Download
586-500-1-PB.pdf 1,76MB
WeightNameValue
1000 Titel
  • Sensitivity of a grassland model ensemble to climate change factors: the MACSUR approach
1000 Autor/in
  1. Sándor, Renáta |
  2. Bellocchi, Gianni |
  3. Acutis, Marco |
  4. Bottyán, E. |
  5. DORO, Luca |
  6. Hidy, D. |
  7. Minet, J. |
  8. Lellei-Kovacs, Eszter |
  9. Ma, S. |
  10. Perego, A. |
  11. RUGET, Françoise |
  12. Sanna, M. |
  13. Seddaiu, Giovanna |
  14. Wu, L. |
  15. Barcza, Zoltán |
1000 Erscheinungsjahr 2017
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2017-06-19
1000 Erschienen in
1000 Quellenangabe
  • 10(Supplement):SC-38
1000 Übergeordneter Kongress
1000 Verlagsversion
  • https://ojs.macsur.eu/index.php/Reports/article/view/SC-38 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • In grassland modelling, understanding feedbacks between grassland ecosystems and the atmosphere in the context of regional scale climatic changes is essential for the accurate quantification of ecosystem water and carbon (C) fluxes. Different grassland models respond differently to environmental conditions and climatic circumstances. To test the sensitivity of different models to changes in input variables, ensemble modelling approaches are used because they generate an expanded envelope of possible systemic outputs. Here, an ensemble modelling approach was applied to explore water and C fluxes from grasslands in Europe. Seven grassland models were run at nine long-term grassland sites representing a broad gradient of geographic and climatic conditions. It was assessed the sensitivity to climate change factors including precipitation (P), temperature (T) and atmospheric CO2 concentration [CO2]. Baseline weather series (including [CO2]=380 ppm) were modified by changing T and P by -25%, -10%, -5%, +5%, +10%, +25% of the observed standard deviation and [CO2] by +5%, +10%, +15%, +25%, +50%, +100%. The obtained multi-model responses for each driver showed different levels of sensitivity. Soil temperature and gross primary production (GPP) displayed strong sensitivity to air temperature and precipitation. Based on the multi-model median of model responses, altered scenarios of precipitation had an important effect on modelled evapotranspiration from grassland swards. In general, yield biomass and GPP increased with elevated levels of [CO2]. Rising T and [CO2] had a fundamental effect on the C cycling of terrestrial ecosystems. This study demonstrates the use of ensemble modelling to address critical issues of uncertainty associated with individual model predictions, and provides increased understanding of water and C fluxes in grasslands under climate change.
1000 Fächerklassifikation (DDC)
1000 DOI 10.4126/FRL01-006413003 |
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-5132-1945|https://orcid.org/0000-0003-2712-7979|https://orcid.org/0000-0002-1576-8261|https://frl.publisso.de/adhoc/creator/Qm90dHnDoW4sIEUu|https://orcid.org/0000-0003-1404-2255|https://frl.publisso.de/adhoc/creator/SGlkeSwgRC4=|https://frl.publisso.de/adhoc/creator/TWluZXQsIEou|https://orcid.org/0000-0002-9654-6934|https://frl.publisso.de/adhoc/creator/TWEsIFMu|https://frl.publisso.de/adhoc/creator/UGVyZWdvLCBBLg==|https://orcid.org/0000-0001-5407-8549|https://frl.publisso.de/adhoc/creator/U2FubmEsIE0u|https://orcid.org/0000-0001-6043-1134|https://frl.publisso.de/adhoc/creator/V3UsIEwu|https://orcid.org/0000-0002-1278-0636
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Abstract
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6413003.rdf
1000 Erstellt am 2019-02-21T11:37:56.284+0100
1000 Erstellt von 218
1000 beschreibt frl:6413003
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet Thu Jan 30 17:26:52 CET 2020
1000 Objekt bearb. Wed Jun 12 07:57:02 CEST 2019
1000 Vgl. frl:6413003
1000 Oai Id
  1. oai:frl.publisso.de:frl:6413003 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source