3,4]. Therefore, it is essential to address this issue through evidence-based
validation and improved public education.

Artificial intelligence (AI) has become a popular tool in various fields, including
healthcare. Generative AI (Gen AI) is a subset of AI that has gained significant attention for
its capacity to generate new data [5]. However, current models cannot answer TTM-specific
questions or perform related tasks correctly. This lack of TTM knowledge will likely provide
inaccurate information [6,7] for those who wish to seek answers to health-related questions.
Because there is no TTM-related chatbot in Thailand, we aim to fill this gap by developing
a fine-tuned TTM language model.

Working with the Thai language for natural language processing (NLP) presents
unique technical challenges. Thai is considered a low-resource language due to the lim-
ited availability of annotated data sets and domain-specific corpora for training robust
models. In addition, Thai text is written without explicit word delimiters or spaces be-
tween words, making essential NLP tasks such as word segmentation considerably more
challenging compared to languages like English or Chinese. These fundamental linguistic
limitations complicate the development of accurate and efficient AI models tailored for
Thai, particularly in specialized domains such as TTM.

To guide our investigation, we focus on two core research questions: First, can LoRA-
tuned large language models (LLMs) effectively encode and generate accurate TTM recipes
and treatment predictions from available data? Second, how does the performance of these
TTM-specific models compare to large language models trained or fine-tuned on related
domains, such as Traditional Chinese Medicine (TCM)? By explicitly addressing these ques-
tions, our study aims to evaluate the potential of advanced language modeling techniques
for capturing complex and domain-specific knowledge in a low-resource language setting.

We utilized advanced techniques such as Low-Rank Adaptation (LoRA) [8]. This
method could improve the adaptability and efficiency of language models for TTM knowl-
edge adaptation. We developed two variants of language models for different tasks: treat-
ment prediction (TrP) and herbal recipe generation (HRG). Then, we collectively named
this framework AppHerb. After this, we tested the performance of the two models using
an external test set and evaluated their performance using standard evaluation metrics.
Our aim was that these models would ensure that users received accurate and safe infor-
mation regarding TTM treatment. Furthermore, the model’s ability to analyze complex
relationships among formulae, herbs, and efficacy could potentially facilitate new insights
and discoveries in TTM.

2. Materials and Methods
2.1. Material

We used a cloud computing service called Kaggle, which operates using the Python
programming language (version 3.10.12). Kaggle utilized two units of NVIDIA Tesla T4
GPUs as accelerators [9]. It is important to note that deep learning libraries like Unsloth
(version 066ec25 on 6 February 2025) and PyTorch (version 2.5.1) require NVIDIA GPUs to
perform parallel computing tasks efficiently [10,11]. The versions of Unsloth and PyTorch
were the latest at the time of the development.
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2.2. Base Model Selection

To select the best model suitable for our development, we refer to the exam scores
of the Thai LLM. One study assesses the performance of the Thai LLM with a model size
of less than 14 billion parameters, using the M3Exam benchmark [12] and various Thai
examination sets, consisting of the Ordinary National Education Test (ONET), the Invest-
ment Consultant (IC) exam, the Thai General Aptitude Test (TGAT), the Thai Professional
Aptitude Test 1 (TPAT-1), and the Applied Knowledge Level (A-level) [13]. The reason
for selecting a model size of less than 14 billion parameters was based on the capacity
assessment of our training hardware. The average results are shown in Table 1.

Table 1. Top 10 Thai LLM leaderboard on 30 October 2024 with the number of parameters less than
14 billion parameters.

No. Model Name Average Exam Score

1 api/claude-3-5-sonnet-20240620 68.41
2 api/gpt-4o-2024-05-13 66.26
3 api/gpt-4o-mini-2024-07-18 56.18
4 unsloth/gemma-2-9b-it 53.78
5 Tsunami-th/Tsunami-0.5x-7B-Instruct 53.08
6 openthaigpt/openthaigpt1.5-7b-instruct 53.03
7 Tsunami-th/Tsunami-0.5-7B-Instruct 52.62
8 SeaLLMs/SeaLLMs-v3-7B-Chat 51.38
9 Qwen/Qwen2.5-7B-Instruct 49.70
10 Konthee/Qwen2.5-7B-ThaiInstruct 48.44

Excluding language models that use an application programming interface (API), the
unsloth/gemma-2-9b-it exhibited the best average exam score among all models. Therefore,
we utilized the variant of this model called unsloth/gemma-2-9b-bnb-4bit (Gemma-2U)
as it possesses the best demonstration of Thai knowledge in the pre-training phase with a
4-bit BitsAndBytes format.

2.3. Data Preparation

Data were obtained by extracting herbal recipes and symptoms from two TTM re-
sources: Wat Ratcha-orasaram Ratchaworawihan (WRO) and Tamra Osot Phra Narai (NR).
The extraction process consisted of manual transcription from books to the computer’s
textual data in spreadsheet format.

Then, the data were cleaned by removing errors and inconsistencies in data to ensure
model training efficiency [14]. Given that this step would consume the majority of the
duration, effective data handling would substantially reduce both time and effort [15]. Since
TTM diseases compress several underlying symptoms, we extracted these symptoms into
list variables based on the WRO or NR itself. We used a mix of automated (see Algorithm
1) and manual replacement methods to minimize errors and ensure data validity. Human-
validated JSON file formatting was used for ontological mapping. We acknowledged this
process as the most critical step; therefore, we manually verified the spell corrections and
TTM references to ensure accuracy (see Supplementary Materials).

We prepared two types of data sets to pass into the language model:

1. Treatment Prediction (TrP) for 405 rows—The model received cleaned data of herbal
recipes as x and made next-word predictions as y about treatment based on the
provided x.

2. Herbal Recipe Generation (HRG) for 256 rows—The model received cleaned data of
symptoms presented as x and made next-word predictions as y, crafting appropriate
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herbal recipes to cure the provided x. Some formulas can treat the same symptoms,
so they were merged.

Algorithm 1 Python Algorithm Used in Data Preprocessing.

Input: DataFrame(X) = [Code, raw_data, herb_list, symp_list]
Output: DataFrame(Y) = [Code, raw_context, herbsymp] : shape = (N, 3)

1. Select Columns: It keeps only the columns “Code”, “raw_data”, “herb_list”, and
“symp_list” from a manually validated csv data set.

2. Clean Text: For every string column, it removes newline characters.
3. Remove Invalid Data: It drops any rows that have missing (null) values or are

duplicate rows.
4. Validate and Convert “symp_list”:

a. It checks whether each value in the “symp_list” column can be converted
(using eval) from a string representation to a Python list.

b. For debugging, it prints the “Code” value of any row that cannot be
converted.

c. It then actually converts the “symp_list” column from strings to Python lists.

5. Format the List: It reformats each “symp_list” so that if it contains multiple items,
the Thai word “และ” (which means “and”) is inserted before the last item, making
the phrasing natural in Thai.

6. Add a Combined Text Column: It creates a new column called “herbsymp” that
summarizes information about the herbs and symptoms. This column uses a
template that states the components (herb_list) and what conditions they treat
(symp_list), with Thai-language labels.

7. Normalize Digits: It converts any Thai numerals in the “raw_context” column into
standard Arabic numerals.

8. Output: It returns a new DataFrame with only the columns “Code”,
“raw_context”, and “herbsymp”, ready for use in training a model.

For the train–test data split, we divided the train and test sets in a ratio of 9:1 to ensure
that the model would learn the most from our limited and relatively small data set. With
this setting, the training and test sets for the TrP data set were 364 and 41 rows, respectively.
For the HRG data set, the training and test sets contained 229 and 26 rows, respectively.

2.4. Model Setup
2.4.1. Import Pre-Trained Model and Tokenizer

The tokenizer and pre-trained model were both loaded from the same directory,
Gemma-2U, to ensure consistent tokenization and embedding representations. The model
was imported using 4-bit precision to optimize memory efficiency without compromising
performance. The 4-bit size minimizes GPU memory usage, enabling more training effi-
ciency and time processing. The loading process was facilitated by the Unsloth library [16],
which is built on PyTorch [17].

2.4.2. Prompt Engineering

We adopted the Alpaca prompt format as a template and translated it into Thai. While
the model can handle various formats, including Alpaca, our instructions are constructed
based on best practices in prompt engineering, which emphasize clarity, precision, and
role-prompting [18]. For each task, two distinct instructions will be employed, as demon-
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strated. There is no variant in the prompt for each task. The full prompt is listed in
Supplementary Materials.

2.4.3. Low-Rank Adaptation

The key variables used are the rank of the low-rank matrices (r) and lora_alpha. The
rank of the low-rank matrices added during fine-tuning was 8, and lora_alpha is a scaling
factor that controls the level of influence of LoRA layers on the final model’s behavior [19].
Table 2 provides the complete set of LoRA parameters to facilitate reproducibility of our
experimental results. All values were based on Unsloth’s recommendation for Gemma-2U.

Table 2. LoRA Parameters Configuration.

Variable Name Python Variable Value

Rank r 8
Alpha lora_alpha 16

Drop out lora_dropout 0
Bias bias “none”

Random state random_state 3407
Rank stabilized LoRA use_rslora False

LoftQ loftq_config False

2.4.4. Fine-Tuning

We fine-tuned each model three times to calculate the average training loss using the
Unsloth framework, which is built upon Gemma-2, an open-source model developed by
Google that underpins the Gemini family [20], as illustrated in Figure 1.

Figure 1. Gemma-2 9B Model Architecture.
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We imported Gemma-2U, a 9-billion-parameter (9B) model. Subsequently, the Unsloth
framework was applied to modify the original architecture by integrating 42 Query, Key,
and Value (QKV) layers. This modification significantly enhanced memory and time
efficiency, allowing fine-tuning to run twice as fast while reducing video random access
memory (VRAM) usage by 63% [21]. Since VRAM stores GPU-related data [22], lowering
its consumption allows more memory for other computations during training. Notably,
Gemma-2 employs a specialized attention mechanism known as group query attention,
which delivers quality comparable to multi-headed attention and speed on par with multi-
query attention [23,24]. The detailed trainer configurations are provided in Table 3.

Table 3. Trainer Parameter Configurations.

Variable Name Python Variable TrP and HRG

Steps max_steps 300
Batch Size per_device_train_batch_size 2

Gradient Accumulation gradient_accumulation_steps 4
Warmup Steps warmup_steps 10
Learning Rate learning_rate 5.00 × 10−5

Use Half Precision fp16 False
Use Brain Float 16 bf16 True

Optimizer optim “adamw_8 bit”
Weight Decay weight_decay 0.1

Learning Rate Scheduler lr_scheduler_type “cosine”
Seed seed 3407

2.5. Model Evaluation

Prior to evaluation, the saved text was tokenized using the PyThaiNLP deepcut en-
gine [25], which offers the most granular Thai word segmentation among available tok-
enization tools [26].

The main modes of evaluation were the precision, recall, and F1 score. LCS(R, G) was
the length of the longest common subsequence. |G| was the length of generated tokens,
where G represents the set or sequence of generated tokens, and the length of reference
tokens was denoted as |R|, where R represents the set or sequence of reference tokens.

Precision =
LCS(R, G)

|G| (1)

Recall =
LCS(R, G)

|R| (2)

F1 = 2 · Precision · Recall
Precision + Recall

(3)

To further capture semantic analysis, we used BERTScore to compute semantic simi-
larity between generated tokens and reference tokens through contextual embeddings from
a transformer model [27]. Specifically, we employed the “xlm-roberta-base” model [28],
which is a multilingual model that supports the Thai language. We also included the
Bilingual Evaluation Understudy (BLEU) score, a precision-based metric that measures
the number of contiguous word sequences in the generated text that match those in the
reference text.

Each task required specific parameter settings to achieve optimal evaluation metrics
for the traditional precision, recall, and F1 score, as Gemma-2U occasionally generated
repetitive and nonsensical text. To mitigate this, we experimented with various config-
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urations involving three key parameters as shown in Table 4: Repetition penalty, Min-P,
and Temperature:

Table 4. Configuration Used for TTM Tasks: TrP and HRG.

Variable Name Python Variable
Value

TrP HRG

Repetition penalty repetition_penalty 1.1 1.2
Min-P min_p 0.6 0.6

Temperature temperature 0.75 0.85

Repetition penalty (repetition_penalty) penalizes repetitive tokens, encouraging more
meaningful and varied responses [29].

Min-P (min_p) limits the model’s sampling to a smaller set of high-probability tokens.
High value ensures that the model samples only from the most probable next token [30].

Temperature encourages more deterministic outputs while maintaining some creativ-
ity [31].

3. Results
For the TrP training data set, Gemma-2U exhibited a maximum average training loss

of 270.00%, which progressively decreased over the course of 300 training steps, reaching a
minimum loss of 18.20%, as illustrated in Figure 2. Similarly, for the HRG training data set,
the model recorded a maximum average training loss of 312.25%, which was reduced to
19.78% after 300 training steps, as shown in Figure 3. The AppHerb fine-tuning process
took approximately 59 min to 64 min for TrP and 66 min to 74 min for HRG.

Figure 2. Average Training Loss Result for Executing TrP Three Times on Gemma-2U.

Figure 3. Average Training Loss Result for Executing HRG Three Times on Gemma-2U.
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Gemma-2U was trained separately for different data sets, leading to the first ver-
sion of AppHerb, which includes two variations: TrP task and HRG task. We evaluated
system performance using mean (triplicate) precision, recall, and F1 scores with 95% boot-
strapped confidence intervals to account for test set variability. For the test set, the TrP
exhibited mean precision, recall, and F1 scores of 26.54, 28.14, and 24.00 percent, respec-
tively. Similarly, the HRG exhibited mean precision, recall, and F1 scores of 32.51, 24.42,
and 24.84 percent, respectively. All AppHerb test performance is shown in Table 5, where
“Gemma-2U-” represents the original model before fine-tuning with the bootstrapped
confidence interval included.

Table 5. AppHerb Test Performance Results Before (Gemma-2U) and After Fine-Tuning.

Model-Task
Precision Recall F1

Mean 95% CI Mean 95% CI Mean 95% CI

AppHerb-TrP 26.54 [21.95–31.76] 28.14 [23.38–33.46] 24.00 [18.65–28.89]
Gemma-2U-TrP 2.70 [2.22–3.19] 30.37 [28.59–32.24] 4.44 [3.80–5.09]

AppHerb-HRG 32.51 [29.12–35.58] 24.42 [22.47–26.56] 24.84 [23.19–26.70]
Gemma-2U-HRG 17.46 [14.24–20.91] 3.51 [2.37–5.24] 4.44 [3.33–5.94]

AppHerb’s BERTScore: precision, recall, and F1 exhibited 84.10, 84.77 and 84.39,
respectively, for TrP, and 85.19, 84.24 and 84.68, respectively, for HRG (see Table 6). Addi-
tionally, AppHerb-TrP and -HRG’s BLEU scores were 74.28 and 76.16, respectively (see
Table 7). These results highlight the importance of reporting confidence intervals alongside
point estimates, particularly with limited test sizes.

Table 6. AppHerb Test BERTScore Results Before and After Fine-Tuning.

Model-Task
BERT Precision BERT Recall BERT F1

Mean 95% CI Mean 95% CI Mean 95% CI

AppHerb-TrP 84.10 [74.18–100.00] 84.77 [83.73–86.01] 84.39 [83.33–85.45]
Gemma-2U-TrP 74.62 [67.90–78.99] 80.28 [79.98–80.59] 77.33 [76.99–77.67]

AppHerb-HRG 85.19 [80.92–89.60] 84.24 [83.69–84.75] 84.68 [84.27–85.11]
Gemma-2U-HRG 77.58 [74.90–81.99] 74.81 [74.04–75.63] 76.16 [75.62–76.78]

Table 7. AppHerb Test BLEU Results Before and After Fine-Tuning.

Model-Task BLEU [95% CI]

AppHerb-TrP 74.28 [73.01–75.63]
Gemma-2U-TrP 22.99 [22.64–23.31]
AppHerb-HRG 76.16 [75.38–76.90]

Gemma-2U-HRG 10.33 [9.39–11.23]

4. Discussion
In this study, we found that the HRG model shows inconsistency in training loss

reduction compared to the TrP model. This may be attributed to the structure of the HRG
data set, in which the input (x) is relatively brief, while the expected output (y) is more
complex and lengthier. In contrast, the TrP data set exhibits the opposite structure, where
the input (x) is relatively long and descriptive, while the output (y) consists of a short
disease name or clinical outcome. To enhance the training performance of the HRG model,
future studies should consider incorporating more diverse data. Additionally, adjusting
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the LoRA parameters or adopting a new base model could further improve the model’s
generative capabilities.

AppHerb-TrP achieved a BERT F1 score of 84.39 (95% CI: [83.33–85.45]), compared
to Gemma-2U-’s 77.33 (95% CI: [76.99–77.67]), indicating a notable improvement in the
model’s ability to correctly identify and generate relevant treatment outputs after fine-
tuning. Precision and recall were also improved, with a marked improvement in precision
(84.10 vs. 74.62), suggesting that AppHerb-TrP produced more accurate and relevant
treatment predictions with fewer false positives. AppHerb-HRG outperformed its base
model, with a BERT F1 score of 84.68 (95% CI: [84.27–85.11]) compared to 76.16 (95% CI:
[75.62–76.78]) for the base model. Gains in both precision and recall indicate that the
fine-tuned model was not only generating more precise herbal recipes but was also better
at capturing relevant components.

We observed a linguistic complexity in the data cleaning step. Gemma-2U was pre-
trained on Thai examinations, which is based on modern Thai language, while our TTM
data was a traditional form of the Thai language used at least 200 years ago. We preserved
the original wording for two reasons: to maintain familiarity for TTM practitioners, and
because some words cannot be accurately translated into modern Thai. The significant
change made was expanding the disease into symptoms (TrP data set), and a mix of
manually and automatically extracting plant common names from the data (HRG data set).

A total of 9 out of 41 cases exhibited precision higher than 50 percent, and they were
related to the fire element (5 cases), wind element (2 cases), and urinary tract-related disease
(1 case). When examining the results generated by the HRG model, higher performance was
observed in cases related to skin diseases. Notably, 4 out of 27 cases achieved a precision of
50% or higher, with 2 of those cases involving skin-related conditions. This result suggests
that the AppHerb model may be effective in addressing TTM and skin-related problems.
See Supplementary Materials for more details.

After analyzing the best and worst performance from the test set, we found that
reference tokens in the TrP task were shorter and typically contained only a single entity,
which was sets of symptoms. Therefore, the scoring outcome tended to be all-or-none. F1
score ranged from 0 to 100%. In contrast, for HRG, the reference tokens were lengthier and
richer in entities such as the part of the plant used, method of preparation, and symptoms of
treatment. For this reason, the model’s scoring outcome differed from that of the other task,
as reflected in the HRG F1 scores, which ranged from approximately 13 to 37%. However,
these scores are intended primarily for comparison with the original TTM textbooks. The
generated output should be further evaluated by experts in TTM to ensure clinical relevance
and appropriateness.

To better understand the generation hyperparameter, we conducted a sensitivity
analysis to ensure the model’s best performance and study how different combinations of
hyperparameters affect the model score, as shown in Figure 4 for TrP and Figure 5 for HRG,
and extended details are provided in Supplementary Materials. However, we acknowledge
that our exploration of hyperparameter configurations was not expansive, as the peak
model F1 scores remained modest (F1 = 24.00 and 24.84). Based on these results, we do
not expect that more extensive hyperparameter tuning alone would yield a substantial
improvement in performance without addressing broader challenges such as data quality,
model architecture, or domain knowledge integration.
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Figure 4. TrP F1 Score Hyperparameter Sensitivity Analysis.

Figure 5. HRG F1 Score Hyperparameter Sensitivity Analysis.

LoRA has become a critical component in language model development, as it has been
shown to deliver fine-tuning performance on par with, or even superior to, traditional
methods in LLMs [8]. In this study, this process is not only used to address hardware
limitations but also to preserve the original 9B parameters of the base model. During fine-
tuning, only the newly added LoRA layers are updated, while the base model remains static.
This approach significantly improves time efficiency and reduces hardware demands.

AppHerb (post-fine-tune stage) models significantly outperformed Gemma-2U (base
model) for the different tasks, except the superior recall score for Gemma-2U-TrP. The
model’s performance was comparable to existing models, as stated in the literature review
chapter. Table 8 and Figure 6 provide a preliminary comparison of AppHerb performance
results in HRG with two much larger TCM language models that perform similar tasks:
GSCCAM [32] and RoKEPG [33]. While the initial results (F1 = 24.84 vs. 29.99 and 25.92)
appear encouraging, several important limitations must be considered. We used a 575-times
smaller training data set (229 rows compared to over 100,000 rows in GSCCAM), which
inherently caused overfitting and consequently constrained its generalizability. While
the reported F1 scores (26–31%) demonstrate some predictive capability, these modest
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scores are far from indicating reliable performance. Our work represents an application of
established methods to a specific domain rather than a novel methodological invention.
Furthermore, this work constitutes a proof-of-concept that has not undergone clinical
validation, which would be a necessary step before considering any practical applications
in healthcare settings.

Table 8. AppHerb and TCM Models: GSCCAM and RoKEPG’s Base Model and Training Data
Comparison.

Model Name Base Model Training Data Size

AppHerb Gemma-2 229 rows of Symptoms-prescription data set

GSCCAM Custom 106,168 data for Symptoms-prescription
25,563 data for Prescription-efficacy

RoKEPG RoBERTa 13.5 M words

Figure 6. Comparison of AppHerb Performance to TCM Agents for Prescription Generation Task.

To enhance model transparency, we attempted to visualize a self-attention matrix of the
base model. However, the Unsloth model does not allow output attentions. Consequently,
we explored alternative Gemma-2 variants with characteristics similar to the Unsloth model
(9B parameters and 4-bit quantization).

We selected the “StoyanGanchev/gemma-2-9b-nf4” model, which features 9B pa-
rameters and utilizes the NormalFloat4 datatype. Figure 7 illustrates the self-attention
matrix generated for the sentence, แบบจาํลองภาษาสาํหรับแนะนาํตาํรับแผนไทย (Language model for
recommending traditional Thai medicine). The input sentence was tokenized into
[แบบ, จาํ, ลอง, ภาษา, สาํหรับ, แนะนาํ, ตาํ, รับ, แผน, ไทย] and self-attention was performed to explore
inter-sentential relationships. The Gemma-2 model employed in this study comprises
42 layers, each with 16 attention heads. The visualized self-attention matrix represents the
averaged attention weights across these 16 heads for a specific layer.
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Figure 7. Thai Sentence’s Self-Attention Matrix of a Gemma-2 Variant. The x- and y-axis represents
series of tokens from the Thai sentence. Darker color shows high correlation between tokens, while
lighter color shows low correlation between tokens.

For a given layer’s attention tensor A (where Ab,h,i,j is the weight from the source
token j to the target token i in batch b and head h), between the i-th target and j-th source
token for a single input (batch 1) across all H heads:

Ai,j =
1
H

H

∑
h=1

A1,h,i,j (4)

The distribution of attention weights varied across the model’s layers. A prominent
pattern was the strong correlation of the first token’s attention with all other tokens. How-
ever, it is important to emphasize that the group-query attention patterns we observed
in the Gemma-2 variant workaround may not necessarily generalize to the LoRA-tuned
model or other variants applied to different tasks or data domains. Moreover, we did not
compare the model’s performance and attention behavior between LoRA and non-LoRA
variants, which may be worth exploring in a future study. A direct comparison would
be valuable for validating and extending these attention mechanisms in the context of
LoRA-based fine-tuning.

The challenge of this study is that it is based on the Thai language, which is a low-
resource language, which may affect the accuracy of text generation in a multilingual model
like the Gemma family. Unlike English or Chinese, the Thai language lacks explicit sentence
boundary markers such as full stops, allowing for unlimited nested sub-sentences that can
make it a difficult learning system for a machine. In terms of writing system, Thai language
is an abugida, where consonants and vowels are combined in complex ways, and words
are written without spaces—necessitating advanced segmentation techniques. In contrast,
the Chinese language is a logographic writing system, where each character represents a
word or concept. This comparison highlights the inherent complexity of the Thai language
and the difficulties it poses for NLP tasks. A bilingual or monolingual LLM pre-trained on
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a Thai corpus may better assess the impact for low-resource language understanding and
perhaps better utilize our TTM data set. Despite these challenges, our preliminary findings
suggest potential for further development, while acknowledging the substantial differences
in scale and scope between our application and the established Chinese medicine models
we referenced.

Potentially, AppHerb could support a range of practical uses. In educational settings,
the system may serve as an interactive tool for students, health practitioners, or the general
public to explore TTM knowledge and receive clear explanations of traditional concepts,
formulas, and practices. Educators might use the platform to design exercises that improve
students’ understanding of herbal ingredients, treatment methods, or the rationale behind
specific TTM prescriptions. In clinical environments, a validated form of AppHerb could
assist practitioners by offering rapid, possible suggestions for herbal treatments, facilitating
the preparation of herbal formulas.

Future work will need to address the current limitations by expanding data sets,
enhancing model transparency, collaborating with TTM practitioners, and refining the
fine-tuning approach to improve performance and reliability for real-world testing. While
our current model was limited to 14 billion parameters due to hardware constraints,
future iterations may explore the use of larger-scale models, which could offer enhanced
representational power and improved predictive performance. Additionally, the next
version of model development may incorporate multilingual models or character-level
tokenizers, which can help alleviate segmentation challenges in low-resource language
data sets and improve model robustness across diverse languages and scripts.

5. Conclusions
This study presents a domain-specific application of language model fine-tuning

for traditional Thai medicine, focusing on TrP and HRG tasks. By utilizing LoRA, the
fine-tuning process became significantly faster, more memory-efficient, and hence more
accessible, making it suitable for low-resource languages like Thai. Our proof-of-concept
model achieved promising initial results when compared to the gigantic TCM models such
as GSCCAM and RoKEPG. We acknowledge the substantial differences in scale, scope,
and maturity between these projects. It is important to emphasize that clinical validation
remains an essential next step that would need to be completed before consideration of
practical implementation.

To the best of our knowledge, AppHerb represents one of the first attempts at develop-
ing a language model specifically for representing TTM knowledge in Thailand. While our
work is modest in scale compared to established models in TCM, it provides a foundation
for future research in this understudied domain.

For practical application, the AppHerb models are available for immediate testing
and further development. The TrP and HRG models can be accessed via Hugging Face at
https://huggingface.co/thanawatpi/appherb-treatment-pred-beta (accessed on 25 July
2025) and https://huggingface.co/thanawatpi/appherb-herb-rec-gen-beta (accessed on
25 July 2025), respectively. Additionally, a Thai-language chat interface is provided at
https://github.com/aptheory/appherb-alpha (accessed on 25 July 2025) to demonstrate
real-world usage. While these tools are readily accessible, clinical validation is essential
before deployment in healthcare settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ai6080170/s1, Data preparation phase: Table S1. Examples of
raw data from WRO and NR combined, Table S2. Example of disease-to-symptom mapping, Table S3.
Example of the preprocessed data set, Table S4. An example of the Treatment Prediction task (TrP),
Table S5. Example data of the Herbal Recipe Generation task (HRG), Table S6. Alpaca prompt

https://huggingface.co/thanawatpi/appherb-treatment-pred-beta
https://huggingface.co/thanawatpi/appherb-herb-rec-gen-beta
https://github.com/aptheory/appherb-alpha
https://www.mdpi.com/article/10.3390/ai6080170/s1
https://www.mdpi.com/article/10.3390/ai6080170/s1
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template in English and Thai, and Table S7. Instructions for TTM tasks. Tokenizer selection for
evaluation: Table S8. Thai sentence tokenization results. Raw contents of text generation tasks:
Table S9. TrP outputs that achieved more than 50 percent precision and Table S10. HRG outputs that
achieved more than 50 percent precision.
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A-level Applied Knowledge Level
AI Artificial Intelligence
API Application Programming Interface
BLEU Bilingual Evaluation Understudy
CI Confidence Interval
CPU Central Processing Unit
DL Deep Learning
Gen AI Generative Artificial Intelligence
Gemma-2U Unsloth’s Gemma-2 with 9 billion parameters
GPU Graphics Processing Unit
HRG Herbal Recipe Generation
IC Investment Consultant (exam)
LLM Large Language Model
LoRA Low-Rank Adaptation
NLP Natural Language Processing
NR Tamra Osot Phra Narai
NSRF National Science, Research, and Innovation Fund
ONET Ordinary National Education Test
QKV Query, Key, and Value
QLoRA Quantized Low-Rank Adaptation
TCM Traditional Chinese Medicine
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TGAT Thai General Aptitude Test
TKMM Task-Qualified Knowledge Base Matching Module
TPAT-1 Thai Professional Aptitude Test 1
TrP Treatment Prediction
TTM Traditional Thai Medicine
VRAM Video Random Access Memory
WHO World Health Organization
WRO Wat Ratcha-orasaram Ratchaworawihan
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