Download
156-195-1-PB.pdf 416,19KB
WeightNameValue
1000 Titel
  • Inter-comparison of statistical models for projecting winter oilseed rape yield in Europe under climate change
1000 Autor/in
  1. Sharif, Behzad |
  2. Makowski, David |
  3. Kersebaum, Kurt Christian |
  4. Trnka, Miroslav |
  5. Schelde, Kirsten |
  6. Olesen, Jørgen E. |
1000 Erscheinungsjahr 2015
1000 LeibnizOpen
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2015-05-11
1000 Erschienen in
1000 Quellenangabe
  • 5:SP5-61
1000 FRL-Sammlung
1000 Übergeordneter Kongress
1000 Copyrightjahr
  • 2015
1000 Verlagsversion
  • https://ojs.macsur.eu/index.php/Reports/article/view/SP5-61 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • While intercomparison of process-based crop models for projections under climate change is being intensively studied at European as well as at the global scale, little effort has been made for comparing statistical models. In this study, several regression techniques (ordinary least squares, stepwise, shrinkage methods, principle components and partial least squares) were combined with different types of climate input variables (with different temporal resolution) in order to define a large range of statistical models. Each model was fitted to winter oilseed rape data collected in 689, 325 and 173 field experiments carried out in Denmark, Germany, and Czech Republic, respectively. The fitted models were then used to predict yield of winter oilseed rape in the field experiments during more than 20 years, up to 2013. Interpretability of the estimated climate variable effects and accuracy of yield predictions were both analysed. Results suggest that recent statistical methods (e.g., shrinkage methods) may have considerable capabilities to complement traditional statistical methods in yield prediction. The selection of the most influential variables was strongly influenced by the statistical method used to analyse the data. Among the most recent statistical methods, the uncertainties in projecting yield of winter oilseed rape under climate change were mainly due to residual errors and uncertainty in estimated parameter values, and not to model choice.
1000 Fächerklassifikation (DDC)
1000 DOI 10.4126/FRL01-006413718 |
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/creator/U2hhcmlmLCBCZWh6YWQ=|https://frl.publisso.de/adhoc/uri/TWFrb3dza2ksIERhdmlk|https://orcid.org/0000-0002-3679-8427|https://orcid.org/0000-0003-4727-8379|https://frl.publisso.de/adhoc/creator/U2NoZWxkZSwgS2lyc3Rlbg==|https://orcid.org/0000-0002-6639-1273
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6413718.rdf
1000 Erstellt am 2019-04-02T14:23:28.299+0200
1000 Erstellt von 218
1000 beschreibt frl:6413718
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2022-10-25T18:00:35.509+0200
1000 Objekt bearb. Tue Oct 25 18:00:35 CEST 2022
1000 Vgl. frl:6413718
1000 Oai Id
  1. oai:frl.publisso.de:frl:6413718 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source