Download
sdata2018224.pdf 2,74MB
WeightNameValue
1000 Titel
  • A high-resolution streamflow and hydrological metrics dataset for ecological modeling using a regression model
1000 Autor/in
  1. Irving, Katie |
  2. Kuemmerlen, Mathias |
  3. Kiesel, Jens |
  4. Kakouei, Karan |
  5. Domisch, Sami |
  6. Jähnig, Sonja C. |
1000 Erscheinungsjahr 2018
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2018-11-06
1000 Erschienen in
1000 Quellenangabe
  • 5:180224
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2018
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/sdata.2018.224 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219418/ |
1000 Ergänzendes Material
  • https://www.nature.com/articles/sdata2018224#Sec19 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Hydrological variables are among the most influential when analyzing or modeling stream ecosystems. However, available hydrological data are often limited in their spatiotemporal scale and resolution for use in ecological applications such as predictive modeling of species distributions. To overcome this limitation, a regression model was applied to a 1 km gridded stream network of Germany to obtain estimated daily stream flow data (m3 s−1) spanning 64 years (1950–2013). The data are used as input to calculate hydrological indices characterizing stream flow regimes. Both temporal and spatial validations were performed. In addition, GLMs using both the calculated and observed hydrological indices were compared, suggesting that the predicted flow data are adequate for use in predictive ecological models. Accordingly, we provide estimated stream flow as well as a set of 53 hydrological metrics at 1 km grid for the stream network of Germany. In addition, we provide an R script where the presented methodology is implemented, that uses globally available data and can be directly applied to any other geographical region.
1000 Sacherschließung
lokal Ecological modelling
lokal Freshwater ecology
lokal Hydrology
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SXJ2aW5nLCBLYXRpZQ==|https://orcid.org/0000-0003-1362-3701|https://frl.publisso.de/adhoc/uri/S2llc2VsLCBKZW5z|https://orcid.org/0000-0001-8665-6841|https://orcid.org/0000-0002-8127-9335|https://orcid.org/0000-0002-6349-9561
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Leibniz-Gemeinschaft |
1000 Fördernummer
  1. 01LN1320A
  2. -
1000 Förderprogramm
  1. Global Change Effects in River Ecosystems (GLANCE)
  2. Open Access Fund
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm Global Change Effects in River Ecosystems (GLANCE)
    1000 Fördernummer 01LN1320A
  2. 1000 joinedFunding-child
    1000 Förderer Leibniz-Gemeinschaft |
    1000 Förderprogramm Open Access Fund
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6415450.rdf
1000 Erstellt am 2019-07-29T12:39:45.705+0200
1000 Erstellt von 304
1000 beschreibt frl:6415450
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2020-11-19T17:13:46.698+0100
1000 Objekt bearb. Thu Nov 19 17:13:46 CET 2020
1000 Vgl. frl:6415450
1000 Oai Id
  1. oai:frl.publisso.de:frl:6415450 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source