Download
fvets-05-00197.pdf 2,42MB
WeightNameValue
1000 Titel
  • Robustness of Eco-Epidemiological Capture-Recapture Parameter Estimates to Variation in Infection State Uncertainty
1000 Autor/in
  1. Benhaiem, Sarah |
  2. Marescot, Lucile |
  3. Hofer, Heribert |
  4. East, Marion |
  5. Lebreton, Jean-Dominique |
  6. Kramer-Schadt, Stephanie |
  7. Gimenez, Olivier |
1000 Erscheinungsjahr 2018
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2018-08-28
1000 Erschienen in
1000 Quellenangabe
  • 5:197
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2018
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fvets.2018.00197 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121098/ |
1000 Ergänzendes Material
  • https://www.frontiersin.org/articles/10.3389/fvets.2018.00197/full#h11 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Estimating eco-epidemiological parameters in free-ranging populations can be challenging. As known individuals may be undetected during a field session, or their health status uncertain, the collected data are typically “imperfect”. Multi-event capture-mark-recapture (MECMR) models constitute a substantial methodological advance by accounting for such imperfect data. In these models, animals can be “undetected” or “detected” at each time step. Detected animals can be assigned an infection state, such as “susceptible” (S), “infected” (I), or “recovered” (R), or an “unknown” (U) state, when for instance no biological sample could be collected. There may be heterogeneity in the assignment of infection states, depending on the manifestation of the disease in the host or the diagnostic method. For example, if obtaining the samples needed to prove viral infection in a detected animal is difficult, this can result in a low chance of assigning the I state. Currently, it is unknown how much uncertainty MECMR models can tolerate to provide reliable estimates of eco-epidemiological parameters and whether these parameters are sensitive to heterogeneity in the assignment of infection states. We used simulations to assess how estimates of the survival probability of individuals in different infection states and the probabilities of infection and recovery responded to (1) increasing infection state uncertainty (i.e., the proportion of U) from 20 to 90%, and (2) heterogeneity in the probability of assigning infection states. We simulated data, mimicking a highly virulent disease, and used SIR-MECMR models to quantify bias and precision. For most parameter estimates, bias increased and precision decreased gradually with state uncertainty. The probabilities of survival of I and R individuals and of detection of R individuals were very robust to increasing state uncertainty. In contrast, the probabilities of survival and detection of S individuals, and the infection and recovery probabilities showed high biases and low precisions when state uncertainty was >50%, particularly when the assignment of the S state was reduced. Considering this specific disease scenario, SIR-MECMR models are globally robust to state uncertainty and heterogeneity in state assignment, but the previously mentioned parameter estimates should be carefully interpreted if the proportion of U is high.
1000 Sacherschließung
lokal multi-event capture-mark-recapture
lokal simulation
lokal partial observation
lokal state uncertainty
lokal SIR model
lokal precision
lokal bias
lokal assignment probability
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-9121-5298|https://orcid.org/0000-0003-2205-9970|https://orcid.org/0000-0002-2813-7442|https://orcid.org/0000-0002-0391-8365|https://frl.publisso.de/adhoc/uri/TGVicmV0b24sIEplYW4tRG9taW5pcXVl|https://orcid.org/0000-0002-9269-4446|https://frl.publisso.de/adhoc/uri/R2ltZW5leiwgT2xpdmllcg==
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Leibniz-Gemeinschaft |
  3. Agence Nationale de la Recherche |
1000 Fördernummer
  1. EA 5/3-1; KR4266/2-1
  2. SAW K79/2017
  3. ANR-16-CE02-0007
1000 Förderprogramm
  1. -
  2. Open Access Fund
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer EA 5/3-1; KR4266/2-1
  2. 1000 joinedFunding-child
    1000 Förderer Leibniz-Gemeinschaft |
    1000 Förderprogramm Open Access Fund
    1000 Fördernummer SAW K79/2017
  3. 1000 joinedFunding-child
    1000 Förderer Agence Nationale de la Recherche |
    1000 Förderprogramm -
    1000 Fördernummer ANR-16-CE02-0007
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6414985.rdf
1000 Erstellt am 2019-07-02T13:19:19.530+0200
1000 Erstellt von 218
1000 beschreibt frl:6414985
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-10-26T15:08:35.417+0100
1000 Objekt bearb. Mon Oct 26 15:08:35 CET 2020
1000 Vgl. frl:6414985
1000 Oai Id
  1. oai:frl.publisso.de:frl:6414985 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source