Download
1752-0509-7-73.pdf 775,63KB
WeightNameValue
1000 Titel
  • Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation
1000 Autor/in
  1. Pinna, Andrea |
  2. Heise, Sandra |
  3. Flassig, Robert J. |
  4. de la Fuente, Alberto |
  5. Klamt, Steffen |
1000 Erscheinungsjahr 2013
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2013-08-08
1000 Erschienen in
1000 Quellenangabe
  • 7: 73
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2013
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/1752-0509-7-73 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231426/ |
1000 Ergänzendes Material
  • https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-7-73#Sec20 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND: The data-driven inference of intracellular networks is one of the key challenges of computational and systems biology. As suggested by recent works, a simple yet effective approach for reconstructing regulatory networks comprises the following two steps. First, the observed effects induced by directed perturbations are collected in a signed and directed perturbation graph (PG). In a second step, Transitive Reduction (TR) is used to identify and eliminate those edges in the PG that can be explained by paths and are therefore likely to reflect indirect effects. RESULTS: In this work we introduce novel variants for PG generation and TR, leading to significantly improved performances. The key modifications concern: (i) use of novel statistical criteria for deriving a high-quality PG from experimental data; (ii) the application of local TR which allows only short paths to explain (and remove) a given edge; and (iii) a novel strategy to rank the edges with respect to their confidence. To compare the new methods with existing ones we not only apply them to a recent DREAM network inference challenge but also to a novel and unprecedented synthetic compendium consisting of 30 5000-gene networks simulated with varying biological and measurement error variances resulting in a total of 270 datasets. The benchmarks clearly demonstrate the superior reconstruction performance of the novel PG and TR variants compared to existing approaches. Moreover, the benchmark enabled us to draw some general conclusions. For example, it turns out that local TR restricted to paths with a length of only two is often sufficient or even favorable. We also demonstrate that considering edge weights is highly beneficial for TR whereas consideration of edge signs is of minor importance. We explain these observations from a graph-theoretical perspective and discuss the consequences with respect to a greatly reduced computational demand to conduct TR. Finally, as a realistic application scenario, we use our framework for inferring gene interactions in yeast based on a library of gene expression data measured in mutants with single knockouts of transcription factors. The reconstructed network shows a significant enrichment of known interactions, especially within the 100 most confident (and for experimental validation most relevant) edges. CONCLUSIONS: This paper presents several major achievements. The novel methods introduced herein can be seen as state of the art for inference techniques relying on perturbation graphs and transitive reduction. Another key result of the study is the generation of a new and unprecedented large-scale in silico benchmark dataset accounting for different noise levels and providing a solid basis for unbiased testing of network inference methodologies. Finally, applying our approach to Saccharomyces cerevisiae suggested several new gene interactions with high confidence awaiting experimental validation.
1000 Sacherschließung
lokal Transitive reduction
lokal Yeast
lokal Graph theory
lokal Reverse engineering
lokal Perturbation experiments
lokal Gene network inference
lokal Interaction graphs
lokal Transcriptional regulation
lokal Causal networks
lokal Saccharomyces cerevisiae
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/UGlubmEsIEFuZHJlYQ==|https://frl.publisso.de/adhoc/creator/SGVpc2UsIFNhbmRyYQ==|https://frl.publisso.de/adhoc/creator/Rmxhc3NpZywgUm9iZXJ0wqBKLg==|https://frl.publisso.de/adhoc/creator/ZGXCoGxhwqBGdWVudGUsIEFsYmVydG8=|https://frl.publisso.de/adhoc/creator/S2xhbXQsIFN0ZWZmZW4=
1000 Label
1000 Förderer
  1. German Federal Ministry of Education and Research (BMBF) |
  2. Ministry of Education and Research of Saxony-Anhalt |
  3. Research Center “Dynamic Systems: Biosystems Engineering” |
  4. Sardinian Regional Authority (RAS) |
1000 Fördernummer
  1. 0316167B
  2. -
  3. -
  4. -
1000 Förderprogramm
  1. e:Bio
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer German Federal Ministry of Education and Research (BMBF) |
    1000 Förderprogramm e:Bio
    1000 Fördernummer 0316167B
  2. 1000 joinedFunding-child
    1000 Förderer Ministry of Education and Research of Saxony-Anhalt |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Research Center “Dynamic Systems: Biosystems Engineering” |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Sardinian Regional Authority (RAS) |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6404545.rdf
1000 Erstellt am 2017-09-21T13:58:40.907+0200
1000 Erstellt von 218
1000 beschreibt frl:6404545
1000 Bearbeitet von 288
1000 Zuletzt bearbeitet 2021-03-30T11:37:37.565+0200
1000 Objekt bearb. Tue Mar 30 11:37:37 CEST 2021
1000 Vgl. frl:6404545
1000 Oai Id
  1. oai:frl.publisso.de:frl:6404545 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source