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Abstract

Forest degradation and hunting are two major drivers of species declines in tropical
forests, often associated with forest production activities and infrastructure. To assess
how the medium-to-large bodied terrestrial vertebrate community varied across these
two main gradients of anthropogenic impact, we conducted a camera-trap survey
across three production forest reserves in central Sabah, Malaysian Borneo, each with
different past and current logging regimes. We analyzed data from a 32-species com-
munity using a Bayesian community occupancy model, investigating the response of
occurrence, diversity, and composition to forest degradation and accessibility (a proxy
for hunting pressure). We found forest degradation to be a strong driver of occurrence
of individual species. Such responses led to declines in diversity and shifts in com-
munity composition, where forest-dependent species decreased while disturbance-
tolerant species increased in occupancy probability with increasing forest degradation.
Accessibility had a weaker effect on community diversity and species occupancy, and
low-level hunting pressure and management of access to our study sites likely played
an important role in mitigating accessibility effects. Nonetheless, our results showed
accessibility had compounding effects on a wildlife community already affected nega-
tively by forest degradation. Despite the impacts of forest degradation and accessibil-
ity on the terrestrial vertebrate community, our results highlight how the application of
more sustainable practices—reducing forest disturbance and managing unauthorized
access to logging roads—resulted in more intact wildlife communities. Understanding
how both disturbances combined affect the terrestrial vertebrate community is essen-
tial for evaluating and developing effective sustainability guidelines.

Abstract in malay is available with online material.
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1 | INTRODUCTION

Tropical rainforests are some of the most biodiverse regions with
faunal diversity playing an essential role in maintaining ecosystem
function and services (Andresen et al., 2018; Barlow et al., 2018).
Terrestrial vertebrates in particular serve as indicators of ecosys-
tem health while serving essential roles, for example as predators
and/or seed dispersers (Ahumada et al., 2011; Bogoni et al., 2020).
Much of the tropical forests, however, have been lost (Hansen
et al., 2013). Southeast Asia in particular shows higher deforesta-
tion rates than other tropical regions (Miettinen et al., 2011; Stibig
et al., 2014), having lost an estimated 610,000 square kilometers of
forest between 2001 and 2019 (Feng et al., 2021). Consequently,
the region has the highest proportion of threatened and endemic
vertebrates compared to other tropical regions (Jenkins et al., 2013;
Sodhi et al., 2004).

As of 2015, Southeast Asia was covered in 206.5 million hectares
of forest, of which 38.3 million ha were considered intact and 38.5
million ha were protected areas (Estoque et al., 2019). The degrada-
tion of remaining forests through logging and clearing for industrial
tree plantations leads to changes in forest structure and composi-
tion (Chaudhary et al., 2016; DeFries et al., 2005; Sodhi et al., 2010).
Such disturbances alter habitat quality and are recognized as a major
driver of biodiversity loss across Southeast Asia (Barlow et al., 2016;
Curtis et al., 2018; Wilcove et al., 2013). The structure and com-
position of wildlife communities can vary significantly between dif-
ferent land uses and primary forest (Barlow et al., 2007; Edwards
et al., 2014), though these effects may also vary across taxonomic
groups (Barlow et al., 2007; Hill & Hamer, 2004). For tropical mam-
mal communities, there is mixed evidence on the impacts of for-
est degradation on species richness (Boron et al., 2019; Brodie,
Giordano, & Ambu, 2015; Wall et al., 2021), but modified landscapes
harbor lower mammalian diversity and less even communities (dom-
inated by few, more abundant species) compared to intact forests
(Ahumada et al., 2011; Boron et al., 2019).

The magnitude of these changes varies with timber extraction
techniques. Logging by clear-cutting is the most destructive, leav-
ing an area deforested, altering abiotic conditions, and reducing
biodiversity (Chaudhary et al., 2016; Pawson et al., 2006). With
conventional selective logging, only the trees above a certain diam-
eter are harvested, and remaining forests can harbor similar faunal
communities to intact forest if trees are harvested at low densities
(Edwards et al., 2014, Chaudhary et al., 2016). But disturbance from
high intensity selective logging leaves the remaining forest de-
graded (Burivalova et al., 2014, Bicknell et al., 2014, Chaudhary et al
2014, Jamhuri et al., 2018). Reduced impact logging (RIL) is consid-
ered to be a sustainable timber harvest system for conserving bio-
diversity and ecosystem services (Putz et al., 2001, 2008). Under
RIL, forest degradation is reduced through preharvest inventories
and planning, careful placement of logging roads and skid trails,
directional felling of trees, and postharvest silviculture treatments
(Edwards et al., 2012; Putz et al., 2001). Compared to other logging
regimes, RIL has been shown to have the smallest impact on faunal
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communities which are similar to communities in unlogged, primary
forest (Bicknell et al., 2014; Bicknell & Peres, 2010; Burivalova
et al., 2015; Edwards et al., 2012).

Though sustainable logging practices like RIL result in less forest
degradation, any forest production activity is associated with road
infrastructure, increasing accessibility for other human activities
such as hunting (Brodie, Giordano, Zipkin, et al., 2015; Clements
et al., 2014). Overexploitation of wildlife through hunting rep-
resents another major driver of biodiversity declines in Southeast
Asia (Benitez-Lopez et al., 2017; Gray et al., 2018; Tilker et al., 2019),
causing local extinctions and reduced species diversity and abun-
dance (Martinez-Ramos et al., 2016). The loss of large-bodied spe-
cies such as herbivores can have cascading effects, shifting to a
community dominated by smaller mammals such as rodents (Koerner
et al., 2017; Scabin & Peres, 2021) and further altering the vegeta-
tion composition, affecting forest structure and function (Martinez-
Ramos et al., 2016). For production forest management pursuing
or adhering to sustainable forest certification schemes, hunting is
restricted or prohibited (Robinson et al., 2009). Conversely, where
there is no management of hunting, even structurally intact forests
can be largely devoid of wildlife (Benitez-Lépez et al., 2019; Tilker
et al.,, 2019). Hunting activity, however, is challenging to measure
directly or quantify. Traditional methods, such as social surveys,
are fraught with biases, as people may not report their illegal activi-
ties honestly (e.g., Nuno & St John, 2015). The utilization of camera
trap records of human presence similarly may not accurately reflect
hunting intensity (Dobbins et al., 2020), as hunters cannot always
be distinguished from other people. Rather than attempting to mea-
sure hunting directly, hunting potential can be quantified based on
accessibility, which is a key determinant of actual hunting pressure
(Clements et al., 2014; Laurance et al., 2006; Ziegler et al., 2016).
A function of access points and terrain characteristics (Rees, 2004),
accessibility can readily be determined from remotely sensed
information.

Even though both habitat degradation and hunting are well
known to impact communities of tropical wildlife, their effects are
rarely assessed together (Eigenbrod et al., 2008, Deere et al., 2020,
but see Brodie, Giordano, Zipkin, et al., 2015; Symes et al., 2018).
Our objective was to jointly assess how diversity of the medium-to-
large bodied terrestrial vertebrate community varied across the two
main gradients of anthropogenic impact in tropical forests—forest
degradation (due to logging activities) and potential hunting pressure
(due to logging-related infrastructure)—in three production forest
reserves with different past and current logging regimes. We expect
community diversity to decline with increasing forest degradation
and accessibility, but because access to all reserves is well-managed,
we expect forest degradation to be a stronger driver. As species
associations with forest degradation and accessibility vary across
the community (Sollmann et al., 2017, Tilker et al., 2019), we expect
that as these two measures increase, the community will become
more dominated by disturbance-tolerant species. Understanding the
compounding effects of habitat degradation and increased accessi-
bility on wildlife communities is essential to evaluate management of

95U8917 SUOWIWIOD SAITERID 3|qealdde ay) Ag peusenob afe sape WO ‘esn J0 Sain. 1o AkeiqiT auluQO AS|IM UO (SUONIPUCO-PUR-SW.RY/LI0D A8 | 1M ARe1q 1 BUI|UO//:SA1Y) SUONIPUOD pue SWis 1 8u1 39S *[5202/80/50] U0 Akelqiauliuo AS|IM ‘0ZE€T dig/TTTT OT/I0p/W02 A8 | 1M Alelq 1 BUIUD//:SANY WOJ) pepeojuMOd ‘€ ‘¥20Z ‘62rLvLT



WONG ET AL.

tropical production forests and aid the shift towards more sustain-

able forestry practices.

2 | METHODS
2.1 | Studyarea

We surveyed three adjacent forest reserves in central Sabah,
Malaysian Borneo: Deramakot Forest Reserve, Tangkulap Forest
Reserve, and Northern Kuamut Forest Reserve (Figure 1). All sites
are predominantly mixed lowland dipterocarp forest with no appar-
ent wet or dry seasons. Deramakot (551 km?) is a Forest Stewardship
Council certified production forest reserve, implementing reduced
impact logging methods since 1995. Only a small portion (~3%) of
Deramakot is logged each year, with a 40-year harvest rotation
allowing for forest regeneration (Ong et al., 2012). In contrast,
Tangkulap (500km?) and Northern Kuamut (650km?) have been
logged primarily through conventional selective logging practices.
Tangkulap was selectively logged until 2001, when all operations

ceased to allow for forest regeneration. The reserve has since
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received Forest Stewardship Council certification in 2011 and was
later declared a totally protected area in 2015. Northern Kuamut
was heavily conventionally logged from 2004 to 2012, and was also
declared a totally protected areain 2015. As a result of different log-
ging histories and management practices, there is a gradient in forest
degradation from Deramakot (lowest) to Tangkulap (intermediate) to
Northern Kuamut (highest).

Forest reserves can be accessed primarily in three manners:
along main (regularly maintained and graded) and secondary logging
roads, by boat along the Kinabatangan River, or through neighboring
oil palm plantations. All forest reserves have one main logging road
with a network of secondary roads and skid trails and some level of
access control through gates and checkpoints. Tangkulap is the most
accessible with a publicly accessible main logging road, an intact net-
work of secondary roads, and oil palm plantation estates along the
boarders to the north and west. Deramakot has intermediate acces-
sibility with a gated main road and several well maintained secondary
roads from ongoing logging activity, borders oil palm estates to the
north, and the Kinabatangan River in the southeast. Kuamut is the
least accessible with only one publically accessible main logging road,

and, though it was most recently logged, secondary logging roads
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FIGURE 1 Study site map of camera-trap stations and forest “quadrants” across three forest reserves in central Sabah, Malaysian Borneo.
Each 200 x 200-m pixel is classified into four quadrants based on two gradients of anthropogenic impact, forest disturbance (quantified by
aboveground carbon density, ACD) and remoteness (quantified as hiking time in hours). “Remote” and “intact” forest has remoteness/ACD
values >75th percentile of the respective covariate; “accessible” and “disturbed” forest has remoteness/ACD values <25th percentile.
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and skid trails were not maintained after timber harvesting; accessi-
bility in Kuamut is further reduced by rugged terrain and the lack of
major palm oil estates nearby. Though hunting is strictly prohibited
in all forest reserves, we found some evidence of hunting activities.
In our study region, hunting is primarily driven by subsistence needs
and targets specific species, mainly bearded pig Sus barbatus or sam-
bar Rusa unicolor, using firearms (Kurz et al., 2021). While snares are
occasionally employed, their use is relatively infrequent compared
to other regions in Southeast Asia (see Gray et al., 2018). During
our surveys, evidence of hunting activities such as shotgun shells
and camera-trap images generally occurred in close proximity to ac-
cessible logging roads and borders of oil palm estates. Additionally,
there is a reported presence of illegal poachers accessing the study
areas from the Kinabatangan River (Sabah Forestry Department,
pers. comm.). In response to the potential threats posed by illegal
activities, anti-encroachment measures such as regular vehicle pa-
trols (along all roads and the Kinabatangan River) and inspections at
logging camps are implemented along with access control through
gates and checkpoints. Considering these measures, we characterize

hunting pressure in our study areas as present but low.

2.2 | Data collection and preparation

We conducted camera-trap surveys in Deramakot from September
to December 2014, Tangkulap from July to October 2015, and
Northern Kuamut from March to July 2016. We set 63, 64, and 53
camera-trap stations in each forest reserve, respectively, with sta-
tions spaced at approximately 2.5-km intervals (Figure 1). At each
station, we set two Reconyx PC850 cameras (Reconyx Inc., Holmen,
Wisconson, USA) at a height of 30-45 cm within 20m of each other,
often facing different trail features (e.g., ridges, wildlife trails, log-
ging roads, and/or skid trails). We cleared vegetation to reduce false
triggering of cameras and programed cameras to take three con-
secutive images with no delay between triggers. Cameras were re-
trieved after a minimum of 60days of operation.

We identified animals in images to species, with mousedeer
(greater mousedeer Tragulus napu and lesser mousedeer T.kan-
chil) identified only to genus due to similarities in morphology and
ecology. For each station, we combined all records taken by both
cameras and records of the same species >60min apart were con-
sidered independent records. We used the package “camtrapR” ver-
sion 2.1.1 (Niedballa et al., 2016) in program R version 4.0.3 (R Core
Team, 2020) to organize and build a record database and camera
effort matrix, and then to convert the raw data to binary species
detection histories, with 5-day sampling occasions (to avoid excess
zeros especially for rarely detected species), for analysis with com-
munity occupancy models (see Analysis; Dorazio & Royle, 2005,
Royle & Dorazio, 2006). To define our final community, we excluded
all species with <5 detections from the analysis. Additionally, we
excluded small mammal (rodents and tree shrews) and small bird
(passerines) species, as they are poorly sampled by our camera-trap
setup. Furthermore, we exclude wide ranging species (i.e., bearded
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pig, Sunda clouded leopard Neofelis diardi, and Bornean elephant
Elephas maximus borneensis) to approximate the assumption of sam-

pling location independence.

2.3 | Habitat covariates

To characterize forest degradation across the survey sites, we ini-
tially considered two covariates: normalized difference moisture
index (NDMI) and aboveground carbon density (ACD). The NDMI is
a vegetation index based on moisture content from forest canopies,
and it has been shown to be a good indicator of forest degradation
from logging activity (Hayes et al., 2008; Schultz et al., 2016). As
NDMI may not be very sensitive in high moisture environments, we
also considered ACD. While factors other than forest degradation
affect ACD, forest carbon storage is a good measure of forest com-
plexity and degradation from logging activities (Pacheco et al., 2021;
Wekesa et al., 2016; Yohannes & Soromessa, 2015), and a strong
relationship between the two has been demonstrated in our study
region (Asner et al., 2018). Both ACD and NDM I are inversely related
to forest degradation, that is, lower values indicate more disturbed
forest. We obtained annual mean NDMI values from Landsat eight
imagery (30-m resolution) for each forest reserve according to their
respective survey years, and we extracted ACD values from the
ground-truthed ACD dataset for Sabah, Malaysian Borneo by Asner
etal. (2018) (Figure S1). The ACD dataset was assembled in 2016 and
therefore matched our data collection period closely.

To quantify forest accessibility, we calculated remoteness as
hours walking time to each point in the landscape from a set of start
points using a hiking function/least-cost paths analysis (Rees, 2004).
With shapefiles or roads, rivers, and reserve boundaries provided by
the Sabah Forestry Department, we used the “Extract Vertices” geo-
processing tool in QGIS (version 3.28.12; QGIS Development Team,
2023) to generate start points (Figure S2) for the hiking function
along main logging roads and secondary roads (nongated and acces-
sible by vehicles; nonmaintained logging roads were inaccessible and
therefore excluded), the Kinabatangan river (accessible by boat), and
oil palm plantation boundaries (accessible by foot or motorbike and
in close proximity to large roads or worker camps). Remoteness is in-
versely related to accessibility, so that lower values indicate more ac-
cessible forest (Figure S3). Beyond these predictors of main interest,
we also included the elevation at each camera station (extracted from
a digital elevation model, SRTM 30-m resolution) due to its potential
to influence species richness and distributions (Amatulli et al., 2018).

Raster data for each covariate were resampled to 200x200m
resolution before values were extracted for each camera-trap sta-
tion. Habitat covariates were then scaled (mean of zero and standard
deviation of 1) and tested for correlations by calculating Spearman
Rank Correlation coefficients (Figure S4); covariates were consid-
ered substantially correlated if the absolute value of the coefficient
was >0.7 (Dormann et al., 2013). Our final selection of habitat co-
variates to represent the conditions around each camera-trap sta-
tion included ACD, remoteness, and elevation.
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2.4 | Data analysis

We modeled the response of community and species-specific occur-
rence to the three habitat covariates using a Bayesian community
occupancy model framework (e.g., Dorazio & Royle, 2005; Royle &
Dorazio, 2006) without data augmentation (i.e., considering only
detected species). Occupancy models estimate species occupancy
probability and its relationship with predictor variables while ac-
counting for imperfect species detection (MacKenzie et al., 2006).
By jointly analyzing data from multiple species, community occu-
pancy models increase the precision of parameter estimates for rare
species by “borrowing” information from data-rich species, assuming
that species-level parameters come from a common parametric dis-
tribution (Royle & Dorazio, 2008).

As arboreal species have a lower chance to be detected by a ter-
restrial camera-trap, we modeled detection probability as having a
species-specific random intercept with group-specific hyperparam-
eters (arboreal or nonarboreal). Additionally, we accounted for vary-
ing survey effort due to malfunctioning camera-traps by including
the number of days each camera at a station was functional within
a 5-day occasion as a fixed effect, and the effect of camera place-
ment by including whether at least one camera at a station was set
on-road as a species-specific random effect on detection. Finally, to
account for potential differences in detection among forest reserves
(e.g., due to sampling at different times and seasonality affecting
animal activity levels; different field teams affecting camera setup;
differences in animal abundance among reserves), we included a cat-
egorical reserve covariate with species-specific effects on detection
probability. Finally, to improve model fit, we added a species-specific
station-level random effect to the detection model. We modeled oc-
cupancy probability as having a species-specific random intercept
and included species-specific linear effects of the three habitat co-
variates (ACD, remoteness, and elevation) on occupancy. Results
from the equivalent model using NDMI instead of ACD were very
similar and are provided in Figure S5. We also explored a model with
an interaction between ACD and remoteness, but found very little
evidence for such an interaction and therefore retained the original
model without interaction.

We implemented the model (see Appendix S1) in a Bayesian
framework using JAGS version 4.3.0 (Plummer, 2003) through the R-
package “jagsUl” version 1.5.1 (Kellner, 2018). We used conventional
vague Normal priors (mean=0, precision=0.05) on community
means, and vague Gamma priors (shape=rate=0.1) on community
precision parameters. We overlaid prior and posterior distributions
of all community parameters and found no evidence that community-
level posterior estimates were strongly influenced by the choice of
priors. We ran three parallel Markov chains with 300,000 iterations
each, of which we discarded the first 50,000 as burn-in and further
thinned the remaining iterations by 20. We assessed chain conver-
gence using the R-hat statistic (all chains showed R-hat values <1.1
indicating convergence, Gelman et al., 2004). We assessed model fit
by calculating a Bayesian p-value (Gelman et al., 1996). We report
model estimates as posterior mean, standard deviation, and the 95%
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and 75% Bayesian credible intervals. We consider a coefficient to
have strong support if the 95% BCI did not overlap zero and moder-
ate support if the posterior 75% BCI did not overlap zero.

To compare wildlife communities across different levels of for-
est degradation and accessibility, we first established two catego-
ries each for ACD and remoteness based on the upper and lower
quartiles (75th and 25th percentiles) of the distribution of covariate
values across sampled locations (Table S1). That is, ACD values <
lower quartile were categorized as “degraded forest” and remote-
ness values < lower quartile were categorized as accessible forest;
in contrast, ACD/remoteness values > upper quartile were catego-
rized as “intact forest” and “remote forest”, respectively. By com-
bining categories across gradients, we obtained four forest types
(in order of their anthropogenic impact): “degraded and accessible”,
“degraded and remote”, “intact and accessible”, “intact and remote”.
Using covariate rasters of the entire study areas, we identified all
pixels that fell into each forest type (see Figure 1, see Table S2 for
summary of camera-trap stations in each of the four forest types).
We excluded pixels whose covariate values were below/above the
minimum and maximum covariate values across the sampling sta-
tions, to avoid extrapolation to unsampled habitat conditions. For
each forest type, we then randomly selected 1000 pixels, extracted
all covariate information (including elevation) for these pixels, and
used the parameter estimates from the community model to predict
the occupancy probability for all species to these pixels. We used
these predictions to characterize and contrast community diversity
and composition in the four forest types. Specifically, we calculated
mean probability of occupancy for each species in each forest type.
We compared and correlated mean species occupancy probability
per forest type against mean occupancy probability in “intact and
remote” forest to investigate changes in community composition
due to anthropogenic influences, that is, whether common or rare
species changed among forest types.

We further used mean probability of occupancy to generate a
species defaunation index and biodiversity profiles. The defauna-
tion index is a measure of community dissimilarity compared to a
reference community (Giacomini & Galetti, 2013), here, “intact and
remote” forest. Dissimilarity values range between -1 and 1, where
negative values indicate a more complete community compared to
the reference assemblage, O indicates no differences in assemblages,
and positive values indicate less complete community compared to
the reference assemblage (where “less complete” can mean loss and/
or depletion of species). The index is typically calculated based on
species abundance in each assemblage, but has also been calculated
based on occupancy (e.g., Tilker et al., 2019, Wong et al., 2022).

Similarly, we used mean predicted occupancy to generate spe-
cies diversity profiles which are a representation of community di-
versity (Abrams et al., 2021). Diversity profiles are a plotted series
of Hill numbers, including multiple common diversity indices, along a
gradient g (Sensitivity parameter) that quantifies the impact of rare
species on diversity (Leinster & Cobbold, 2012). At g=0, all species
contribute to diversity equally (i.e., richness); as q increases, rare
species contribute less to diversity. The shape of the diversity profile

95U8917 SUOWIWIOD SAITERID 3|qealdde ay) Ag peusenob afe sape WO ‘esn J0 Sain. 1o AkeiqiT auluQO AS|IM UO (SUONIPUCO-PUR-SW.RY/LI0D A8 | 1M ARe1q 1 BUI|UO//:SA1Y) SUONIPUOD pue SWis 1 8u1 39S *[5202/80/50] U0 Akelqiauliuo AS|IM ‘0ZE€T dig/TTTT OT/I0p/W02 A8 | 1M Alelq 1 BUIUD//:SANY WOJ) pepeojuMOd ‘€ ‘¥20Z ‘62rLvLT



6of 14 1 ASSOCIATION FOR
—I_Wl LEY b | OTROPI CA ’;;i« TROPICAL BIOLOGY

AND CONSERVATION

informs us about the evenness of a community where a more steeply

declining profile indicates a community that is less even.

3 | RESULTS

We collected 9823 independent records of 37 species (28 mam-
mals and nine birds) over the course of 12,385 trap nights. Our final
analyzed community consisted of 32 species (Table S3). Community-
and species-specific occurrence responses to ACD and remoteness
were generally positive but varied in strength (Figure 2); ACD was
a more important predictor of occupancy than remoteness. At the
community level, there was strong evidence for a positive associa-
tion of occupancy probability with ACD. Furthermore, our model
results showed strong evidence for an association with ACD for nine
species (eight positive and one negative) and moderate evidence for
positive associations for six species. Occupancy probability was pos-
itively associated with remoteness for the community and four spe-
cies, though these effects had mostly moderate support with only
one species having a strong positive association. See Supplementary
information (Figures Sé6 and S7, Table S4) for additional results on
nonfocal occupancy predictors, detection effects, and pixel-level
species richness.

WONG ET AL.

Owing to the generally positive associations with ACD, most spe-
cies had higher mean predicted occupancy in the two intact forest
types (Table S5). Compared to intact-remote forest, four species had a
significantly different mean predicted occupancy (estimate outside of
95% BCl of that in intact-remote forest) in intact-accessible forest, two
higher and two lower. In contrast, in degraded-remote and degraded-
accessible forest, six and five species decreased significantly in oc-
cupancy, respectively, with only one species increasing. Correlation
between mean species occupancy in intact remote forest and other
forest types decreased with increasing disturbance (Figure 3), suggest-
ing that species common in intact remote forest tended to get rarer,
and rare species tended to get more common in more disturbed forest.

Both the occupancy-based defaunation index and diversity pro-
files suggested a slight decline in diversity from intact to disturbed
forest. The occupancy-based defaunation index for degraded-
accessible forest was significantly different from 0 (0.11 +0.04, 95%
BCl 0.03-0.19) and almost two times greater than for degraded-
remote forest (0.06+0.02), suggesting that combined high lev-
els of forest degradation and accessibility were associated with a
less complete community (Figure 4). The defaunation index value
for intact-accessible forest was negligible (0.002+0.021) suggest-
ing that high accessibility alone did not cause community change.
Occupancy-based diversity profiles declined most quickly in

Community |

Roulroul
Bornean necklaced partridge
Great argus

Crested fireback

Yellow-throated marten

Tufted ground squirrel
Thick-spined porcupine
Sun bear

Short-tailed mongoose
Sambar
Red muntjac

Pig-tailed macaque
Pangolin

Orangutan
Mousedeer
Moonrat

Marbled cat

Malay civet

Malay badger
Long-tailed porcupine
Long-tailed macaque
Leopard cat
Horse-tailed squirrel
Common porcupine
Common palm civet
Collared mongoose
Bornean yellow muntjac
Binturong

Bay cat

Banteng
Banded linsang
Banded civet

ACD Remoteness

FIGURE 2 Model coefficients (mean and Bayesian Credible Intervals, BCI) for the effects of aboveground carbon density (ACD) and
remoteness on the occupancy probabilities of 32 vertebrate species using community occupancy model fit to camera-trap data from three
commercial forest reserves in Sabah, Malaysian Borneo. Thin error bars represent the 95% BCl and the thick error bar represents the

75% BCI. Red dots/bars indicate strong associations between a covariate and occupancy (95% BCI not overlapping zero), black dots/bars
represent moderate associations (75% BCIl not overlapping zero), and gray represents weak association.
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FIGURE 3 Correlation in mean occupancy for 32 species between each forest type (y-axis) and intact remote forest (x-axis). Species
with mean occupancy >0.90 in intact remote forest are considered “common” in this forest type and highlighted in green. Species with
mean occupancy <0.40 in intact remote forest are considered “rare” and highlighted in red. Horizontal lines represent respective occupancy
cutoffs for “rare” and “common” species. The intact forests show high correlation between “rare” and “common” species, whereas in
degraded forests, species mean occupancy has lower correlation due to a shift from “rare” to “common” and vice versa.
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FIGURE 4 Occupancy-based species defaunation index for a 32-species community in three forest reserves in Malaysian Borneo. Forest
is classified into four quadrants, based on two gradients of anthropogenic impact, forest disturbance (quantified by aboveground carbon
density, ACD) and remoteness (quantified as hiking time from nearest access point). “Remote” and “intact” forest has remoteness/ACD
values >75th percentile of the respective covariate; “accessible” and “disturbed” forest has remoteness/ACD values <25th percentile. The
Intact-Remote forest quadrant is used as a reference site (zero defaunation). Solid lines represents mean values; dotted lines represent the

95% Bayesian credible intervals.

degraded-accessible forest with degraded-remote forest having the
second fastest decline, indicating less even communities in degraded
forest types (Figure 5, Table Sé). The profile for both intact forest

types were similar. Bayesian credible intervals for all four profiles

overlapped, suggesting that diversity patterns were similar across
all forest types. Additionally, curves across all forest types were
relatively flat, suggesting similar and low sensitivity of diversity to

occurrence of rare species.
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FIGURE 5 Occupancy-based species diversity profiles calculated for a 32-species community in three forest reserves in Malaysian
Borneo. Forest is classified into four quadrants, based on two gradients of anthropogenic impact, forest disturbance (quantified by
aboveground carbon density, ACD) and remoteness (quantified as hiking time per m). “Remote” and “intact” forest has remoteness/ACD
values >75th percentile of the respective covariate; “accessible” and “disturbed” forest has remoteness/ACD values <25th percentile.
Includes three diversity indices (vertical dotted lines): species richness (q=0), Shannon Index (g= 1), and Simpson Index (q=2). Bayesian
credible intervals (light blue shading) are displayed for only the highest (Intact/Remote) and lowest (Degraded/Accessible) profiles.

4 | DISCUSSION

Our study across three production forests in Sabah, Malaysian
Borneo, confirmed our prediction that species occupancy and com-
munity diversity generally declined along the two major gradients
of anthropogenic impact in tropical forests: structural forest deg-
radation and accessibility. As expected, forest degradation was a
much stronger driver of the occurrence of the terrestrial vertebrate
community and individual species in our study landscape than forest
accessibility, likely owing to the relatively high level of antipoach-
ing measures taken by forest managers. Nonetheless, accessibility
had compounding effects on a wildlife community already affected
negatively by forest degradation. This was reflected in both meas-
ures of species diversity, with degraded accessible forest showing
the least even community (though differences were not significant),
significant defaunation, and a stronger shift in community composi-
tion compared to degraded remote forest.

Richness was estimated to be equal in all forest types, which,
though ecologically reasonable owing to the mobility of the
study species, can also be an artifact of considering a species
as present in a forest type as long as average occupancy is >0
(i.e., even at very low occupancy). This is consistent with previ-
ous studies where species richness did not differ significantly
between primary-unlogged forests and secondary-selectively
logged forests (Barlow et al., 2007; Wall et al., 2021). Nonetheless,
species within the community can be affected negatively by

forest disturbances from logging activity (for example, by occu-
pying smaller areas in logged forest), such as larger carnivores
(Brodie, Giordano, & Ambu, 2015) and arboreal species (Haysom
et al., 2021). In our analysis, the majority of species were posi-
tively associated with less-disturbed forest. These included the
largest carnivore in our analysis, the Sun bear Helarctos malayanus,
most galliform birds, and some arboreal species (e.g., Bornean
orangutan Pongo pygmaeus, semiarboreal banded civet Hemigalus
derbyanus), but also species from other taxonomic groups and
functional roles (e.g., moonrat Echinosorex gymnura and Bornean
yellow muntjac Muntiacus atherodes). These results were consis-
tent with studies that found these species to be forest-dependent
and associated with less disturbed forests (Brozovic et al., 2018;
Heydon, 1994; Nijman, 1998; Ross et al., 2016; Savini et al., 2021;
Scotson et al., 2017; Timmins et al., 2016; Winarni et al., 2009).
The leopard cat Prionailurus bengalensis was the only species with
a significant negative association. Leopard cats are known to do
well in human-modified landscapes, benefiting from disturbances
such as logging activities which increase canopy gaps and under-
story growth, boosting prey availability (Mohamed et al., 2013).
Such species-specific responses to forest degradation subse-
quently influence shifts in community composition. Mammal com-
munities in disturbed and highly fragmented forests have been
show to exhibit higher dominance (less even community comprised
of more abundant species) and fewer forest-unique species relative
to intact forest (Ahumada et al., 2011; Barlow et al., 2007; Boron
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et al., 2019), a pattern we also observed in this study. In our focal
community, forest-dependent species such as the Bornean yellow
muntjac, sun bear, and banded civet had the highest mean predicted
occupancy probabilities within intact remote forest, and these sig-
nificantly decreased in the two degraded forest types. Conversely,
disturbance-tolerant species such as leopard cat and common palm
civet, which were rather rare in the intact-remote forest, had the
highest occupancy gains in the degraded forests. These shifts led to
degraded-accessible forest having a slightly less even community.

The weak/nonsignificant decreases in mean occupancy proba-
bility in degraded forest for most species may be in part attributed
to the limited range of forest degradation considered in this study.
At the time of our surveys, only a small portion of Deramakot was
undergoing active reduced-impact logging; any areas that had pre-
viously undergone any form of logging had at least 5years of forest
regeneration. As a result, even the most degraded pixels in our sam-
ple would not be considered degraded if more intensely logged (<40
megagrams of carbon per hectare, see Asner et al., 2018) or clear-cut
forest was included.

Accessibility, which we interpret as a proxy for hunting pressure,
was a much weaker predictor of species occupancy and community
diversity in our study. Only one species responded strongly to acces-
sibility, and high accessibility alone (i.e., intact accessible forest) did
not lead to defaunation or appreciable declines in species mean oc-
cupancy or community evenness. During our study, we obtained very
few photographic records of hunters—though photographic records
have been shown to underestimate hunting occurrence (Dobbins
et al., 2020). The conditions in our study sites, therefore, do not re-
flect the hunting pressure that exists in other parts of Southeast Asia
(Gray et al., 2018). In regions where there is higher hunting pressure,
it has been shown to be a stronger driver of species distribution that
forest structural integrity (e.g., Tilker et al., 2019). Our accessibility
measure incorporates both small scale terrain information, which is
important for how hunters use landscapes (Deith & Brodie, 2020), as
well as roads, which serve as starting points for hunting incursions.
Roads are often interpreted as a proxy for hunting pressure (Clements
et al., 2014; Laurance et al., 2006; Ziegler et al., 2016) but they also
have other ecological effects (Bennett, 2017). They create habitat
edges, which impacts vertebrate abundance and changes plant spe-
cies composition (Martinez-Ramos et al., 2016; Pfeifer et al., 2017);
they are often used by carnivores and may thus be high risk land-
scape features for potential prey (Brodie, Giordano, & Ambu, 2015;
Kautz et al., 2021). If they are regularly accessed by vehicles, they
can be avoided by wildlife due to fear (Gaynor et al., 2019; Laundre
et al.,, 2010). Similarly, oil palm plantations, which also constituted
starting points in our accessibility calculations, can have effects other
than access (Daniel et al., 2022; Padfield et al., 2019). We cannot dis-
entangle whether the consistently negative (though weak) effects of
accessibility are due to a low-level hunting pressure or other ecologi-
cal effects correlated with accessibility. However, given that species-
specific responses to accessibility were much weaker than to forest
degradation, the overall management of access to our study sites
likely plays an important role of mitigating accessibility effects.
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As noted above, in spite of the weak species-specific and
community-wide effects of accessibility alone, high accessibility
compounded effects of forest degradation on species average oc-
cupancy, defaunation, community evenness, and composition. This
is likely due to species responses to elevation, which contributes to
predicted species occupancy probabilities and the (weak) correla-
tion of this variable with accessibility. In other words, areas that are
both degraded by logging and highly accessible seem to be located
to some degree in areas less “suitable” for several species according
to their elevation. This pattern could arise in two (not mutually exclu-
sive) ways. On one hand, regardless of anthropogenic impact, spe-
cies can show preferences for certain elevations and terrain features
(e.g., Kamenistak et al., 2020; Sundqvist et al., 2013); in that case,
part of the compounding effect of accessibility on average species
occupancy, defaunation, and community evenness/composition may
in fact be due to natural abiotic landscape features. On the other
hand, species may retreat to higher elevations and more rugged ter-
rain because these tend to be less impacted by humans (e.g., Nguyen
et al., 2022); in that case, the abovementioned compounding effects
of accessibility would be representative of anthropogenic effects,
more broadly.

While accessibility primarily reflects human access, it encom-
passes activities beyond hunting, such as vehicle traffic (from log-
ging trucks and road maintenance) and the presence of tourists in
our study sites, which can also impact species fitness and behav-
ior (Brown et al., 2012; Grubb et al., 2013; Ngoprasert et al., 2017,
Whittington et al., 2019). It is crucial to recognize that our current
approach to assessing accessibility serves as a conservative and lim-
ited proxy for hunting pressure, with limitations in its ability to fully
capture the complexity of hunting dynamics. Although remoteness
in our study incorporates small-scale terrain features, additional
factors contributing to hunting pressure include land cover type,
distance to settlements, human population density, and distribution
and characteristics of targeted species. Despite the integration of
such information in previous studies (Benitez-Lopez et al., 2019;
Deith & Brodie, 2020), they, too, serve as proxies for potential hunt-
ing rather than actual hunting. While methods have been devel-
oped to capture hunting activity over space and time (e.g., Dobbins
et al., 2020), limitations persist, particularly concerning the diverse
methods of hunting. Given the low hunting pressure in our study site
and the data available, our utilization of accessibility represents the
most suitable option available.

Despite the negative impacts of forest degradation and—to
a lesser degree—accessibility reported here and in other studies,
well-managed production forests are important for the conserva-
tion of tropical biodiversity (Berry et al., 2010; Gunarso et al., 2007).
Though we did not explicitly compare communities among forest
reserves, each with their respective logging histories, our results
provide further support for the benefits of sustainable forest man-
agement practices for wildlife communities (e.g., Brodie, Giordano,
& Ambu, 2015; Meijaard et al., 2005; Sollmann et al., 2017). Only
a small fraction of forest pixels (<1% of pixels) within the boundar-
ies of Deramakot forest reserve were considered disturbed forest
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which is most likely a result of reduced impact logging methods,
which serve to mitigate forest disturbances (Enters et al., 2002;
Putz et al., 2001). Additionally, sustainable forestry certification
schemes often include measures to manage hunting and encroach-
ment, such as placing gates and checkpoints, and employing forest
guards and patrols to protect wildlife. A well-managed production
forest that combines low-impact harvesting with such protective
measures can mitigate the impacts of both forest degradation and
hunting. Management of tropical production forests is increasingly
shifting towards more sustainable practices, which includes fur-
ther improving harvest practices and road infrastructure (Duflot
etal., 2022; Ellis et al., 2019; Keller & Berry, 2007), better criteria for
identifying high conservation value areas (Asner et al., 2018; Styring
et al., 2022), and understanding economic benefits and trade-offs
(Boltz et al., 2003; Chaudhary et al., 2016). Further evaluating and
understanding the relationships between different aspects of dis-
turbance resulting from forest management and species communi-
ties is essential to inform effective sustainability guidelines.

5 | CONCLUSION

We showed that species community occupancy and diversity gener-
ally declined along the two major gradients of anthropogenic impact
in tropical forests: structural forest degradation and accessibility.
Forest degradation was a much stronger driver of the occurrence
of the terrestrial vertebrate community and individual species,
and subsequently influenced shifts in community composition.
Accessibility, which is interpreted as a proxy for hunting pressure,
had a weaker compounding effect, potentially mitigated by the man-
agement of access to our study sites. Despite the negative impacts
of forest disturbances, well-managed production forests are crucial

the conservation of terrestrial wildlife communities.
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