Download
document.pdf 1,01MB
WeightNameValue
1000 Titel
  • Selecting optimal partitioning schemes for phylogenomic datasets
1000 Autor/in
  1. Lanfear, Robert |
  2. Calcott, Brett |
  3. Kainer, David |
  4. Mayer, Christoph |
  5. Stamatakis, Alexandros |
1000 Erscheinungsjahr 2014
1000 LeibnizOpen
1000 Art der Datei
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2014-04-17
1000 Erschienen in
1000 Quellenangabe
  • 14:82
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2014
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/1471-2148-14-82 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012149/ |
1000 Ergänzendes Material
  • https://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-14-82#Declarations |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND: Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. METHODS: We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. RESULTS: We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. CONCLUSIONS: These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.
1000 Sacherschließung
lokal Partitionfinder
lokal Partitioning
lokal Model selection
lokal AICc
lokal Phylogenetics
lokal AIC
lokal Clustering
lokal Hierarchical clustering
lokal BIC
lokal Phylogenomics
1000 Fachgruppe
  1. Biologie |
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/TGFuZmVhciwgUm9iZXJ0|https://frl.publisso.de/adhoc/creator/Q2FsY290dCwgQnJldHQ=|https://frl.publisso.de/adhoc/creator/S2FpbmVyLCBEYXZpZA==|http://orcid.org/0000-0001-5104-6621|https://frl.publisso.de/adhoc/creator/U3RhbWF0YWtpcywgQWxleGFuZHJvcw==
1000 Förderer
  1. National Evolutionary Synthesis Centre (NESCent)
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. short-term visitor; open-access publishing
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6408746.rdf
1000 Erstellt am 2018-07-16T08:59:03.878+0200
1000 Erstellt von 122
1000 beschreibt frl:6408746
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2018-07-16T09:03:26.686+0200
1000 Objekt bearb. Mon Jul 16 09:02:40 CEST 2018
1000 Vgl. frl:6408746
1000 Oai Id
  1. oai:frl.publisso.de:frl:6408746 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source