Download
Chen_2017_Environ._Res._Lett._12_105005.pdf 2,01MB
WeightNameValue
1000 Titel
  • Regional contribution to variability and trends of global gross primary productivity
1000 Autor/in
  1. Chen, Min |
  2. Rafique, Rashid |
  3. Asrar, Ghassem R. |
  4. Bond-Lamberty, Benjamin |
  5. Ciais, Philippe |
  6. Zhao, Fang |
  7. Reyer, Christopher P. O. |
  8. Ostberg, Sebastian |
  9. Chang, Jinfeng |
  10. Ito, Akihiko |
  11. Yang, Jia |
  12. Zeng, Ning |
  13. Kalnay, Eugenia |
  14. West, Tristram |
  15. Leng, Guoyong |
  16. Francois, Louis |
  17. Munhoven, Guy |
  18. Henrot, Alexandra |
  19. Tian, Hanqin |
  20. Pan, Shufen |
  21. Nishina, Kazuya |
  22. Viovy, Nicolas |
  23. Morfopoulos, Catherine |
  24. Betts, Richard |
  25. Schaphoff, Sibyll |
  26. Steinkamp, Jörg |
  27. Hickler, Thomas |
1000 Erscheinungsjahr 2017
1000 LeibnizOpen
1000 Art der Datei
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2017-09-28
1000 Erschienen in
1000 Quellenangabe
  • 12(10):105005
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2017
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1088/1748-9326/aa8978 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000–2010 total global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr−1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr−1), and close to the MTE (120 Pg C yr−1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models' ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.
1000 Fachgruppe
  1. Umweltwissenschaften |
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/Q2hlbiwgTWlu|https://frl.publisso.de/adhoc/creator/UmFmaXF1ZSwgUmFzaGlk|https://frl.publisso.de/adhoc/creator/QXNyYXIsIEdoYXNzZW0gUi4=|http://orcid.org/0000-0001-9525-4633|https://frl.publisso.de/adhoc/creator/Q2lhaXMsIFBoaWxpcHBl|https://frl.publisso.de/adhoc/creator/WmhhbywgRmFuZw==|https://frl.publisso.de/adhoc/creator/UmV5ZXIsIENocmlzdG9waGVyIFAuIE8uIA==|https://frl.publisso.de/adhoc/creator/T3N0YmVyZywgU2ViYXN0aWFu|https://frl.publisso.de/adhoc/creator/Q2hhbmcsIEppbmZlbmc=|https://frl.publisso.de/adhoc/creator/SXRvLCBBa2loaWtv|https://frl.publisso.de/adhoc/creator/WWFuZywgSmlh|https://frl.publisso.de/adhoc/creator/WmVuZywgTmluZw==|https://frl.publisso.de/adhoc/creator/S2FsbmF5LCBFdWdlbmlh|https://frl.publisso.de/adhoc/creator/V2VzdCwgVHJpc3RyYW0=|https://frl.publisso.de/adhoc/creator/TGVuZywgR3VveW9uZw==|https://frl.publisso.de/adhoc/creator/RnJhbmNvaXMsIExvdWlz|https://frl.publisso.de/adhoc/creator/TXVuaG92ZW4sIEd1eQ==|https://frl.publisso.de/adhoc/creator/SGVucm90LCBBbGV4YW5kcmE=|https://frl.publisso.de/adhoc/creator/VGlhbiwgSGFucWlu|https://frl.publisso.de/adhoc/creator/UGFuLCBTaHVmZW4=|https://frl.publisso.de/adhoc/creator/TmlzaGluYSwgS2F6dXlh|https://frl.publisso.de/adhoc/creator/VmlvdnksIE5pY29sYXM=|https://frl.publisso.de/adhoc/creator/TW9yZm9wb3Vsb3MsIENhdGhlcmluZQ==|https://frl.publisso.de/adhoc/creator/QmV0dHMsIFJpY2hhcmQ=|https://frl.publisso.de/adhoc/creator/U2NoYXBob2ZmLCBTaWJ5bGw=|https://frl.publisso.de/adhoc/creator/U3RlaW5rYW1wLCBKw7ZyZw==|http://orcid.org/0000-0002-4668-7552
1000 Label
1000 Förderer
  1. Battelle Memorial Institute for the US Department of Energy
  2. NASA
  3. German Federal Ministry of Education and Research (BMBF)
  4. European Commission
  5. US National Science Foundation
  6. National Key Research and Development Program of China
1000 Fördernummer
  1. -
  2. NNH12AU35I; NNH13AW58I
  3. 01LS1201A1
  4. 603864 (HELIX)
  5. 1210360; 1243232
  6. 2017YFA0604700
1000 Förderprogramm
  1. Laboratory Directed Research and Development project
  2. Carbon Monitoring System (CMS); ACCESS programs
  3. -
  4. 7th Framework Programme (EU/FP7)
  5. -
  6. -
1000 Dateien
  1. Regional contribution to variability and trends of global gross primary productivity
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6408404.rdf
1000 Erstellt am 2018-06-18T11:36:45.357+0200
1000 Erstellt von 270
1000 beschreibt frl:6408404
1000 Bearbeitet von 270
1000 Zuletzt bearbeitet 2020-01-31T00:09:13.747+0100
1000 Objekt bearb. Wed Jul 25 09:01:17 CEST 2018
1000 Vgl. frl:6408404
1000 Oai Id
  1. oai:frl.publisso.de:frl:6408404 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source