Download
4706147.pdf 2,86MB
WeightNameValue
1000 Titel
  • Assessment of Ripening Degree of Avocado by Electrical Impedance Spectroscopy and Support Vector Machine
1000 Autor/in
  1. Islam, Monzurul |
  2. Wahid, Khan |
  3. Dinh, Anh |
1000 Erscheinungsjahr 2018
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2018-11-01
1000 Erschienen in
1000 Quellenangabe
  • 2018:4706147
1000 Copyrightjahr
  • 2018
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1155/2018/4706147 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Avocado, a climacteric fruit, exerts high rate of respiration and ethylene production and thereby subject to ripening during storage. Therefore, its ripening is a significant factor to impart optimum quality in postharvest storage. To understand the dynamics of ripening and to assess the degree of ripening in the avocado, electrical sensing technique is utilized in this study. In particular, electrical impedance spectroscopy (EIS) is found to uncover the physiological and structural characteristics in plants and vegetables and to follow physiological progressions due to environmental impacts. In this work, we present an approach that will integrate EIS and machine learning technique that allows us to monitor the ripening degree of the avocado. It is evident from our study that the impedance absolute magnitude of the avocado gradually decreases as the ripening stages (firm, breaking, ripe, and overripe) proceed at a particular frequency. In addition, principal component analysis shows that impedance magnitude (two principal components combined explain 99.95% variation) has better discrimination capabilities for ripening degrees compared to impedance phase angle, impedance real part, and impedance imaginary part. Our classifier utilizes two principal component features over 100 EIS responses and demonstrates classification over firm, breaking, ripe, and overripe stages with an accuracy of 90%, precision of 93%, recall of 90%, f1-score of 90%, and auc of 88%. The study offers plant scientists a low cost and nondestructive approach to monitor postharvest ripening process for quality control during storage.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2084-5695|https://orcid.org/0000-0003-0125-9789|https://frl.publisso.de/adhoc/uri/RGluaCwgQW5o
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6414703.rdf
1000 Erstellt am 2019-06-05T11:46:56.859+0200
1000 Erstellt von 218
1000 beschreibt frl:6414703
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2020-01-30T17:26:12.616+0100
1000 Objekt bearb. Wed Jun 05 11:47:43 CEST 2019
1000 Vgl. frl:6414703
1000 Oai Id
  1. oai:frl.publisso.de:frl:6414703 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source