Download
journal.pone.0097122.PDF 1,07MB
WeightNameValue
1000 Titel
  • Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias
1000 Autor/in
  1. Fourcade, Yoan |
  2. Engler, Jan O. |
  3. Rödder, Dennis |
  4. Secondi, Jean |
1000 Erscheinungsjahr 2014
1000 LeibnizOpen
1000 Art der Datei
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2014-05-12
1000 Erschienen in
1000 Quellenangabe
  • 9(5):e97122
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2014
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0097122 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018261/ |
1000 Ergänzendes Material
  • http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097122#s5 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • MAXENT is now a common species distribution modeling (SDM) tool used by conservation practitioners for predicting the distribution of a species from a set of records and environmental predictors. However, datasets of species occurrence used to train the model are often biased in the geographical space because of unequal sampling effort across the study area. This bias may be a source of strong inaccuracy in the resulting model and could lead to incorrect predictions. Although a number of sampling bias correction methods have been proposed, there is no consensual guideline to account for it. We compared here the performance of five methods of bias correction on three datasets of species occurrence: one “virtual” derived from a land cover map, and two actual datasets for a turtle (Chrysemys picta) and a salamander (Plethodon cylindraceus). We subjected these datasets to four types of sampling biases corresponding to potential types of empirical biases. We applied five correction methods to the biased samples and compared the outputs of distribution models to unbiased datasets to assess the overall correction performance of each method. The results revealed that the ability of methods to correct the initial sampling bias varied greatly depending on bias type, bias intensity and species. However, the simple systematic sampling of records consistently ranked among the best performing across the range of conditions tested, whereas other methods performed more poorly in most cases. The strong effect of initial conditions on correction performance highlights the need for further research to develop a step-by-step guideline to account for sampling bias. However, this method seems to be the most efficient in correcting sampling bias and should be advised in most cases.
1000 Sacherschließung
lokal Conservation biology
lokal Conservation science
lokal Ecological niches
lokal Geographic distribution
lokal Statistical distributions
lokal Environmental geography
lokal Biodiversity
lokal Prohability distribution
1000 Fachgruppe
  1. Biologie |
  2. Umweltwissenschaften |
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/Rm91cmNhZGUsIFlvYW4=|https://frl.publisso.de/adhoc/creator/RW5nbGVyLCBKYW4gTy4=|https://frl.publisso.de/adhoc/creator/UsO2ZGRlciwgRGVubmlz|https://frl.publisso.de/adhoc/creator/U2Vjb25kaSwgSmVhbg==
1000 Label
1000 Förderer
  1. Plan Loire Grandeur Nature
  2. European Union
  3. German Federal Environmental Foundation
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. European Regional Development Fund (ERDF)
  3. fellowship program
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6408372.rdf
1000 Erstellt am 2018-06-15T13:41:16.816+0200
1000 Erstellt von 122
1000 beschreibt frl:6408372
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-01-31T00:09:32.113+0100
1000 Objekt bearb. Fri Jun 15 13:43:12 CEST 2018
1000 Vgl. frl:6408372
1000 Oai Id
  1. oai:frl.publisso.de:frl:6408372 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source