art:10.1186/1471-2105-12-185.pdf 2,55MB
1000 Titel
  • GPCR-SSFE: A comprehensive database of G-protein-coupled receptor template predictions and homology models
1000 Autor/in
  1. Worth, Catherine L |
  2. Kreuchwig, Annika |
  3. Kleinau, Gunnar |
  4. Krause, Gerd |
1000 Erscheinungsjahr 2011
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2011-05-23
1000 Erschienen in
1000 Quellenangabe
  • 12: 185
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2011
1000 Lizenz
1000 Verlagsversion
  • |
  • |
1000 Ergänzendes Material
  • |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND: G protein-coupled receptors (GPCRs) transduce a wide variety of extracellular signals to within the cell and therefore have a key role in regulating cell activity and physiological function. GPCR malfunction is responsible for a wide range of diseases including cancer, diabetes and hyperthyroidism and a large proportion of drugs on the market target these receptors. The three dimensional structure of GPCRs is important for elucidating the molecular mechanisms underlying these diseases and for performing structure-based drug design. Although structural data are restricted to only a handful of GPCRs, homology models can be used as a proxy for those receptors not having crystal structures. However, many researchers working on GPCRs are not experienced homology modellers and are therefore unable to benefit from the information that can be gleaned from such three-dimensional models. Here, we present a comprehensive database called the GPCR-SSFE, which provides initial homology models of the transmembrane helices for a large variety of family A GPCRs. DESCRIPTION: Extending on our previous theoretical work, we have developed an automated pipeline for GPCR homology modelling and applied it to a large set of family A GPCR sequences. Our pipeline is a fragment-based approach that exploits available family A crystal structures. The GPCR-SSFE database stores the template predictions, sequence alignments, identified sequence and structure motifs and homology models for 5025 family A GPCRs. Users are able to browse the GPCR dataset according to their pharmacological classification or search for results using a UniProt entry name. It is also possible for a user to submit a GPCR sequence that is not contained in the database for analysis and homology model building. The models can be viewed using a Jmol applet and are also available for download along with the alignments. CONCLUSIONS: The data provided by GPCR-SSFE are useful for investigating general and detailed sequence-structure-function relationships of GPCRs, performing structure-based drug design and for better understanding the molecular mechanisms underlying disease-associated mutations in GPCRs. The effectiveness of our multiple template and fragment approach is demonstrated by the accuracy of our predicted homology models compared to recently published crystal structures.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
1000 Label
1000 Förderer
  1. DAAD Kurt Hahn research grant |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer DAAD Kurt Hahn research grant |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6402734.rdf
1000 Erstellt am 2017-06-02T08:14:51.680+0200
1000 Erstellt von 25
1000 beschreibt frl:6402734
1000 Bearbeitet von 288
1000 Zuletzt bearbeitet Thu Aug 18 08:02:03 CEST 2022
1000 Objekt bearb. Wed Mar 31 07:09:54 CEST 2021
1000 Vgl. frl:6402734
1000 Oai Id
  1. |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source