Download
261-293-2-PB.pdf 846,18KB
WeightNameValue
1000 Titel
  • Statistical learning approach for modelling the effects of climate change on oilseed rape yield
1000 Autor/in
  1. Sharif, Behzad |
  2. Olesen, Jørgen Eivind |
  3. Schelde, Kirsten |
1000 Erscheinungsjahr 2014
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2014-06-27
1000 Erschienen in
1000 Quellenangabe
  • 3(Supplement):CP3-48
1000 Übergeordneter Kongress
1000 Verlagsversion
  • https://ojs.macsur.eu/index.php/Reports/article/view/CP3-48 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Statistical learning is a fairly new term referring to a set of supervised and unsupervised modelling and prediction techniques. It is based on traditional statistics but has been highly enhanced inspired by developments in machine learning and data mining. The main focus of statistical learning is to estimate the functions that quantify relations between several parameters and observed responses. These functions are further used for prediction, inference or a combination of both. For a particular case of quantitative responses, regularization techniques in regression are developed to overcome the weaknesses of ordinary least square (OLS) regression in prediction. These new shrinkage methods outperform OLS for prediction, especially in large datasets. In this study, a large dataset of field experiments on winter oilseed rape in Denmark for 22 years (1992 to 2013) was collected. Biweekly climatic data along with sowing date, harvest date, soil type and previous crop are considered as the explanatory variables. Yield of winter oilseed rape is considered as response variable. LASSO and Elastic Nets are the regularization techniques used to estimate the functions. Hold-one-out cross validation method for testing the prediction power reveals that these techniques are much useful in both prediction and inference. Since these techniques are included in recent versions of some software packages (e.g. R), they can be easily implemented by users at any level. The estimated function (model) is further used to predict the oilseed rape yield responses to climate change for several scenarios using representative weather data produced by a weather generator.
1000 Fächerklassifikation (DDC)
1000 DOI 10.4126/FRL01-006413673 |
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/U2hhcmlmLCBCZWh6YWQ=|https://frl.publisso.de/adhoc/creator/T2xlc2VuLCBKw7hyZ2VuIEVpdmluZA==|https://frl.publisso.de/adhoc/creator/U2NoZWxkZSwgS2lyc3Rlbg==
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6413673.rdf
1000 Erstellt am 2019-04-01T11:33:31.061+0200
1000 Erstellt von 122
1000 beschreibt frl:6413673
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet Thu Jan 30 17:27:10 CET 2020
1000 Objekt bearb. Wed Jun 12 08:05:26 CEST 2019
1000 Vgl. frl:6413673
1000 Oai Id
  1. oai:frl.publisso.de:frl:6413673 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source