Download
s40795-017-0194-7.pdf 415,91KB
WeightNameValue
1000 Titel
  • On exploring and ranking risk factors of child malnutrition in Bangladesh using multiple classification analysis
1000 Autor/in
  1. Bhowmik, Kakoli Rani |
  2. Das, Sumonkanti |
1000 Erscheinungsjahr 2017
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2017-09-07
1000 Erschienen in
1000 Quellenangabe
  • 3:73
1000 Copyrightjahr
  • 2017
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40795-017-0194-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050713/ |
1000 Ergänzendes Material
  • https://bmcnutr.biomedcentral.com/articles/10.1186/s40795-017-0194-7#Decs |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND: Logistic regression analysis is widely used to explore the determinants of child malnutrition status mainly for nominal response variable and non-linear relationship of interval-scale anthropometric measure with nominal-scale predictors. Multiple classification analysis relaxes the linearity assumption and additionally prioritizes the predictors. Main objective of the study is to show how does multiple classification analysis perform like linear and logistic regression analyses for exploring and ranking the determinants of child malnutrition. METHODS: Anthropometric data of under-5 children are extracted from the 2011 Bangladesh Demographic and Health Survey. The analysis is carried out considering several socio-economic, demographic and environmental explanatory variables. The Height-for-age Z-score is used as the anthropometric measure from which malnutrition status (stunting: below −2.0 Z-score) is identified. RESULTS: The fitted multiple classification analysis models show similar results as linear and logistic models. Children age, birth weight and birth interval; mother’s education and nutrition status; household economic status and family size; residential place and regional settings are observed as the significant predictors of both Height-for-age Z-score and stunting. Child, household, and mother level variables have been ranked as the first three significant groups of predictors by multiple classification analysis. CONCLUSIONS: Detecting and ranking the determinants of child malnutrition through Multiple classification analysis might help the policy makers in priority-based decision-making. TRIAL REGISTRATION: “Retrospectively registered”
1000 Sacherschließung
lokal Linear regression
lokal Stunting
lokal Height-for-age Z-score
lokal Logistic regression
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/Qmhvd21paywgS2Frb2xpIFJhbmk=|https://frl.publisso.de/adhoc/creator/RGFzLCBTdW1vbmthbnRp
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6410530.rdf
1000 Erstellt am 2018-10-11T13:16:44.552+0200
1000 Erstellt von 218
1000 beschreibt frl:6410530
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2021-09-03T15:17:05.803+0200
1000 Objekt bearb. Fri Sep 03 15:17:05 CEST 2021
1000 Vgl. frl:6410530
1000 Oai Id
  1. oai:frl.publisso.de:frl:6410530 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source